int main(int argc, char *argv[]) { const char *fn = "cube.dat"; ELEMENT *e; GRID *g; DOF *u; int i, n; /* Test initialize MPI before phgInit */ MPI_Init(&argc, &argv); phgInit(&argc, &argv); g = phgNewGrid(-1); if (argc > 1) fn = argv[1]; if (!phgImport(g, fn, FALSE)) phgError(1, "can't read file \"%s\".\n", fn); phgRefineAllElements(g, 0); u = phgDofNew(g, DOF_DEFAULT, 1, "u", DofNoAction); n = u->type->nbas; ForAllElements(g, e) { FLOAT xyz[3]; const FLOAT *c; for (i = 0; i < n; i++) { c = phgDofGetElementCoordinates(u, e, i); phgDofGetElementBasisInfo_(u, e, i, NULL, NULL, NULL, xyz, NULL); assert(!memcmp(c, xyz, sizeof(xyz))); } }
/* * Moving mesh initialization, following jobs are done: * 1. create interior vertex map and boundary vertex map, * 2. create a logical mesh. * */ MovingMesh * phgMovingMeshCreate(GRID *g, PARAMS *params) { MovingMesh *mmesh; INT i, k; FLOAT *v; _m = phgCalloc(1, sizeof(*_m)); _m->params = params; _m->g = g; _m->logical_node = phgDofNew(g, DOF_P1, 3, "logical node coordinates", DofNoAction); _m->logical_node->DB_mask[0] = MM_CONSTR0; _m->logical_node->DB_mask[1] = MM_CONSTR1; _m->logical_node->DB_mask[2] = MM_CONSTR2; _m->logical_move = phgDofNew(g, DOF_P1, 3, "logical move direction", DofNoAction); _m->move = phgDofNew(g, DOF_P1, 3, "node move direction", DofNoAction); _m->monitor = phgDofNew(g, DOF_P0, 1, "monitor", DofNoAction); /* P1 bases */ _m->phi = phgDofNew(g, DOF_P1, 1, "P1 bases", DofNoAction); _m->phi->DB_mask[0] = 0; _m->map = phgMapCreate(_m->phi, NULL); /* Boundary types of verties */ getBdryTypes(_m); /* get logical mesh * Note: here logical mesh is identical to original mesh*/ v = _m->logical_node->data; for (i = 0; i < g->nvert; i++) { if (!(g->types_vert[i] == UNREFERENCED)) { for (k = 0; k < Dim; k++) v[i*Dim + k] = g->verts[i][k]; } } /* Point loop: local */ DOF_SCALE(_m->logical_node); return _m; }
int main(int argc, char *argv[]) { GRID *g; MAP *map, *map0; INT n = 4; DOF *u; static INT pre_refines = 0; static char *fn = "../test/cube.dat"; /*static char *fn = "../albert-files/cube5.dat";*/ phgOptionsPreset("-dof_type P1"); phgOptionsRegisterInt("-pre_refines", "Pre-refinements", &pre_refines); phgInit(&argc, &argv); g = phgNewGrid(-1); if (!phgImport(g, fn, FALSE)) phgError(1, "can't read file \"%s\".\n", fn); phgRefineAllElements(g, pre_refines); phgPartitionGrid(g); u = phgDofNew(g, DOF_DEFAULT, 1, "u", DofNoAction); map0 = phgMapCreate(u, NULL); phgInfo(-1, "\n"); phgInfo(-1, "Test special map with size = 0 on all but one process:\n"); map = phgMapCreateSimpleMap(g->comm, g->rank == g->nprocs - 1 ? n : 0, n); phgInfo(-1, "---- DOF rows, special columns:\n"); do_test(map0, map); phgInfo(-1, "---- Special rows, DOF columns:\n"); do_test(map, map0); phgInfo(-1, "---- Special rows, special columns:\n"); do_test(map, map); phgMapDestroy(&map); phgInfo(-1, "\n"); phgInfo(-1, "Test serial map:\n"); map = phgMapCreateSimpleMap(g->comm, n, n); phgInfo(-1, "---- DOF rows, serial columns:\n"); do_test(map0, map); phgInfo(-1, "---- serial rows, DOF columns:\n"); do_test(map, map0); phgInfo(-1, "---- Serial rows, serial columns:\n"); do_test(map, map); phgMapDestroy(&map); phgMapDestroy(&map0); phgDofFree(&u); phgFreeGrid(&g); phgFinalize(); return 0; }
DOF * phgDofCopy_(DOF *src, DOF **dest_ptr, DOF_TYPE *newtype, const char *name, const char *srcfile, int srcline) /* returns a new DOF whose type is 'newtype', and whose values are evaluated * using 'src' (a copy of src). */ { GRID *g = src->g; SIMPLEX *e; FLOAT w = 1.0, *basvalues = NULL, *a, *d, *buffer = NULL; int i, k, dim, dim_new, count = 0, nvalues, nd; INT n; DOF *wgts = NULL; DOF *dest = (dest_ptr == NULL ? NULL : *dest_ptr); BYTE *flags0, *flags; char *auto_name; DOF_TYPE *oldtype; BOOLEAN basflag = FALSE; MagicCheck(DOF, dest) if (dest != NULL && newtype != NULL && dest->type != newtype) { phgDofFree(&dest); dest = NULL; } dim = DofDim(src); /* the name of dest */ if ((auto_name = (void *)name) == NULL) { #if 0 auto_name = phgAlloc(strlen(src->name) + 8 + 1); sprintf(auto_name, "copy of %s", src->name); #else auto_name = strdup(src->name); #endif } if (dest == NULL) { if (newtype == NULL) newtype = src->type; dim_new = (newtype == NULL ? DofTypeDim(src) : newtype->dim); assert(dim % dim_new == 0); dest = phgDofNew_(g, newtype, newtype == NULL ? src->hp : NULL, dim / dim_new, auto_name, DofNoAction, srcfile, srcline); if (dest_ptr != NULL) *dest_ptr = dest; } else { assert(dim == DofDim(dest)); phgFree(dest->name); dest->name = strdup(auto_name); dest->srcfile = srcfile; dest->srcline = srcline; phgFree(dest->cache_func); dest->cache_func = NULL; newtype = dest->type; if (!SpecialDofType(newtype)) memset(dest->data, 0, DofGetDataCount(dest) * sizeof(*dest->data)); } if (auto_name != name) phgFree(auto_name); phgDofClearCache(NULL, dest, NULL, NULL, FALSE); dest->DB_mask = src->DB_mask; if (src->DB_masks != NULL) { if (dest->DB_masks == NULL) dest->DB_masks = phgAlloc(dest->dim * sizeof(*dest->DB_masks)); memcpy(dest->DB_masks, src->DB_masks, dest->dim * sizeof(*dest->DB_masks)); } dest->invariant = src->invariant; if (SpecialDofType(newtype)) { assert(newtype == src->type); dest->userfunc = src->userfunc; dest->userfunc_lambda = src->userfunc_lambda; if (newtype == DOF_CONSTANT) memcpy(dest->data, src->data, dim * sizeof(*dest->data)); return dest; } if ((newtype != NULL && newtype == src->type) || (newtype == NULL && src->hp == dest->hp)) { /* simply duplicate the data */ size_t size = DofGetDataCount(dest); if (size > 0) memcpy(dest->data, src->data, sizeof(FLOAT) * size); dest->userfunc = src->userfunc; dest->userfunc_lambda = src->userfunc_lambda; return dest; } if (src->type == DOF_ANALYTIC) { if (src->userfunc_lambda != NULL) phgDofSetDataByLambdaFunction(dest, src->userfunc_lambda); else phgDofSetDataByFunction(dest, src->userfunc); return dest; } if (newtype != NULL && newtype->BasFuncs == NULL) phgError(1, "phgDofCopy: basis funcs for DOF type \"%s\" undefined.\n", newtype->name); dest->userfunc = src->userfunc; dest->userfunc_lambda = src->userfunc_lambda; oldtype = src->type; if (oldtype == NULL) oldtype = src->hp->info->types[src->hp->info->min_order]; if (!SpecialDofType(oldtype) && newtype != NULL && newtype->points != NULL && !DofIsHP(src)) { basflag = TRUE; count = oldtype->nbas * oldtype->dim; basvalues = phgAlloc(newtype->nbas * count * sizeof(*basvalues)); if (oldtype->invariant == TRUE) get_bas_funcs(src, dest, src->g->roots, basvalues); } if (newtype == NULL) newtype = dest->hp->info->types[dest->hp->max_order]; flags0 = phgCalloc((newtype->np_vert > 0 ? g->nvert : 0) + (newtype->np_edge > 0 ? g->nedge : 0) + (newtype->np_face > 0 ? g->nface : 0), sizeof(*flags0)); if (!SpecialDofType(oldtype) && oldtype->continuity < 0) { static DOF_TYPE DOF_WGTS = {DofCache, "Weights", NULL, NULL, NULL, NULL, NULL, NULL, NULL, phgDofInitFuncPoint, NULL, NULL, NULL, FE_None, FALSE, FALSE, -1, 0, 0, -1, 1, 0, 0, 0, 0 }; DOF_WGTS.np_vert = (newtype->np_vert > 0) ? 1 : 0; DOF_WGTS.np_edge = (newtype->np_edge > 0) ? 1 : 0; DOF_WGTS.np_face = (newtype->np_face > 0) ? 1 : 0; DOF_WGTS.nbas = DOF_WGTS.np_vert * NVert + DOF_WGTS.np_edge * NEdge + DOF_WGTS.np_face * NFace; if (DOF_WGTS.nbas > 0) { /* Other cases will be implemented later when really needed */ wgts = phgDofNew(g, &DOF_WGTS, 1, "weights", DofNoAction); phgDofSetDataByValue(wgts, 0.0); phgDofSetDataByValue(dest, 0.0); /* allocate buffer for storing weighted vertex/edge/face data */ if ((n = DofGetDataCount(dest) - DofGetElementDataCount(dest)) > 0) buffer = phgCalloc(n, sizeof(*buffer)); } } nvalues = dest->dim; cache_dof = src; bas_count = count; ForAllElements(g, e) { if (wgts != NULL) { #if 0 /* use element volume as weight */ w = phgGeomGetVolume(g, e); #else /* use 1 as weight */ w = 1.0; #endif } if (basflag && oldtype->invariant == FALSE) get_bas_funcs(src, dest, e, basvalues); bas = basvalues; flags = flags0; if (DofIsHP(dest)) newtype = dest->hp->info->types[dest->hp->elem_order[e->index]]; if (newtype->np_vert > 0) { nd = nvalues * newtype->np_vert; for (k = 0; k < NVert; k++) { if (flags[n = e->verts[k]] && wgts == NULL) { /* note: count==0 and bas==NULL for variable order DOF */ bas += count * newtype->np_vert; continue; } flags[n] = TRUE; a = DofVertexData(dest, n); newtype->InitFunc(dest, e, VERTEX, k, NULL, func, NULL, a, NULL); if (wgts != NULL) { d = buffer + (a - DofData(dest)); for (i = 0; i < nd; i++) *(d++) += *(a++) * w; *DofVertexData(wgts, n) += w; } } flags += g->nvert; } if (newtype->np_edge > 0) { nd = nvalues * newtype->np_edge; for (k = 0; k < NEdge; k++) { if (flags[n = e->edges[k]] && wgts == NULL) { /* note: count==0 and bas==NULL for variable order DOF */ bas += count * newtype->np_edge; continue; } flags[n] = TRUE; a = DofEdgeData(dest, n); newtype->InitFunc(dest, e, EDGE, k, NULL, func, NULL, a, NULL); if (wgts != NULL) { d = buffer + (a - DofData(dest)); if (DofIsHP(dest)) nd = dest->dim * (dest->hp->edge_index[n + 1] - dest->hp->edge_index[n]); for (i = 0; i < nd; i++) *(d++) += *(a++) * w; *DofEdgeData(wgts, n) += w; } } flags += g->nedge; } if (newtype->np_face > 0) { nd = nvalues * newtype->np_face; for (k = 0; k < NFace; k++) { if (flags[n = e->faces[k]] && wgts == NULL) { /* note: count==0 and bas==NULL for variable order DOF */ bas += count * newtype->np_face; continue; } flags[n] = TRUE; a = DofFaceData(dest, n); newtype->InitFunc(dest, e, FACE, k, NULL, func, NULL, a, NULL); if (wgts != NULL) { d = buffer + (a - DofData(dest)); if (DofIsHP(dest)) nd = dest->dim * (dest->hp->face_index[n + 1] - dest->hp->face_index[n]); for (i = 0; i < nd; i++) *(d++) += *(a++) * w; *DofFaceData(wgts, n) += w; } } } if (newtype->np_elem > 0) { a = DofElementData(dest, e->index); newtype->InitFunc(dest, e, ELEMENT, 0, NULL, func, NULL, a, NULL); } } phgFree(basvalues); phgFree(flags0); if (wgts == NULL) return dest; if ((n = DofGetDataCount(dest) - DofGetElementDataCount(dest)) > 0) { memcpy(DofData(dest), buffer, n * sizeof(*buffer)); phgFree(buffer); } if (DofIsHP(dest)) newtype = dest->hp->info->types[dest->hp->max_order]; a = DofData(dest); d = DofData(wgts); #if USE_MPI /* FIXME: directly interacting with the vector assembly code in solver.c is more efficient */ if (g->nprocs > 1) { SOLVER *solver = phgSolverCreate(SOLVER_BUILTIN, dest, NULL); INT K = 0, I; int j; if (newtype->np_vert > 0) { nd = dest->count_vert; for (n = 0; n < g->nvert; n++, d++) { if (g->types_vert[n] == UNREFERENCED) { K += nd; a += nd; continue; } for (j = 0; j < nd; j++, K++, a++) { I = phgSolverMapD2L(solver, 0, K); assert(I >= 0 && I < solver->mat->rmap->localsize); phgSolverAddRHSEntry(solver, I, *a); phgSolverAddMatrixEntry(solver, I, I, *d); } } } if (newtype->np_edge > 0) { nd = nvalues * newtype->np_edge; for (n = 0; n < g->nedge; n++, d++) { if (DofIsHP(dest)) nd = dest->dim * (dest->hp->edge_index[n + 1] - dest->hp->edge_index[n]); if (g->types_edge[n] == UNREFERENCED) { K += nd; a += nd; continue; } for (j = 0; j < nd; j++, K++, a++) { I = phgSolverMapD2L(solver, 0, K); assert(I >= 0 && I < solver->mat->rmap->localsize); phgSolverAddRHSEntry(solver, I, *a); phgSolverAddMatrixEntry(solver, I, I, *d); } } } if (newtype->np_face > 0) { nd = nvalues * newtype->np_face; for (n = 0; n < g->nface; n++, d++) { if (DofIsHP(dest)) nd = dest->dim * (dest->hp->face_index[n + 1] - dest->hp->face_index[n]); if (g->types_face[n] == UNREFERENCED) { K += nd; a += nd; continue; } for (j = 0; j < nd; j++, K++, a++) { I = phgSolverMapD2L(solver, 0, K); assert(I >= 0 && I < solver->mat->rmap->localsize); phgSolverAddRHSEntry(solver, I, *a); phgSolverAddMatrixEntry(solver, I, I, *d); } } } if (newtype->np_elem > 0) { nd = nvalues * newtype->np_elem; for (n = 0; n < g->nelem; n++) { if (DofIsHP(dest)) nd = dest->dim * (dest->hp->elem_index[n + 1] - dest->hp->elem_index[n]); if (g->types_elem[n] == UNREFERENCED) { K += nd; a += nd; continue; } for (j = 0; j < nd; j++, K++, a++) { I = phgSolverMapD2L(solver, 0, K); assert(I >= 0 && I < solver->mat->rmap->localsize); phgSolverAddRHSEntry(solver, I, *a); phgSolverAddMatrixEntry(solver, I, I, 1.0); } } } phgSolverSolve(solver, TRUE, dest, NULL); phgSolverDestroy(&solver); phgDofFree(&wgts); return dest; } #endif if (newtype->np_vert > 0) { k = nvalues * newtype->np_vert; for (n = 0; n < g->nvert; n++) { if ((w = *(d++)) == 0.0) { a += k; } else if (k == 1) { *(a++) /= w; } else { w = 1.0 / w; for (i = 0; i < k; i++) *(a++) *= w; } } } if (newtype->np_edge > 0) { k = nvalues * newtype->np_edge; for (n = 0; n < g->nedge; n++) { if (DofIsHP(dest)) k = dest->dim * (dest->hp->edge_index[n + 1] - dest->hp->edge_index[n]); if ((w = *(d++)) == 0.0) { a += k; } else if (k == 1) { *(a++) /= w; } else { w = 1.0 / w; for (i = 0; i < k; i++) *(a++) *= w; } } } if (newtype->np_face > 0) { k = nvalues * newtype->np_face; for (n = 0; n < g->nface; n++) { if (DofIsHP(dest)) k = dest->dim * (dest->hp->face_index[n + 1] - dest->hp->face_index[n]); if ((w = *(d++)) == 0.0) { a += k; } else if (k == 1) { *(a++) /= w; } else { w = 1.0 / w; for (i = 0; i < k; i++) *(a++) *= w; } } } phgDofFree(&wgts); return dest; }
int main(int argc, char *argv[]) { GRID *g; SIMPLEX *e; DOF **u, **p, **T, **gradu, *eu, *ep, *egradu, *ediv, *eT, *dH = NULL; FLOAT Time, *dt, res, non_du, non_dp, non_dT; INT tstep = 0, nelem; char mesh_file[100], hostname[256], data_file[100], data_u[100], data_p[100], data_T[100], data_Crd[100]; size_t mem, mem_peak; int verb; double tt[3], tt1[3]; /* ---------- NS ---------- */ NSSolver *ns = NULL; SURF_BAS *surf_bas = NULL; LAYERED_MESH *gL = NULL; //GEO_INFO *geo = NULL; /* MG_BLOCK_DOFS *bk = NULL; */ /* ================================================================================ * * Initialize Grid & parameters * * ================================================================================ */ /* Global (static) options */ Unused(verb); ns_params = phgParametersCreate(); phgInit(&argc, &argv); phgOptionsShowUsed(); g = phgNewGrid(-1); //phgSetPeriodicity(g, ns_params->periodicity); phgImportSetBdryMapFunc(my_bc_map); if (ns_params->resume) { phgResumeStage(g, &Time, &tstep, mesh_file, data_file); phgPrintf("================================\n\n"); phgPrintf("* RESUME from time:%E, tstep:%d\n", Time, tstep); phgPrintf("* mesh:%s\n", mesh_file); phgPrintf("* data:%s\n", data_file); phgPrintf("================================\n"); if (!phgImport(g, mesh_file, FALSE)) phgError(1, "can't read file \"%s\".\n", ns_params->fn); } else { phgPrintf("Using mesh: %s\n", ns_params->fn); if (!phgImport(g, ns_params->fn, FALSE)) phgError(1, "can't read file \"%s\".\n", ns_params->fn); } checkBdry(g); elapsed_time(g, FALSE, 0.); /* reset timer */ gethostname(hostname, sizeof(hostname)); printf("#%5d# runing PID %5d on %s \n", phgRank, getpid(), hostname); NsSolver_Options(); phgPrintf(" Pre-refine & repartition "); phgRefineAllElements(g, ns_params->pre_refines); /* Set Reynolds number */ Time = ns_params->time_start; /* default: 0 */ setFuncTime(Time); setFlowParameter(ns_params->Re, ns_params->nu, Time); /* ================================================================================ * * build ice grid * * ================================================================================ */ iceInit(g, &gL); phgPrintf("Geometry initialization done!\n"); phgExportVTK(g, "ice_domain.vtk", NULL, NULL); /* ================================================================================ * * Create INS solver * * ================================================================================ */ /* Note: pointers u, p, gradu, dt * DIRECTLY access private member of INS solver. */ phgPrintf(" Create INS solver"); tstep = 1; /* time step start at 1 */ setFuncTime(Time); /* in file ins-bc.c: static */ //data_sur_T = read_txt_data("./LAS_temp_for_mesh.txt"); ns = phgNSCreate(g, ns_params); //get_mask_bot(ns); ns->time[1] = Time; u = ns->u; p = ns->p; T = ns->T; gradu = ns->gradu; dH = ns->dH; dt = ns->dt; /* direct accses ns */ dt[0] = ns_params->dt0; ns->gL = gL; //ns->bk = bk = NULL; //init_line_block(T[1], gL); /* Use line block */ elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); /* Init height & depth */ if (gL != NULL){ get_height_depth(ns); } /* surf bases */ //surf_bas = ns->surf_bas; #if 0 DOF *beta = phgDofNew(g, DOF_P1, 1, "beta", func_beta); phgExportEnsight(g, "check", beta, NULL); phgFinalize(); exit(1); #endif /* ------------------------------------------------------------ * * Resume dof data. * * ------------------------------------------------------------ */ if (ns_params->resume) { FILE *fp = NULL; char fname[1000]; phgResumeStage(g, &Time, &tstep, mesh_file, data_file); /* resume coord */ { const FLOAT *v = DofData(ns->coord); int i, k; //sprintf(data_Crd, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat.Crd", tstep - 1); sprintf(data_Crd, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat.Crd", 2); assert(ns->coord->type == DOF_P1); load_dof_data3(g, ns->coord, data_Crd, mesh_file); for (i = 0; i < g->nvert; i++) for (k = 0; k < Dim; k++) g->verts[i][k] = *(v++); phgGeomInit_(g, TRUE); } #if 1 /* resmue u_{n-1} */ //sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", tstep - 2); sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", 1); DATA_FILE_SURFIX; sprintf(fname, "%s.p%03d", data_u, g->rank); if ((fp = fopen(fname, "r")) == NULL) { phgPrintf("* u_{%d} unavailable.\n", tstep - 2); } else { fclose(fp); phgDofCopy(u[1], &u[0], NULL, "u_{n}"); phgDofCopy(p[1], &p[0], NULL, "p_{n}"); phgDofCopy(T[1], &T[0], NULL, "T_{n}"); gradu[0] = NULL; load_dof_data3(g, u[0], data_u, mesh_file); load_dof_data3(g, p[0], data_p, mesh_file); load_dof_data3(g, T[0], data_T, mesh_file); phgPrintf(" Resume u_ {%5d}[%8d]:%24.12E p_ {%5d}[%8d]:%24.12E\n", tstep - 2, DofGetDataCountGlobal(u[0]), phgDofNormL2(u[0]), tstep - 2, DofGetDataCountGlobal(p[0]), phgDofNormL2(p[0])); phgPrintf(" Resume T_{%5d}[%8d]:%24.12E\n", tstep - 2, DofGetDataCountGlobal(T[0]), phgDofNormL2(T[0])); phgDofGradient(u[0], &gradu[0], NULL, "gradu_{n}"); phgDofSetFunction(u[0], DofInterpolation); phgDofSetFunction(p[0], DofInterpolation); //phgDofSetBdryDataByFunction(u[0], func_u, SETFLOW); DOF_SCALE(u[0], "resume"); DOF_SCALE(p[0], "resume"); DOF_SCALE(T[0], "resume"); DOF_SCALE(gradu[0], "resume"); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); } /* resmue u_{n} */ //sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", tstep - 1); sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", 2); DATA_FILE_SURFIX; sprintf(fname, "%s.p%03d", data_u, g->rank); if ((fp = fopen(fname, "r")) == NULL) { phgError(1, "read Dof data %s failed!\n", data_file); } else { fclose(fp); load_dof_data3(g, u[1], data_u, mesh_file); load_dof_data3(g, p[1], data_p, mesh_file); load_dof_data3(g, T[1], data_T, mesh_file); phgPrintf(" Resume u_ {%5d}[%8d]:%24.12E p_ {%5d}[%8d]:%24.12E\n", tstep - 1, DofGetDataCountGlobal(u[1]), phgDofNormL2(u[1]), tstep - 1, DofGetDataCountGlobal(p[1]), phgDofNormL2(p[1])); phgPrintf(" Resume T_{%5d}[%8d]:%24.12E\n", tstep - 1, DofGetDataCountGlobal(T[1]), phgDofNormL2(T[1])); phgDofGradient(u[1], &gradu[1], NULL, "gradu_{n+1}"); phgDofSetFunction(u[1], DofInterpolation); phgDofSetFunction(p[1], DofInterpolation); //phgDofSetBdryDataByFunction(u[1], func_u, SETFLOW); DOF_SCALE(u[1], "resume"); DOF_SCALE(p[1], "resume"); DOF_SCALE(T[1], "resume"); DOF_SCALE(gradu[1], "resume"); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); } #endif /* Re init height & depth */ if (gL != NULL) { get_height_depth(ns); build_layered_mesh_height(g, gL); check_height(g, gL); } /* reconstruct last time step */ //Time -= dt[0]; Time = tstep - 1; ns->time[1] = Time; ns->time[0] = Time; setFuncTime(Time); #if 0 phgExportEnsightT(g, OUTPUT_DIR "/ins_" NS_PROBLEM , tstep, tstep, u[1], p[1], NULL); phgFinalize(); return 0; #endif /* debug exit */ } /* end of resume */ /* Init temp field */ DOF_SCALE(ns->beta, "test"); if (ns_params->solve_temp && tstep == 1) { phgPrintf("Init temp field!\n"); phgNSTempInit(ns); } /* ================================================================================ * * * Main loop: * 1. Steady state: adaptive refinement. * 2. Time dependent: time advance. * * ================================================================================ */ while (TRUE) { FLOAT all_memory_usage = phgMemoryUsage(g, NULL)/(1024.0*1024.0); if (all_memory_usage > 10000) break; get_surf_bot_elev(ns); DOF *grad_surf_elev = phgDofGradient(ns->surf_elev_P1, NULL, NULL, "gradu_surf_elev"); ns->grad_surf_elev = grad_surf_elev; //phgPrintf("modify mask bot!!\n"); //modify_mask_bot(ns); //modify_mask_bot(ns); //phgDofSetDataByValue(u[1], 0.); //phgDofSetDataByValue(p[1], 0.); ns->surf_bas = get_surface_bases(g, DOF_P2); surf_bas = ns->surf_bas; static BOOLEAN initialized = FALSE; FLOAT time_end = ns_params->time_end; elapsed_time(g, FALSE, 0.); /* reset timer */ phgGetTime(tt); if (Fabs(time_end - Time) < 1e-12) { phgPrintf("\n=======\nTime reach end: %lf, exit.\n", Time); phgPrintf("Time End %f\n", time_end); break; } if (tstep > ns_params->max_tstep) { phgPrintf("\n=======\nTime step reach end: %d, exit.\n", tstep); break; } #if 0 /* use time t^{n+1} */ dt[-1] = dt[0]; if (Time + dt[0] > time_end) dt[0] = time_end - Time; Time += dt[0]; setFuncTime(Time); #endif phgPrintf("\n==========\ntime: %lf, step:%d\n", (double)Time, tstep); phgPrintf(" %d DOF (u:%d, p:%d), %d elements, %d submesh%s, load imbalance: %lg\n", DofGetDataCountGlobal(u[1]) + DofGetDataCountGlobal(p[1]), DofGetDataCountGlobal(u[1]), DofGetDataCountGlobal(p[1]), g->nleaf_global, g->nprocs, g->nprocs > 1 ? "es" : "", (double)g->lif); /* save mesh */ if (ns_params->record && tstep % ns_params->step_span == 0) { phgResumeLogUpdate(g, &Time, &tstep, ns_params->fn, NULL); } if (!initialized) { /* reset mem_peak */ phgMemoryUsageReset(); initialized = TRUE; } /* ------------------------------------------------------------ * * Time marching * * ------------------------------------------------------------ */ /* update variale, * call this routine after time update and/or grid change.*/ phgNSTimeAdvance(ns, Time, tstep); phgPrintf(" update solution"); elapsed_time(g, TRUE, 0.); if (ns_params->pin_node) phgNSPinNode(ns); /* -------------------------------------------------------------------------------- * * Step 3. * * Momentum Equations. * * -------------------------------------------------------------------------------- */ int mask_iter = 0, inverse_iter = 0; INT IF_CHANGE_MASK; #if 1 while (TRUE) { // iteration for ice shelf mask updating and inversion if ((inverse_iter % 2) == 0) ns->set_dirichlet_bc = 0; /* newton bc for the surface, i.e. normal simulation */ else ns->set_dirichlet_bc = 1; /* constrain the surface with obs. vel. for inversion */ phgPrintf("----------------------------\n"); phgPrintf("ice shelf mask iteration: %d\n", mask_iter); phgPrintf("----------------------------\n"); elapsed_time(g, FALSE, 0.); /* reset timer */ /* * non-linear iteration. * */ int max_nonstep = 0, newton_start = 0; assert(ns_params->utype == DOF_P2); /* For nonlinear iter */ int nonstep = 0; non_du = non_dp = non_dT = 1e+10; DOF *u_last = phgDofCopy(u[1], NULL, NULL, "u_last"); DOF *p_last = phgDofCopy(p[1], NULL, NULL, "p_last"); FLOAT non_res_last = 1.; LTYPE ltype_last = PICARD; /* First step, change max non step. */ if (tstep == 1) { if (ns_params->max_nonstep0 > 0) max_nonstep = ns_params->max_nonstep0; else max_nonstep = ns_params->max_nonstep; if (ns_params->newton_start0 > 0) newton_start = ns_params->newton_start0; else newton_start = ns_params->newton_start; phgPrintf(" * Set max nonstep to %d for first step.\n", max_nonstep); phgPrintf(" * Set Newton start to %d for first step.\n", newton_start); } else { max_nonstep = ns_params->max_nonstep; newton_start = ns_params->newton_start; } while (TRUE) { phgPrintf("\n ==================\n"); phgPrintf(" Non-linear interation step: %d\n", nonstep); /* Init const viscosity */ if (ns_params->start_const_vis && tstep == 0 && nonstep == 0 && mask_iter == 0) { phgPrintf("* vis: const\n"); ns->viscosity_type = VIS_CONST; } else { phgPrintf("* vis: strain\n"); ns->viscosity_type = VIS_STRAIN; } sayHello("Non linear solve begin"); phgNSInitSolverU(ns); if (inverse_iter < 1) get_viscosity(ns); /* initiate viscosity field at the beginning * afterwards use the updated viscosity field */ if (nonstep < newton_start) ns->ltype = PICARD; else ns->ltype = NEWTON; phgPrintf(" Build RHS: "); phgNSBuildSolverURHS(ns, 1, nonstep, Time); //phgNSBuildSolverURHS(ns); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); ns->non_res = res = phgVecNorm2(ns->solver_u->rhs, 0, NULL); phgPrintf(" nonlinear residual: %24.12E\n", res); /* Restore Picard if no improvement */ #if 1 if (ltype_last == NEWTON && res > non_res_last * .75) { phgPrintf(" !!! Newton step failed, use Picard to run again\n"); ns->ltype = PICARD; max_nonstep += 5; /* Add more Picard steps */ /* resotre dofs: * Fix me: temprature */ phgDofCopy(u_last, &u[1], NULL, "u_{n+1}"); phgDofCopy(p_last, &p[1], NULL, "p_{n+1}"); phgDofGradient(u[1], &gradu[1], NULL, "gradu_{n+1}"); phgNSBuildSolverURHS(ns, 1, nonstep, Time); ns->non_res = res = phgVecNorm2(ns->solver_u->rhs, 0, NULL); phgPrintf(" nonlinear residual: %24.12E\n", res); } #endif /* save non res */ non_res_last = res; ltype_last = ns->ltype; /* build matrices */ //if (ns_params->use_PCD) //phgNSInitPc(ns); phgPrintf(" Build matrices:\n"); phgNSBuildSolverUMat(ns, 1, nonstep, Time); //phgNSBuildSolverUMat(ns); phgPrintf(" done "); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); #if 0 if (ns_params->use_PCD) { phgPrintf(" Build Pc: \n"); phgNSBuildPc(ns); phgPrintf(" done "); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); } #endif //elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); /* * solve equation and update (u, p) * */ phgPrintf("solver tol: %E\n", ns->solver_u->rtol); phgSolverSolve(ns->solver_u, TRUE, ns->du, ns->dp, NULL); // elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); //get_water_pressure(ns); #if USE_NODAL_LOADS get_nodal_force(ns); phgMatDestroy(&ns->matF0); phgMatDestroy(&ns->matB0); phgMatDestroy(&ns->matBt0); phgMatDestroy(&ns->matC0); //phgSolverDestroy(&ns->solver_u0); ns->solver_u0 = NULL; #endif //get_contact(ns); #if USE_SLIDING_BC rotate_dof_bases(ns->du, surf_bas, FALSE); #endif phgPrintf(" solver_u: nits = %d, resid = %0.4lg ", ns->solver_u->nits, ns->solver_u->residual); //elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); /* save dofs */ phgDofCopy(u[1], &u_last, NULL, "u_last"); phgDofCopy(p[1], &p_last, NULL, "p_last"); phgExportVTK(g, "u_test.vtk", ns->u[1], NULL); /* nonlinear correction */ phgDofAXPY(1.0, ns->du, &u[1]); phgDofAXPY(1.0, ns->dp, &p[1]); assert(u[1]->type == ns_params->utype); assert(p[1]->type == ns_params->ptype); #if USE_SLIDING_BC //dof_set_normal_data(u[1], surf_bas); #else #endif /* non_du = phgDofNormL2(ns->du); */ /* non_dp = phgDofNormL2(ns->dp); */ non_du = phgDofNormInftyVec(ns->du); non_dp = phgDofNormInftyVec(ns->dp); phgPrintf(" \n du: %24.12E dp: %24.12E\n", non_du, non_dp); phgPrintf(" u: [%24.12E, %24.12E]\n", phgDofMinValVec(u[1]), phgDofMaxValVec(u[1])); phgPrintf(" p: [%24.12E, %24.12E]\n", phgDofMinValVec(p[1]), phgDofMaxValVec(p[1])); phgDofGradient(u[1], &gradu[1], NULL, "gradu_{n+1}"); //get_avg_gu(ns); //gradu[1] = ns->avg_gu; //elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); //if (ns_params->use_PCD) //phgNSDestroyPc(ns); // /* evolution of u */ //DOF_SCALE(u[1], "after solve"); //DOF_SCALE(p[1], "after solve"); #if 0 # warning check solution U,p sprintf(vtk_file, OUTPUT_DIR "non_%02d_u.vtk", nonstep); phgExportVTK(g, vtk_file, u[1], p[1], NULL); phgExportEnsightT(g, OUTPUT_DIR "ins_" NS_PROBLEM , nonstep, nonstep, u[1], p[1], T[1], ns->du, ns->dp, ns->dT, NULL); #endif #if 0 if (FALSE && nonstep % ns_params->step_span == 0) { phgPrintf(" Output solution to ensight "); phgExportEnsightT(g, OUTPUT_DIR "/ins_" NS_PROBLEM , nonstep, nonstep, u[1], p[1], T[1], NULL); /* ensight */ sprintf(vtk_file, OUTPUT_DIR "non_%02d_T.vtk", nonstep); phgExportVTK(g, vtk_file , u[1], p[1], T[1], ns->du, NULL); elapsed_time(g, TRUE, 0.); //ice_monitor(ns, nonstep); } #endif /* Linearized */ #if 0 if (!ns_params->non_linear && nonstep >= 0) { phgPrintf(" Linearized iteration converges.\n"); break; } #endif phgGetTime(tt1); phgPrintf(" time usage of current non step: %lfs\n", (double)(tt1[2] - tt[2])); nonstep++; /* * Nonliner iteration break, * converge for characteristic value. * Velocity: 100 m/a * Pressure: 1e8 Pa * * */ INT u_convergence; if (mask_iter < 1) u_convergence = check_u_convergence0(ns, u[1], p[1], u_last, p_last, ns_params->u_tol0, ns_params->u_tol0); else u_convergence = check_u_convergence(ns, u[1], p[1], u_last, p_last, ns_params->u_tol, ns_params->u_tol); //elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); const FLOAT U0 = 100; const FLOAT P0 = 1e8; if ( nonstep >= ns_params->min_nonstep && ns->viscosity_type != VIS_CONST && u_convergence || nonstep > ns_params->max_nonstep) { if (nonstep > ns_params->max_nonstep) { phgPrintf(" Non-linear iteration reach max step," " results may be inaccrate!\n"); #if 1 && USE_NODAL_LOADS /* get_nodal_force(ns); phgMatDestroy(&ns->matF0); phgMatDestroy(&ns->matB0); phgMatDestroy(&ns->matBt0); phgMatDestroy(&ns->matC0); //phgSolverDestroy(&ns->solver_u0); ns->solver_u0 = NULL; */ phgMatDestroy(&ns->matF); phgMatDestroy(&ns->matB); phgMatDestroy(&ns->matBt); phgMatDestroy(&ns->matC); phgSolverDestroy(&ns->solver_u); ns->solver_u = NULL; phgMapDestroy(&ns->Vmap); phgMapDestroy(&ns->Pmap); phgDofFree(&ns->u_shape); phgDofFree(&ns->p_shape); #endif break; } else { phgPrintf(" Non-linear iteration converges.\n"); #if 1 && USE_NODAL_LOADS /* get_nodal_force(ns); phgMatDestroy(&ns->matF0); phgMatDestroy(&ns->matB0); phgMatDestroy(&ns->matBt0); phgMatDestroy(&ns->matC0); //phgSolverDestroy(&ns->solver_u0); ns->solver_u0 = NULL; */ phgMatDestroy(&ns->matF); phgMatDestroy(&ns->matB); phgMatDestroy(&ns->matBt); phgMatDestroy(&ns->matC); phgSolverDestroy(&ns->solver_u); ns->solver_u = NULL; phgMapDestroy(&ns->Vmap); phgMapDestroy(&ns->Pmap); phgDofFree(&ns->u_shape); phgDofFree(&ns->p_shape); #endif break; } } phgNSDestroySolverU(ns); } /* solve */ phgDofFree(&u_last); phgDofFree(&p_last); //phgPrintf("Save Dofs\n"); //save_dof_data3(g, u[1], OUTPUT_DIR"u.dat"); //save_dof_data3(g, p[1], OUTPUT_DIR"p.dat"); #elif 0 /* Set velocity, for debugging */ ns->viscosity_type = VIS_STRAIN; phgDofSetDataByFunction(u[1], func_u0); //phgDofSetDataByFunction(p[1], func_p0); phgDofGradient(u[1], &gradu[1], NULL, "gradu_{n+1}"); #else phgPrintf("Load Dofs\n"); load_dof_data3(g, u[1], OUTPUT_DIR"u.dat", NULL); load_dof_data3(g, p[1], OUTPUT_DIR"p.dat", NULL); #endif /* Project to continuous gradu */ #if 1 phgPrintf("\n ======================= \n"); phgPrintf("project velocity gradient"); phgPrintf("\n======================== \n"); proj_gradu(ns, ns->gradu[1]); #endif //DOF_SCALE(gradu[1], "grad u"); //DOF_SCALE(ns->Gradu, "Grad u"); phgPrintf("\n----------------------------\n"); phgPrintf("check ice shelf mask status"); phgPrintf("\n----------------------------\n"); get_mask_bot(ns); if (!(ns_params->another_run_with_updated_mask)) { mask_iter = 1; phgPrintf("manually stops another run with updated mask!\n\n\n"); IF_CHANGE_MASK = if_update_shelf_mask(ns); IF_CHANGE_MASK = 0; get_mask_bot(ns); if (tstep % ns_params->step_span == 0) { phgPrintf("Save water and nodal forces to VTK \n"); DOF *water_P1 = phgDofCopy(ns->water_force, NULL, DOF_P1, NULL); DOF *nodal_P1 = phgDofCopy(ns->nodal_force, NULL, DOF_P1, NULL); sprintf(vtk_file, MASK_OUTPUT_DIR "MASK_%05d.vtk", tstep); phgExportVTK(g, vtk_file, water_P1,nodal_P1,ns->contact_force,ns->mask_bot,NULL); phgDofFree(&water_P1);phgDofFree(&nodal_P1); } } if (mask_iter < 1) { IF_CHANGE_MASK = if_update_shelf_mask(ns); } if ((ns_params->another_run_with_updated_mask)){ if (IF_CHANGE_MASK == 0) { phgPrintf("The lower surface mask remains unchanged. Stop the iteration of mask updating !\n"); if (tstep % ns_params->step_span == 0) { get_mask_bot(ns); phgPrintf("Save water and nodal forces to VTK \n"); DOF *water_P1 = phgDofCopy(ns->water_force, NULL, DOF_P1, NULL); DOF *nodal_P1 = phgDofCopy(ns->nodal_force, NULL, DOF_P1, NULL); sprintf(vtk_file, MASK_OUTPUT_DIR "MASK_%05d.vtk", tstep); phgExportVTK(g, vtk_file, water_P1,nodal_P1,ns->contact_force,ns->mask_bot,NULL); phgDofFree(&water_P1);phgDofFree(&nodal_P1); } phgDofFree(&ns->nodal_force); phgDofFree(&ns->water_force); phgDofFree(&ns->contact_force); break; } } get_strain_rate(ns); if (ns->set_dirichlet_bc) { //DOF *u_d = phgDofCopy(ns->u[1], NULL, DOF_P2, NULL); DOF *eu_d = phgDofCopy(ns->strain_rate, NULL, DOF_P1, NULL); ns->eu_d = eu_d; } else { //DOF *u_n = phgDofCopy(ns->u[1], NULL, DOF_P2, NULL); DOF *eu_n = phgDofCopy(ns->strain_rate, NULL, DOF_P1, NULL); ns->eu_n = eu_n; } DOF *visc_old = phgDofCopy(ns->viscosity, NULL, DOF_P1, NULL); if (inverse_iter > 0) update_viscosity_inversion(ns); FLOAT tol = 0.01; INT visc_convergence = check_visc_convergence(ns, visc_old, tol); if((mask_iter >= 1) && (inverse_iter > 0) && (visc_convergence == 1)) { phgPrintf("\n-------------------------\n"); phgPrintf("ice shelf mask updated \n"); phgPrintf("--------------------------\n"); break; } if (mask_iter < 1) if (tstep % ns_params->step_span == 0) { phgPrintf("Save water and nodal forces to VTK \n"); DOF *water_P1 = phgDofCopy(ns->water_force, NULL, DOF_P1, NULL); DOF *nodal_P1 = phgDofCopy(ns->nodal_force, NULL, DOF_P1, NULL); sprintf(vtk_file, MASK_OUTPUT_DIR "MASK_%05d.vtk", tstep); phgExportVTK(g, vtk_file, water_P1,nodal_P1,ns->contact_force,ns->mask_bot,NULL); phgDofFree(&water_P1);phgDofFree(&nodal_P1); } phgDofFree(&ns->nodal_force); phgDofFree(&ns->water_force); phgDofFree(&ns->contact_force); //phgDofFree(&ns->mask_bot); //phgDofFree(&ns->water_pressure); //phgDofFree(&ns->stress_nn); // phgPrintf("Free stress_nn !\n"); //phgDofFree(&ns->stress); //phgDofFree(&ns->water_pressure1); //phgDofFree(&ns->stress_nn1); //phgDofFree(&ns->stress1); //phgDofFree(&ns->avg_gu); mask_iter++; inverse_iter++; } proj_gradu(ns, ns->gradu[1]); get_stress(ns, ns->gradu[1], ns->p[1]); #if 0 if (1) { int i, k; DOF *Gu[DDim], *gu[DDim], *guDG0, *stress[DDim]; guDG0 = phgDofCopy(ns->gradu[1], NULL, DOF_P0, NULL); for (k = 0; k < DDim; k++) { FLOAT *vGu; INT n; char name[1000]; sprintf(name, "Gu%d", k); Gu[k] = phgDofNew(g, DOF_P1, 1, name, DofNoAction); vGu = ns->Gradu->data; /* DOF_P1 */ n = DofGetDataCount(Gu[k]); for (i = 0; i < n; i++) Gu[k]->data[i] = vGu[i * DDim + k]; sprintf(name, "stress%d", k); stress[k] = phgDofNew(g, DOF_P1, 1, name, DofNoAction); vGu = ns->stress->data; /* DOF_P1 */ n = DofGetDataCount(stress[k]); for (i = 0; i < n; i++) stress[k]->data[i] = vGu[i * DDim + k]; sprintf(name, "gu%d", k); gu[k] = phgDofNew(g, DOF_P0, 1, name, DofNoAction); vGu = guDG0->data; /* DOF_P0 */ n = DofGetDataCount(gu[k]); for (i = 0; i < n; i++) gu[k]->data[i] = vGu[i * DDim + k]; } phgExportVTK(g, "stress.vtk", stress[0], stress[1], stress[2], stress[3], stress[4], stress[5], stress[6], stress[7], stress[8], NULL); phgExportVTK(g, "Gu.vtk", Gu[0], Gu[1], Gu[2], Gu[3], Gu[4], Gu[5], Gu[6], Gu[7], Gu[8], gu[0], gu[1], gu[2], gu[3], gu[4], gu[5], gu[6], gu[7], gu[8], NULL); // phgFinalize(); } #endif /* -------------------------------------------------------------------------------- * * Step 4. * * Solve temperature. * * -------------------------------------------------------------------------------- */ #if 1 if (ns_params->solve_temp) { phgPrintf("\n ==================\n"); phgPrintf(" Temperature solve \n"); phgPrintf(" ==================\n\n"); phgPrintf(" T type: %s\n", T[1]->type->name); elapsed_time(g, FALSE, 0.); /* reset timer */ phgNSInitSolverT(ns); phgPrintf(" Build Mat: "); phgNSBuildSolverTMat(ns, FALSE); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); phgPrintf(" Build RHS: "); phgNSBuildSolverTRHS(ns, FALSE); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); phgNSSolverTBuildConstrain(ns); phgDofCopy(ns->T[1], &ns->dT, NULL, "dT"); phgNSSolverTSolve(ns, FALSE); elapsed_time(g, TRUE, phgPerfGetMflops(g, NULL, NULL)); phgNSDestroySolverT(ns); //find_melt_region(ns); DOF_SCALE(ns->T[1], "after solve"); phgDofAXPY(-1.0, ns->T[1], &ns->dT); non_dT = phgDofNormInftyVec(ns->dT); phgPrintf(" dT: %24.12E\n", non_dT); DOF *temp_diff = phgDofCopy(ns->T[1], NULL, NULL, "Td"); { FLOAT *vt = temp_diff->data; const FLOAT *vh = ns->depth_P2->data; INT i, n = DofGetDataCount(temp_diff); for (i = 0; i < n; i++, vh++, vt++) *vt = TEMP_WATER - BETA_MELT * (*vh) *LEN_SCALING - (*vt); } } else { phgPrintf("Temp not updated.\n"); non_dT = 0.; } #endif /* ------------------------------------------------------------ * * Error check * * ------------------------------------------------------------ */ #if 0 if (!ns_params->compute_error) { eu = ep = egradu = eT = NULL; ediv = phgDofDivergence(u[1], NULL, NULL, "err div u"); phgPrintf( " normL2(u, p) = (%20.12E, %20.12E)\n" " normH1(u) = (%20.12E)\n" " normDiv(u) = (%20.12E)\n" " normGadu = (%20.12E)\n", dofNormL2(u[1]), dofNormL2(p[1]), dofNormL2(gradu[1]), dofNormL2(ediv), dofNormL2(ns->gradu[1])); elapsed_time(g, TRUE, 0.); } else { /* ----Error check------- */ phgPrintf(" Errors: \n"); eu = phgDofCopy(u[1], NULL, ns_params->utype, "erru"); ep = phgDofCopy(p[1], NULL, ns_params->ptype, "errp"); eT = phgDofCopy(T[1], NULL, NULL, "errT"); egradu = phgDofCopy(gradu[1], NULL, NULL, "err grad u"); ediv = phgDofDivergence(u[1], NULL, NULL, "err div u"); adjust_time(- (1. - ns_params->Theta) * dt[0]); restore_time(); phgPrintf(" errL2(u, p) = (%20.12E, %20.12E)\n" " errH1(u) = (%20.12E)\n" " errDiv(u) = (%20.12E)\n", dofNormL2(eu), dofNormL2(ep), dofNormL2(egradu), dofNormL2(ediv)); elapsed_time(g, TRUE, 0.); phgDofFree(&egradu); dof_norm_L2(eT); } #endif getPecletNum(g, u[1], ns_params->nu, 6); mem = phgMemoryUsage(g, &mem_peak); phgPrintf(" Memory usage: current %0.4lgMB, peak %0.4lgMB\n", (double)mem / (1024.0 * 1024.0), (double)mem_peak / (1024.0 * 1024.0)); /* ------------------------------------------------------------ * * Move mesh * * ------------------------------------------------------------ */ FLOAT ice_volume_last = get_ice_volume(g); // DOF *dH_last = phgDofCopy(ns->dH, NULL, NULL, "dH_last"); if (ns_params->solve_height) { if (gL != NULL) { /* Unstructed layered mesh */ phgPrintf("Move mesh.\n"); get_surf_dH(ns); //DOF *dH_fem = phgDofCopy(ns->dH, NULL, NULL, NULL); phgExportVTK(g, "dH_fem1.vtk", ns->dH, NULL); get_smooth_surface_values(ns, ns->dH, 0); get_smooth_surface_values(ns, ns->dH, 1); phgExportVTK(g, "dH_fem.vtk", ns->dH, NULL); /* save_free_surface_elev(ns, 0); save_free_surface_elev(ns, 1); save_free_surface_velo(ns, 0, 0); save_free_surface_velo(ns, 1, 0); save_free_surface_velo(ns, 2, 0); save_free_surface_velo(ns, 0, 1); save_free_surface_velo(ns, 1, 1); save_free_surface_velo(ns, 2, 1); if (phgRank == 0) { system("python get_upper_ds.py"); system("python get_lower_ds.py"); } load_dH_from_file(ns, ns->dH, 0); load_dH_from_file(ns, ns->dH, 1); //DOF *dH_fdm = phgDofCopy(ns->dH, NULL, NULL, NULL); //phgDofAXPY(-1, dH_fem, &dH_fdm); //phgExportVTK(g, "dH_diff.vtk", dH_fdm, NULL); *///phgExportVTK(g, "dH_fdm.vtk", ns->dH, NULL); get_moved_coord(ns, tstep); phgExportVTK(g, "dH_fem2.vtk", NULL); move_mesh(ns); //phgExportVTK(g, "moved_geo.vtk", NULL); //check_height(g, gL); } else { /* Structed layered mesh */ struct_mesh_update(ns, tstep, Time); } phgDofGradient(u[1], &gradu[1], NULL, "gradu_{n+1}"); phgDofGradient(u[0], &gradu[0], NULL, "gradu_{n}"); } else { phgPrintf("Mesh not moved.\n"); } phgPrintf("\n-----------------------------------------\n"); phgPrintf(" dH: [%4.2E, %4.2E]\n", phgDofMinValVec(ns->dH), phgDofMaxValVec(ns->dH)); phgPrintf("------------------------------------------\n\n"); FLOAT ice_volume = get_ice_volume(g); //DOF *u_P1 = phgDofCopy(u[1], NULL, DOF_P1, NULL); //phgExportVTK(g, "u_P1.vtk", u_P1, NULL); #if 1 //INT dH_convergence = check_surf_convergence(ns, dH_last); //if (dH_convergence == 1) FLOAT dVdt = fabs(ice_volume-ice_volume_last)/ice_volume/dt[0]; if (Time > 10 && dVdt < ns_params->s_tol) { phgPrintf("-----------------------------------------------------\n"); phgPrintf("The ice domain reaches a steady state! Model stops! dVdt %e", dVdt); phgPrintf("\n-----------------------------------------------------\n"); break; } else { phgPrintf("\n--------------------------------------------------------------\n"); phgPrintf("The ice domain is still in an unsteady state! Model continues! dVdt %e\n", dVdt); phgPrintf("---------------------------------------------------------------\n\n"); } #endif update_grounding_line(ns, tstep); // after we update the geometry, we need to check the ice shelf mask again /* ------------------------------------------------------------ * * Output solution * * ------------------------------------------------------------ */ if (tstep % ns_params->step_span == 0) { //ice_monitor(ns, tstep); #if 1 /* Temp check */ phgPrintf(" Output solution to VTK"); /* phgExportEnsightT(g, OUTPUT_DIR "/ins_" NS_PROBLEM , Time, tstep, */ /* u[1], p[1], T[1], ns->depth_P1, */ /* NULL); /\* ensight *\/ */ DOF *u_P1 = phgDofCopy(u[1], NULL, DOF_P1, NULL); //phgExportVTK(g,"results.vtk",u_P1,p[1],NULL); sprintf(vtk_file, dH_OUTPUT_DIR "ice_%05d.vtk", tstep); phgExportVTK(g, vtk_file, u_P1, NULL); phgDofFree(&u_P1); sprintf(vtk_file, dH_OUTPUT_DIR "dH_%05d.vtk", tstep); phgExportVTK(g, vtk_file, ns->dH, NULL); sprintf(vtk_file, dH_OUTPUT_DIR "stress_%05d.vtk", tstep); phgExportVTK(g, vtk_file, ns->stress, NULL); //sprintf(vtk_file, OUTPUT_DIR "mask_%05d.vtk", tstep); //phgExportVTK(g, vtk_file, ns->mask_bot, NULL); elapsed_time(g, TRUE, 0.); #endif /* Save coord data */ #if 1 if (tstep % ns_params->step_span_resume == 0) { { //sprintf(data_Crd, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat.Crd", tstep); sprintf(data_Crd, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat.Crd", 2); assert(ns->coord->type == DOF_P1); save_dof_data3(g, ns->coord, data_Crd); } if (ns_params->record) { /* save dof data for time step {n}, {n+1} */ //sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", tstep - 1); sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", 1); DATA_FILE_SURFIX; save_dof_data3(g, u[0], data_u); save_dof_data3(g, p[0], data_p); save_dof_data3(g, T[0], data_T); phgPrintf(" Save u_ {%5d}[%8d]:%24.12E p_ {%5d}[%8d]:%24.12E\n", tstep - 1, DofGetDataCountGlobal(u[0]), phgDofNormL2(u[0]), tstep - 1, DofGetDataCountGlobal(p[0]), phgDofNormL2(p[0])); phgPrintf(" Save T_{%5d}[%8d]:%24.12E\n", tstep - 1, DofGetDataCountGlobal(T[0]), phgDofNormL2(T[0])); DOF_SCALE(u[0], "save"); DOF_SCALE(p[0], "save"); DOF_SCALE(T[0], "save"); DOF_SCALE(gradu[0], "save"); //sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", tstep); sprintf(data_file, OUTPUT_DIR "/ins_" NS_PROBLEM "_%05d.dat", 2); DATA_FILE_SURFIX; save_dof_data3(g, u[1], data_u); save_dof_data3(g, p[1], data_p); save_dof_data3(g, T[1], data_T); phgPrintf(" Save u_ {%5d}[%8d]:%24.12E p_ {%5d}[%8d]:%24.12E\n", tstep, DofGetDataCountGlobal(u[1]), phgDofNormL2(u[1]), tstep, DofGetDataCountGlobal(p[1]), phgDofNormL2(p[1])); phgPrintf(" Save T_{%5d}[%8d]:%24.12E\n", tstep, DofGetDataCountGlobal(T[1]), phgDofNormL2(T[1])); DOF_SCALE(u[1], "save"); DOF_SCALE(p[1], "save"); DOF_SCALE(T[1], "save"); DOF_SCALE(gradu[1], "save"); phgResumeLogUpdate(g, NULL, NULL, NULL, data_file); } /* end of record */ if (gL != NULL) { //check_height(g, gL); } sayHello("After record final solution data"); } #endif } //phgDofFree(&dH_last); /* clean up */ //phgDofFree(&ediv); //phgDofFree(&eu); //phgDofFree(&ep); //phgDofFree(&eT); /* ---------------------------------------------------------------------- * * Compute drag force FD * * ---------------------------------------------------------------------- * */ phgGetTime(tt1); phgPrintf(" total time usage of current time step: %lfs\n", (double)(tt1[2] - tt[2])); if (mem_peak > 1024 * (size_t)ns_params->mem_max * 1024) { phgPrintf("\n=======\nMem usage reach max, exit.\n"); break; } tstep++; #if 1 /* use time t^{n} */ dt[-1] = dt[0]; if (Time + dt[0] > time_end) dt[0] = time_end - Time; Time += dt[0]; setFuncTime(Time); #endif phgDofFree(&surf_bas->dof); phgDofFree(&ns->surf_bas->dof); } /* end of time advaning */ /* destroy line block */ //destroy_line_block(&ns->bk); /* destroy reused solver */ if (ns->solver_u != NULL) { if (ns_params->use_PCD) phgNSDestroyPc(ns); phgNSDestroySolverU(ns); } phgNSFinalize(&ns); phgFreeGrid(&g); phgFinalize(); phgFree(ns_params); return 0; }
/* Get local bases for boundary vertex i, * return num of constrained bases, * and noramlized direction of rotated bases. * */ SURF_BAS * get_surface_bases(GRID *g, DOF_TYPE *u_type) { SIMPLEX *e; DOF *surf_dof = NULL, *norm_lat = NULL, *norm_bot = NULL; BOOLEAN *rotated = NULL; INT nrot = 0; surf_dof = phgDofNew(g, u_type, DDim, "Surf bases", DofNoAction); //norm_lat = phgDofNew(g, u_type, Dim, "Norm lateral", DofNoAction); //norm_bot = phgDofNew(g, u_type, Dim, "Norm Bottom", DofNoAction); //DOF *coord = phgDofNew(g, u_type, Dim, "coord", func_xyz_); DOF *avg_n = phgDofNew(g, DOF_P2, 3, "avg n", DofNoAction); get_avg_n(g, avg_n); rotated = phgCalloc(DofGetDataCount(surf_dof) / (DDim), sizeof(*rotated)); SURF_BAS *surf_bas; surf_bas = phgCalloc(1, sizeof(*surf_bas)); surf_bas->type = u_type; //surf_bas->dof = phgDofNew(g, u_type, DDim, "Surf bases", DofNoAction);//surf_dof; //surf_bas->dof = surf_dof; surf_bas->rotated = rotated; phgDofSetDataByValue(surf_dof, 0.); //phgDofSetDataByValue(surf_bas->dof, 0.); //phgDofSetDataByValue(norm_lat, -99.); //phgDofSetDataByValue(norm_bot, -99.); ForAllElements(g, e) { int s, ii, i, m, dof_i; int N = surf_dof->type->nbas; //int N = surf_bas->dof->type->nbas; FLOAT *avg_n_v; FLOAT normal[Dim]; int v[3]; FLOAT norm; FLOAT norm_value_lat[N][Dim]; FLOAT norm_value_bot[N][Dim]; FLOAT bas_value[N][DDim], H[Dim][Dim], c[Dim], bxyz[Dim][Dim] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; phgDofGetElementData(surf_dof, e, &bas_value[0][0]); //phgDofGetElementData(surf_bas->dof, e, &bas_value[0][0]); for (s = 0; s < NFace; s++) { int nbas_face = NbasFace(surf_dof); //int nbas_face = NbasFace(surf_bas->dof); INT id; SHORT ibas_face[nbas_face]; //FLOAT *normal = phgGeomGetFaceOutNormal(g, e, s); //if (!((e->bound_type[s] & BC_BOTTOM) && !(e->bound_type[s] & BC_ISHELF))) if (!(e->bound_type[s] & BC_BOTTOM)) continue; phgDofGetBasesOnFace(surf_dof, e, s, ibas_face); //phgDofGetBasesOnFace(surf_bas->dof, e, s, ibas_face); for (ii = 0; ii < nbas_face; ii++) { i = ibas_face[ii]; dof_i = phgDofMapE2D(avg_n, e, i*Dim); avg_n_v = DofData(avg_n); normal[0] = avg_n_v[dof_i + 0]; normal[1] = avg_n_v[dof_i + 1]; normal[2] = avg_n_v[dof_i + 2]; /* i means the base function number in the element */ /* Use Gram–Schmidt process to get orthogonal bases, * one constrains */ id = phgDofMapE2D(surf_dof, e, i * (DDim)) / (DDim); //id = phgDofMapE2D(surf_bas->dof, e, i * (DDim)) / (DDim); rotated[id] = TRUE; nrot++; BTYPE elem_btype = phgDofGetElementBoundaryType(surf_dof, e, i*DDim); //BTYPE elem_btype = phgDofGetElementBoundaryType(surf_bas->dof, e, i*DDim); /* fisrt basis */ memcpy(H[0], normal, Dim * sizeof(FLOAT)); /* second basis */ for (m = 0; m < Dim; m++) if (fabs(c[0] = INNER_PRODUCT(H[0], bxyz[m])) < 0.9) break; assert(m < Dim); H[1][0] = bxyz[m][0] - c[0] * H[0][0]; H[1][1] = bxyz[m][1] - c[0] * H[0][1]; H[1][2] = bxyz[m][2] - c[0] * H[0][2]; norm = sqrt(INNER_PRODUCT(H[1], H[1])); assert(norm > 1e-10); H[1][0] /= norm; H[1][1] /= norm; H[1][2] /= norm; H[1][0] = 0; H[1][1] = 1; H[1][2] = 0; /* third basis */ for (m++; m < Dim; m++) if (fabs(c[0] = INNER_PRODUCT(H[0], bxyz[m])) < 0.9) break; assert(m < Dim); //c[1] = INNER_PRODUCT(H[1], bxyz[m]); c[1] = H[1][0]*(bxyz[m][0] - c[0] * H[0][0])+H[1][1]*(bxyz[m][1] - c[0] * H[0][1]) + H[1][2]*(bxyz[m][2] - c[0] * H[0][2]); H[2][0] = bxyz[m][0] - c[0] * H[0][0] - c[1] * H[1][0]; H[2][1] = bxyz[m][1] - c[0] * H[0][1] - c[1] * H[1][1]; H[2][2] = bxyz[m][2] - c[0] * H[0][2] - c[1] * H[1][2]; H[2][0] = H[0][1]*H[1][2] - H[0][2]*H[1][1]; H[2][1] = H[0][2]*H[1][0] - H[0][0]*H[1][2]; H[2][2] = H[0][0]*H[1][1] - H[0][1]*H[1][0]; norm = sqrt(INNER_PRODUCT(H[2], H[2])); assert(norm > 1e-10); H[2][0] /= norm; H[2][1] /= norm; H[2][2] /= norm; if ((elem_btype & BC_BOTTOM_GRD) && (elem_btype & BC_DIVIDE)) { H[1][0] = 1; H[1][1] = 0; H[1][2] = 0; H[2][0] = (H[0][1]*H[1][2]-H[0][2]*H[1][1]); H[2][1] = -(H[0][0]*H[1][2]-H[0][2]*H[1][0]); H[2][2] = (H[0][0]*H[1][1]-H[0][1]*H[1][0]); } #if 0 # warning check use only: xyz coord ---------------------------- memcpy(bas_value[i], bxyz[0], DDim*sizeof(FLOAT)); #else memcpy(bas_value[i], H[0], DDim*sizeof(FLOAT)); /* bas_value is contains all bas values of all nodes in the element. * For the nodes at the boundaries, bas value is real number, otherwise * bas value is just 0 */ #endif } /* end bas */ } /* end face */ phgDofSetElementData(surf_dof, e, &bas_value[0][0]); //phgDofSetElementData(surf_bas->dof, e, &bas_value[0][0]); } /* end elem */
/**************************************************************** * Build RHS which is the residual of the nonlinear system. ***************************************************************/ static void build_rhs(SOLVER *solver, SOLVER *pc, DOF **dofs, MAT **mats) { DOF *u = dofs[0], *p = dofs[1]; DOF *f, *pbc, *gn[3], *gradu, *divu, *lapu, *gradp, *f0; int M = u->type->nbas; /* num of bases of Velocity */ int i, k, s; GRID *g = u->g; ELEMENT *e; FLOAT bufu[M], resu[M][Dim], tmp[9]; INT Iu[M][Dim]; /* Unpack Dofs */ unpackDof(dofs, 9, &u, &p, &gradu, &divu, &f, &pbc, &gn[0], &gn[1], &gn[2]); lapu = phgDofDivergence(gradu, NULL, NULL, NULL); gradp = phgDofGradient(p, NULL, NULL, NULL); time -= dt; f0 = phgDofNew(g, DOF_HB6, 3, "p_n", func_f); time += dt; ForAllElements(g, e) { /* Map: Element -> system */ for (i = 0; i < M; i++) for (k = 0; k < Dim; k++) Iu[i][k] = phgMapE2L(solver->rhs->map, 0, e, i * Dim + k); /* Global Matrix */ bzero(resu, sizeof(resu)); for (i = 0; i < M; i++) { /* Dirichle Boundary for velocity. */ if (phgDofDirichletBC(u, e, i, func_u, bufu, &resu[i][0], DOF_PROJ_NONE)) { /* set velocity at Dirichlet bdry */ } else { /* interior node or Neumann */ /* (u(t_n), \phi) */ phgQuadDofTimesBas(e, u, u, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] = tmp[k]; /* (f, \phi_i) */ phgQuadDofTimesBas(e, f0, u, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] += dt * (1 - Theta) * tmp[k]; phgQuadDofTimesBas(e, f, u, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] += dt * Theta * tmp[k]; /* -( ((u.\grad) u, \phi) */ phgQuadDofDotGradDofBas(e, u, gradu, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] -= dt * (1 - Theta) * tmp[k]; /* +\nu ( lap(u(t_n)), \phi) */ phgQuadDofTimesBas(e, lapu, u, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] += (1 - Theta) * dt * nu * tmp[k]; /* -(gradp(t_n), \phi) */ phgQuadDofTimesBas(e, gradp, u, i, QUAD_DEFAULT, tmp); for (k = 0; k < Dim; k++) resu[i][k] -= (1 - Theta) * dt * tmp[k]; } } /* end of Block (1,1), (1,2) */ /* Neumann Bdry */ for (s = 0; s < NFace; s++) { if (e->bound_type[s] & NEUMANN) { SHORT bases[NbasFace(u)]; phgDofGetBasesOnFace(u, e, s, bases); for (i = 0; i < NbasFace(u); i++) { if (phgDofGetElementBoundaryType(u, e, bases[i] * Dim) & DIRICHLET) { /* Dirichlet bas on Neumann face, do nothing */ } else if (phgDofGetElementBoundaryType(u, e, bases[i] * Dim) & NEUMANN) { for (k = 0; k < Dim; k++) resu[bases[i]][k] += dt * Theta * phgQuadFaceDofDotBas(e, s, gn[k], DOF_PROJ_DOT, u, bases[i], QUAD_DEFAULT); } else { fprintf(stderr, "Warning: unkown bdry!"); } } /* end of base on face */ } /* end of face neu */ } /* end of all neumann face in element */ /* Global res */ phgSolverAddRHSEntries(solver, M * Dim, Iu[0], &resu[0][0]); } /* end element */ solver->rhs_updated = FALSE; phgDofFree(&lapu); phgDofFree(&gradp); phgDofFree(&f0); return; }
int main(int argc, char *argv[]) { ELEMENT *e; GRID *g; DOF *u, *v, *u_hp, *v_hp; HP_TYPE *hp; MAP *map; char *fn = "cube.dat"; char *dof_u = "P2", *dof_v = "P1"; INT step = 0, pre_refines = 0; phgOptionsRegisterFilename("-mesh_file", "Mesh file", &fn); phgOptionsRegisterInt("-pre_refines", "Pre-refinements", &pre_refines); phgOptionsRegisterString("-dof_u", "DOF type for u", &dof_u); phgOptionsRegisterString("-dof_v", "DOF type for v", &dof_v); phgInit(&argc, &argv); g = phgNewGrid(-1); if (!phgImport(g, fn, FALSE)) phgError(1, "can't read file \"%s\".\n", fn); phgRefineAllElements(g, pre_refines); phgOptionsSetHandler("-dof_type", dof_u); u = phgDofNew(g, DOF_DEFAULT, 1, "u", DofInterpolation); phgOptionsSetHandler("-dof_type", dof_v); v = phgDofNew(g, DOF_DEFAULT, 1, "v", DofInterpolation); phgPrintf("u->type = %s, v->type = %s\n", u->type->name, v->type->name); hp = phgHPNew(g, HP_HB); u_hp = phgHPDofNew(g, hp, 1, "u_hp", DofInterpolation); phgHPFree(&hp); hp = phgHPNew(g, HP_HC); v_hp = phgHPDofNew(g, hp, 1, "v_hp", DofInterpolation); phgHPFree(&hp); while (TRUE) { if (phgBalanceGrid(g, 1.1, 1, NULL, 0.)) phgPrintf("Repartition mesh, %d submeshes, load imbalance: %lg\n", g->nprocs, (double)g->lif); phgPrintf("Testing map with non HP DOFs:\n"); map = phgMapCreate(u, v, NULL); phgPrintf(" nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal); phgMapDestroy(&map); phgPrintf("Testing map with HP DOFs:\n"); ForAllElements(g, e) e->hp_order = 1 + GlobalElement(g, e->index) % 4; phgHPSetup(u_hp->hp, FALSE); ForAllElements(g, e) e->hp_order = 1 + (3 - GlobalElement(g, e->index) % 4); phgHPSetup(v_hp->hp, FALSE); map = phgMapCreate(u_hp, v_hp, NULL); phgPrintf(" nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal); phgMapDestroy(&map); phgPrintf("Testing map with HP and non HP DOFs:\n"); map = phgMapCreate(u, u_hp, v, v_hp, NULL); phgPrintf(" nlocal = %d, nglobal = %d\n", map->nlocal, map->nglobal); phgMapDestroy(&map); if (++step >= 1) break; phgRefineAllElements(g, 1); } phgDofFree(&u_hp); phgDofFree(&v_hp); phgDofFree(&u); phgDofFree(&v); phgFreeGrid(&g); phgFinalize(); return 0; }
int main(int argc, char *argv[]) { GRID *g; DOF *u_h; MAT *A, *A0, *B; MAP *map; INT i; size_t nnz, mem, mem_peak; VEC *x, *y0, *y1, *y2; double t0, t1, dnz, dnz1, mflops, mop; char *fn = "../test/cube.dat"; FLOAT mem_max = 300; INT refine = 0; phgOptionsRegisterFilename("-mesh_file", "Mesh file", (char **)&fn); phgOptionsRegisterInt("-loop_count", "Loop count", &loop_count); phgOptionsRegisterInt("-refine", "Refinement level", &refine); phgOptionsRegisterFloat("-mem_max", "Maximum memory", &mem_max); phgInit(&argc, &argv); g = phgNewGrid(-1); if (!phgImport(g, fn, FALSE)) phgError(1, "can't read file \"%s\".\n", fn); phgRefineAllElements(g, refine); u_h = phgDofNew(g, DOF_DEFAULT, 1, "u_h", DofNoAction); while (TRUE) { phgPrintf("\n"); if (phgBalanceGrid(g, 1.2, 1, NULL, 0.)) phgPrintf("Repartition mesh, %d submeshes, load imbalance: %lg\n", g->nprocs, (double)g->lif); map = phgMapCreate(u_h, NULL); A = phgMapCreateMat(map, map); A->handle_bdry_eqns = TRUE; build_matrix(A, u_h); phgMatAssemble(A); /* Note: A is unsymmetric (A' != A) if boundary entries not removed */ phgMatRemoveBoundaryEntries(A); #if 0 /* test block matrix operation */ A0 = phgMatCreateBlockMatrix(g->comm, 1, 1, &A, NULL); #else A0 = A; #endif phgPrintf("%d DOF, %d elems, %d submeshes, matrix size: %d, LIF: %lg\n", DofGetDataCountGlobal(u_h), g->nleaf_global, g->nprocs, A->rmap->nglobal, (double)g->lif); /* test PHG mat-vec multiply */ x = phgMapCreateVec(A->cmap, 1); y1 = phgMapCreateVec(A->rmap, 1); phgVecRandomize(x, 123); phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); y0 = phgVecCopy(y1, NULL); nnz = A->nnz_d + A->nnz_o; #if USE_MPI dnz1 = nnz; MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm); #else dnz = nnz; #endif mop = loop_count * (dnz + dnz - A->rmap->nlocal) * 1e-6; phgPrintf("\n"); t1 -= t0; phgPrintf(" PHG: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF)\n", t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops); /* test trans(A)*x */ phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { phgMatVec(MAT_OP_T, 1.0, A0, x, 0.0, &y1); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); t1 -= t0; phgPrintf(" A'*x: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), " "err: %le\n", t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL)); /* time A * trans(A) */ phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); B = phgMatMat(MAT_OP_N, MAT_OP_N, 1.0, A, A, 0.0, NULL); t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); nnz = B->nnz_d + B->nnz_o; #if USE_MPI dnz1 = nnz; MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm); #else dnz = nnz; #endif /* compare B*x <--> A*A*x */ y2 = phgMatVec(MAT_OP_N, 1.0, B, x, 0.0, NULL); phgMatVec(MAT_OP_N, 1.0, A0, y0, 0.0, &y1); phgMatDestroy(&B); t1 -= t0; phgPrintf(" A*A: time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n", t1, dnz, mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL)); #if USE_PETSC { Mat ma, mb; MatInfo info; Vec va, vb, vc; PetscScalar *vec; ma = phgPetscCreateMatAIJ(A); MatGetVecs(ma, PETSC_NULL, &va); VecDuplicate(va, &vb); VecGetArray(va, &vec); memcpy(vec, x->data, x->map->nlocal * sizeof(*vec)); VecRestoreArray(va, &vec); MatMult(ma, va, vb); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { MatMult(ma, va, vb); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); VecGetArray(vb, &vec); memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec)); VecRestoreArray(vb, &vec); MatGetInfo(ma, MAT_GLOBAL_SUM, &info); /*phgPrintf(" --------------------------------------------" "-------------------------\n");*/ phgPrintf("\n"); t1 -= t0; dnz = info.nz_used; phgPrintf(" PETSc: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), " "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL)); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { MatMultTranspose(ma, va, vb); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); VecGetArray(vb, &vec); memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec)); VecRestoreArray(vb, &vec); t1 -= t0; phgPrintf(" A'*x: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), " "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL)); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); MatMatMult(ma, ma, MAT_INITIAL_MATRIX, PETSC_DEFAULT, &mb); t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); t1 -= t0; MatGetInfo(mb, MAT_GLOBAL_SUM, &info); dnz = info.nz_used; VecDuplicate(va, &vc); /* compare B*x <--> A*A*x */ MatMult(ma, vb, vc); MatMult(mb, va, vb); VecGetArray(vb, &vec); memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec)); VecRestoreArray(vb, &vec); VecGetArray(vc, &vec); memcpy(y2->data, vec, x->map->nlocal * sizeof(*vec)); VecRestoreArray(vc, &vec); phgPrintf(" A*A: time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n", t1, dnz, mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL)); phgPetscMatDestroy(&mb); phgPetscMatDestroy(&ma); phgPetscVecDestroy(&va); phgPetscVecDestroy(&vb); phgPetscVecDestroy(&vc); } #endif /* USE_PETSC */ #if USE_HYPRE { HYPRE_IJMatrix ma; HYPRE_IJVector va, vb, vc; HYPRE_ParCSRMatrix par_ma; hypre_ParCSRMatrix *par_mb; HYPRE_ParVector par_va, par_vb, par_vc; HYPRE_Int offset, *ni, start, end; assert(sizeof(INT)==sizeof(int) && sizeof(FLOAT)==sizeof(double)); setup_hypre_mat(A, &ma); ni = phgAlloc(2 * A->rmap->nlocal * sizeof(*ni)); offset = A->cmap->partition[A->cmap->rank]; for (i = 0; i < A->rmap->nlocal; i++) ni[i] = i + offset; HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1, &va); HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1, &vb); HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1, &vc); HYPRE_IJVectorSetObjectType(va, HYPRE_PARCSR); HYPRE_IJVectorSetObjectType(vb, HYPRE_PARCSR); HYPRE_IJVectorSetObjectType(vc, HYPRE_PARCSR); HYPRE_IJVectorSetMaxOffProcElmts(va, 0); HYPRE_IJVectorSetMaxOffProcElmts(vb, 0); HYPRE_IJVectorSetMaxOffProcElmts(vc, 0); HYPRE_IJVectorInitialize(va); HYPRE_IJVectorInitialize(vb); HYPRE_IJVectorInitialize(vc); HYPRE_IJMatrixGetObject(ma, (void **)(void *)&par_ma); HYPRE_IJVectorGetObject(va, (void **)(void *)&par_va); HYPRE_IJVectorGetObject(vb, (void **)(void *)&par_vb); HYPRE_IJVectorGetObject(vc, (void **)(void *)&par_vc); HYPRE_IJVectorSetValues(va, A->cmap->nlocal, ni, (double *)x->data); HYPRE_IJVectorAssemble(va); HYPRE_IJVectorAssemble(vb); HYPRE_IJVectorAssemble(vc); HYPRE_IJMatrixGetRowCounts(ma, A->cmap->nlocal, ni, ni + A->rmap->nlocal); for (i = 0, nnz = 0; i < A->rmap->nlocal; i++) nnz += ni[A->rmap->nlocal + i]; #if USE_MPI dnz1 = nnz; MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm); #else dnz = nnz; #endif HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data); /*phgPrintf(" --------------------------------------------" "-------------------------\n");*/ phgPrintf("\n"); t1 -= t0; phgPrintf(" HYPRE: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), " "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL)); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); for (i = 0; i < loop_count; i++) { HYPRE_ParCSRMatrixMatvecT(1.0, par_ma, par_va, 0.0, par_vb); } t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data); t1 -= t0; phgPrintf(" A'*x: time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), " "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL)); phgPerfGetMflops(g, NULL, NULL); /* reset flops counter */ t0 = phgGetTime(NULL); /* Note: 'HYPRE_ParCSRMatrix' is currently typedef'ed to * 'hypre_ParCSRMatrix *' */ par_mb = hypre_ParMatmul((hypre_ParCSRMatrix *)par_ma, (hypre_ParCSRMatrix *)par_ma); t1 = phgGetTime(NULL); mflops = phgPerfGetMflops(g, NULL, NULL); start = hypre_ParCSRMatrixFirstRowIndex(par_mb); end = hypre_ParCSRMatrixLastRowIndex(par_mb) + 1; for (i = start, nnz = 0; i < end; i++) { HYPRE_Int ncols; hypre_ParCSRMatrixGetRow(par_mb, i, &ncols, NULL, NULL); hypre_ParCSRMatrixRestoreRow(par_mb, i, &ncols, NULL, NULL); nnz += ncols; } #if USE_MPI dnz1 = nnz; MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm); #else dnz = nnz; #endif /* compare B*x <--> A*A*x */ HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_vb, 0.0, par_vc); HYPRE_ParCSRMatrixMatvec(1.0, (void *)par_mb, par_va, 0.0, par_vb); HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data); HYPRE_IJVectorGetValues(vc, A->rmap->nlocal, ni, (double*)y2->data); hypre_ParCSRMatrixDestroy((par_mb)); t1 -= t0; phgPrintf(" A*A: time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n", t1, dnz, mflops, (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL)); phgFree(ni); HYPRE_IJMatrixDestroy(ma); HYPRE_IJVectorDestroy(va); HYPRE_IJVectorDestroy(vb); HYPRE_IJVectorDestroy(vc); } #endif /* USE_HYPRE */ if (A0 != A) phgMatDestroy(&A0); #if 0 if (A->rmap->nglobal > 1000) { VEC *v = phgMapCreateVec(A->rmap, 3); for (i = 0; i < v->map->nlocal; i++) { v->data[i + 0 * v->map->nlocal] = 1 * (i + v->map->partition[g->rank]); v->data[i + 1 * v->map->nlocal] = 2 * (i + v->map->partition[g->rank]); v->data[i + 2 * v->map->nlocal] = 3 * (i + v->map->partition[g->rank]); } phgMatDumpMATLAB(A, "A", "A.m"); phgVecDumpMATLAB(v, "v", "v.m"); phgFinalize(); exit(0); } #endif phgMatDestroy(&A); phgVecDestroy(&x); phgVecDestroy(&y0); phgVecDestroy(&y1); phgVecDestroy(&y2); phgMapDestroy(&map); mem = phgMemoryUsage(g, &mem_peak); dnz = mem / (1024.0 * 1024.0); dnz1 = mem_peak / (1024.0 * 1024.0); /*phgPrintf(" --------------------------------------------" "-------------------------\n");*/ phgPrintf("\n"); phgPrintf(" Memory: current %0.4lgMB, peak %0.4lgMB\n", dnz, dnz1); #if 0 { static int loop_count = 0; if (++loop_count == 4) break; } #endif if (mem_peak > 1024 * (size_t)1024 * mem_max) break; phgRefineAllElements(g, 1); } phgDofFree(&u_h); phgFreeGrid(&g); phgFinalize(); return 0; }
int main(int argc, char *argv[]) { GRID *g; DOF *u, *v, *w, *u0, *v0, *w0; SOLVER *solver; INT i, j; char *fn = "cube.dat"; phgVerbosity = 0; phgInit(&argc, &argv); /*phgPause(0);*/ g = phgNewGrid(-1); if (!phgImport(g, fn, FALSE)) phgError(1, "can't read file \"%s\".\n", fn); for (i = 0; i < 4; i++) phgRefineAllElements(g, 1); phgBalanceGrid(g, 1.0, 0, NULL, 0.); for (i = 0; i < 8; i++) { phgRefineRandomElements(g, "25%"); phgBalanceGrid(g, 1.2, -1, NULL, 0.); } phgCheckConformity(g); u = phgDofNew(g, DOF_P1, 1, "u", DofNoAction); v = phgDofNew(g, DOF_ND1, 1, "v", DofNoAction); w = phgDofNew(g, DOF_P1, 1, "w", DofNoAction); phgDofSetDataByValue(u, 0.0); phgDofSetDataByValue(v, 0.0); phgDofSetDataByValue(w, 0.0); u0 = phgDofNew(g, u->type, u->dim, "u0", DofNoAction); v0 = phgDofNew(g, v->type, v->dim, "v0", DofNoAction); w0 = phgDofNew(g, w->type, w->dim, "w0", DofNoAction); solver = phgSolverCreate(SOLVER_DEFAULT, u, v, w, NULL); for (i = 0; i < DofGetDataCount(u); i++) { j = phgSolverMapD2L(solver, 0, i); u0->data[i] = (FLOAT)(phgSolverMapL2G(solver, j) % 3); phgSolverAddMatrixEntry(solver, j, j, 1.0); phgSolverAddRHSEntry(solver, j, u0->data[i]); } for (i = 0; i < DofGetDataCount(v); i++) { j = phgSolverMapD2L(solver, 1, i); v0->data[i] = (FLOAT)(phgSolverMapL2G(solver, j) % 5); phgSolverAddMatrixEntry(solver, j, j, 1.0); phgSolverAddRHSEntry(solver, j, v0->data[i]); } for (i = 0; i < DofGetDataCount(w); i++) { j = phgSolverMapD2L(solver, 2, i); w0->data[i] = (FLOAT)(phgSolverMapL2G(solver, j) % 7); phgSolverAddMatrixEntry(solver, j, j, 1.0); phgSolverAddRHSEntry(solver, j, w0->data[i]); } phgSolverSolve(solver, TRUE, u, v, w, NULL); phgSolverDestroy(&solver); phgDofAXPY(-1.0, u0, &u); phgDofAXPY(-1.0, v0, &v); phgDofAXPY(-1.0, w0, &w); phgPrintf("Error: u = %lg, v = %lg, w = %lg\n", (double)phgDofNormInftyVec(u), (double)phgDofNormInftyVec(v), (double)phgDofNormInftyVec(w)); phgDofFree(&u); phgDofFree(&v); phgDofFree(&w); phgDofFree(&u0); phgDofFree(&v0); phgDofFree(&w0); phgFreeGrid(&g); phgFinalize(); return 0; }
void phgNSBuildPc(NSSolver *ns) { GRID *g = ns->g; SIMPLEX *e; FLOAT *dt = ns->dt; int i, j, q, s, k, l; FLOAT Theta = _nsp->Theta, nu = _nsp->nu, Thet1, nu0 = 0; DOF *tmp_u1 = phgDofNew(g, _nsp->utype, Dim, "tmp u1", func_u); int viscosity_type = ns->viscosity_type; LTYPE ltype = ns->ltype; #if STEADY_STATE assert(fabs(Theta - 1) < 1e-12); Thet1 = 0; Unused(Thet1); Unused(dt); #else Thet1 = 1 - Theta; #endif /* STEADY_STATE */ ForAllElements(g, e) { int M = ns->u[1]->type->nbas; /* num of bases of Velocity */ int N = ns->p[1]->type->nbas; /* num of bases of Pressure */ int order = 2 * DofTypeOrder(ns->p[1], e) + DofTypeOrder(ns->u[1], e) - 1; /* highest order term (u \nabla p, psi) */ FLOAT Ap[N][N], Fp[N][N], Qp[N][N], bufp[N], rhs1 = 1; FLOAT F[M*Dim][M*Dim], B[N][M*Dim], Bt[M*Dim][N]; INT Ip[N]; QUAD *quad; FLOAT vol, det; const FLOAT *w, *p, *vw, *gu, *vTe; quad = phgQuadGetQuad3D(order); vw = phgQuadGetDofValues(e, ns->wind, quad); /* value wind */ gu = phgQuadGetDofValues(e, ns->gradu[1], quad); /* grad u^{n+1} */ if (ns_params->noniter_temp) vTe = phgQuadGetDofValues(e, ns->T[1], quad); /* value temp */ else vTe = phgQuadGetDofValues(e, ns->T[0], quad); /* value temp */ vol = 0; Bzero(Ap); Bzero(Fp); Bzero(Qp); Bzero(F); Bzero(Bt); Bzero(B); Bzero(bufp); p = quad->points; w = quad->weights; for (q = 0; q < quad->npoints; q++) { phgGeomGetCurvedJacobianAtLambda(g, e, p, &det); vol = fabs(det / 6.); for (i = 0; i < N; i++) { const FLOAT *gi = phgQuadGetBasisValues(e, ns->p[1], i, quad) + q; /* phi_i */ const FLOAT *ggi = phgQuadGetBasisCurvedGradient(e, ns->p[1], i, quad, q); /* grad phi_i */ for (j = 0; j < N; j++) { const FLOAT *gj = phgQuadGetBasisValues(e, ns->p[1], j, quad) + q; /* phi_j */ const FLOAT *ggj = phgQuadGetBasisCurvedGradient(e, ns->p[1], j, quad, q); /* grad phi_i */ nu = get_effective_viscosity(gu, *vTe, 0, viscosity_type); if (i == 0 && j == 0) nu0 += nu; #if ICE_BENCH_TEST || \ ESIMINT_TEST || \ HEINO_TEST || \ TEST_CASE == ICE_EXACT || \ TEST_CASE == ICE_GREEN_LAND Unused(dt); /* Note: B Q^-1 Bt ~ Ap(nu=1), * Fp(nu varies) is very different to Ap */ Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi); # if USE_QP_ONLY //Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING /(nu) * (*gj) * (*gi); Qp[i][j] += vol*(*w) * 1. /(EQU_SCALING * nu) * (*gj) * (*gi); /* if (i < NVert && j < NVert) { */ /* Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */ /* } else if (i == NVert && j == NVert) { */ /* Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */ /* } */ # else Qp[i][j] += vol*(*w) * (*gj) * (*gi); # endif Fp[i][j] += vol*(*w) * (EQU_SCALING * nu * INNER_PRODUCT(ggj, ggi) ); #elif STEADY_STATE Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi); Qp[i][j] += vol*(*w) * (*gj) * (*gi); Fp[i][j] += vol*(*w) * (nu * INNER_PRODUCT(ggj, ggi) * EQU_SCALING ); #elif TIME_DEP_NON Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi); Qp[i][j] += vol*(*w) * (*gj) * (*gi); Fp[i][j] += vol*(*w) * ((*gj) * (*gi) / dt[0] + Theta * (nu * INNER_PRODUCT(ggj, ggi) ) ); #else TIME_DEP_LINEAR_ENTRY; /* Unavailable */ #endif /* STEADY_STATE */ } } vw += Dim; gu += DDim; vTe++; w++; p += Dim+1; } /* Map: Element -> system */ for (i = 0; i < N; i++) Ip[i] = phgMapE2L(_pcd->matFp->cmap, 0, e, i); /* * PCD boundary setup I: * Automaticly decide inflow boundary condition using wind direction. * * NOT active. * */ if (FALSE && !_nsp->pin_node) { for (i = 0; i < N; i++) { BOOLEAN flag_inflow = FALSE; for (s = 0; s < NFace; s++) { SHORT bases[NbasFace(ns->p[1])]; FLOAT *coord, vw_[3]; const FLOAT *lam, *normal; if (!(e->bound_type[s] & BDRY_MASK)) //if (!(e->bound_type[s] & INFLOW)) continue; /* boundary face */ phgDofGetBasesOnFace(ns->p[1], e, s, bases); for (j = 0; j < NbasFace(ns->p[1]); j++) if (i == bases[j]) { normal = phgGeomGetFaceOutNormal(g, e, s); coord = phgDofGetElementCoordinates(ns->p[1], e, i); lam = phgGeomXYZ2Lambda(g, e, coord[0], coord[1], coord[2]); phgDofEval(tmp_u1, e, lam, vw_); if (INNER_PRODUCT(vw_, normal) > 1e-8) flag_inflow = TRUE; } } if (flag_inflow) { Bzero(bufp); bufp[i] = 1.0; phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp); //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp); phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1); } else { /* interior node Or Neumann */ phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]); //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]); } phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]); } } /* * PCD boundary setup II: * Enclose flow: use pinnode boundary. * * Qp is pinned, this is different to open flow. * * */ else if (_nsp->pin_node) { for (i = 0; i < N; i++) { if (phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) { #if PIN_AT_ROOT if (g->rank != 0) phgError(1, "Pinned node only on rank 0!\n"); if (e->verts[i] != ns->pinned_node_id) phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n", e->verts[i], ns->pinned_node_id); #else if (GlobalVertex(g, e->verts[i]) != ns->pinned_node_id) phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n", e->verts[i], ns->pinned_node_id); #endif /* PIN_AT_ROOT */ phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp); phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1); } else { /* interior node Or Neumann */ phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]); phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]); } } } /* * PCD boundary setup III: * Open flow: there could be varies kinds of combination on seting up * boundary conditon, but Inflow:Robin & Outflow:scaled Dirich is * prefered. See Ref[2]. * * */ else { for (i = 0; i < N; i++) { /*****************/ /* Inflow */ /*****************/ #warning PCD B.C.: Step 2.1. build mat, all neumann, add dirich entries if (FALSE && phgDofDirichletBC(_pcd->dof_inflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) { phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp); phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1); } else if (FALSE && phgDofDirichletBC(_pcd->dof_outflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE) && !(phgDofGetElementBoundaryType(ns->p[1], e, i) & INFLOW) ) { ERROR_MSG("Fp, Qp"); nu = get_effective_viscosity(NULL, 0, 0, viscosity_type); phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp); bufp[i] *= EQU_SCALING * nu; phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp); phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1); //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp); } else if (FALSE && phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) { phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp); phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp); phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1); } else if (FALSE) { /* interior node Or Neumann */ ERROR_MSG("Fp, Qp"); phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]); phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]); //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]); } /******************/ /* No bdry */ /******************/ //phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]); phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]); } } if (0) { /* Special term <[[p_i]], [[p_j]]> */ int face; nu0 /= quad->npoints; for (face = 0; face < NFace; face++) { FLOAT area = phgGeomGetFaceArea(g, e, face); //FLOAT value = {area, -area}; FLOAT values[2] = {vol * 1. /(EQU_SCALING * nu0), -vol * 1. /(EQU_SCALING * nu0)}; SIMPLEX *e_neigh; phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, Ip+NVert, values); if ((e_neigh = GetNeighbour(e, face)) != NULL) { INT Ip_neigh = phgMapE2L(_pcd->matFp->cmap, 0, e_neigh, NVert); phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, &Ip_neigh, values + 1); } } } } /* end element */
void phgNSInitPc(NSSolver *ns) { GRID *g = ns->g; MAP *Pmap = ns->Pmap, *Pbcmap; BOOLEAN use_Fu = _nsp->use_Fu; int verb; /* pcd boundary type test */ _pcd->dof_inflow = phgDofNew(g, _nsp->ptype, 1, "dof inflow", DofNoAction); _pcd->dof_outflow = phgDofNew(g, _nsp->ptype, 1, "dof outflow", DofNoAction); _pcd->dof_nobdry = phgDofNew(g, _nsp->ptype, 1, "dof nobdry", DofNoAction); phgDofSetDirichletBoundaryMask(_pcd->dof_inflow, INFLOW); phgDofSetDirichletBoundaryMask(_pcd->dof_outflow, OUTFLOW); phgDofSetDirichletBoundaryMask(_pcd->dof_nobdry, 0); _pcd->map_inflow = phgMapCreate(_pcd->dof_inflow, NULL); _pcd->map_outflow = phgMapCreate(_pcd->dof_outflow, NULL); _pcd->map_nobdry = phgMapCreate(_pcd->dof_nobdry, NULL); _pcd->Pbcmap = phgMapCreate(_pcd->pbc, NULL); Pbcmap = _pcd->Pbcmap; Unused(Pmap); #warning PCD B.C.: step 1. build mat using map... /* * PCD boundary setup: should be consistent with code above */ if (_nsp->pin_node) { _pcd->matFp = phgMapCreateMat(Pbcmap, Pbcmap); _pcd->matAp = phgMapCreateMat(Pbcmap, Pbcmap); _pcd->matQp = phgMapCreateMat(Pbcmap, Pbcmap); } else { //_pcd->matAp = phgMapCreateMat(_pcd->map_inflow, _pcd->map_inflow); //_pcd->matFp = phgMapCreateMat(_pcd->map_inflow, _pcd->map_inflow); _pcd->matFp = phgMapCreateMat(_pcd->map_outflow, _pcd->map_outflow); _pcd->matAp = phgMapCreateMat(_pcd->map_outflow, _pcd->map_outflow); //_pcd->matQp = phgMapCreateMat(_pcd->map_outflow, _pcd->map_outflow); //_pcd->matQp = phgMapCreateMat(_pcd->map_inflow, _pcd->map_inflow); //_pcd->matFp = phgMapCreateMat(_pcd->map_nobdry, _pcd->map_nobdry); //_pcd->matAp = phgMapCreateMat(_pcd->map_nobdry, _pcd->map_nobdry); //_pcd->matFp = phgMapCreateMat(_pcd->map_nobdry, _pcd->map_nobdry); _pcd->matQp = phgMapCreateMat(_pcd->map_nobdry, _pcd->map_nobdry); } /* stokes problem: get SYMETRIC mat when assemble. * Handle_bdry_eqns means mat is composed with row of boundary row * and non-bdry row, and eliminating mat columes of dirichlet dof. */ if (_nsp->use_symetric) { _pcd->matFp->handle_bdry_eqns = TRUE; _pcd->matAp->handle_bdry_eqns = TRUE; _pcd->matQp->handle_bdry_eqns = TRUE; } /* genearl NS: no need to eliminate mat columes of dirichlet dof */ else { _pcd->matFp->handle_bdry_eqns = FALSE; _pcd->matAp->handle_bdry_eqns = FALSE; _pcd->matQp->handle_bdry_eqns = FALSE; } _pcd->rhsScale = phgMapCreateVec(_pcd->matQp->rmap, 1); phgVecDisassemble(_pcd->rhsScale); ns->pc = phgMat2Solver(SOLVER_PreOnly, ns->solver_u->mat); if (_nsp->use_PCD) phgSolverSetPC(ns->solver_u, ns->pc, pc_proc); /* solver F */ phgOptionsPush(); phgOptionsSetOptions("-solver hypre " "-hypre_solver pcg " "-hypre_pc boomeramg " "-solver_maxit 10 " "-solver_rtol 1e-4"); phgOptionsSetOptions(_nsp->F_opts); /* use matF in the preconditioning matrix */ _pcd->solver_F = phgMat2Solver(SOLVER_DEFAULT, ns->matF); _pcd->solver_F->verb = SUB_SOLVER_VERB; /* Set user options. */ _pcd->pc_F = NULL; #if USE_MG if (ns_params->use_mg_F) { MAT *matF = ns->matF; assert(ns_params->use_PCD && !ns_params->use_Fu); _pcd->pc_F = phgMat2Solver(SOLVER_PreOnly, matF); phgOptionsSetOptions("-solver petsc "); matF->mv_data = phgAlloc(sizeof(*matF->mv_data)); matF->mv_data[0] = (void *) ns->mg; phgSolverSetPC(_pcd->solver_F, _pcd->pc_F, mg_pc_proc); } #endif /* USE_MG */ _pcd->solver_F->warn_maxit = FALSE; phgOptionsPop(); /* solver Ap */ phgOptionsPush(); phgOptionsSetOptions("-solver hypre " "-hypre_solver gmres " "-hypre_pc boomeramg " "-solver_maxit 10 " "-solver_rtol 1e-3"); phgOptionsSetOptions(_nsp->Ap_opts); _pcd->solver_Ap = phgMat2Solver(SOLVER_DEFAULT, _pcd->matAp); _pcd->solver_Ap->warn_maxit = FALSE; _pcd->solver_Ap->verb = SUB_SOLVER_VERB; phgOptionsPop(); _pcd->pc_Ap = NULL; #if USE_MG if (ns_params->use_mg_Ap) { MAT *matAp = _pcd->matAp; assert(ns_params->use_PCD); _pcd->pc_Ap = phgMat2Solver(SOLVER_PreOnly, matAp); phgOptionsSetOptions("-solver petsc "); matAp->mv_data = phgAlloc(sizeof(*matAp->mv_data)); matAp->mv_data[0] = (void *) ns->mg; phgSolverSetPC(_pcd->solver_Ap, _pcd->pc_Ap, mg_pc_proc); } #endif /* USE_MG */ /* solver Qp */ phgOptionsPush(); phgOptionsSetOptions("-solver hypre " "-hypre_solver pcg " "-hypre_pc boomeramg " "-solver_maxit 10 " "-solver_rtol 1e-3"); phgOptionsSetOptions(_nsp->Qp_opts); _pcd->solver_Qp = phgMat2Solver(SOLVER_DEFAULT, _pcd->matQp); _pcd->solver_Qp->warn_maxit = FALSE; _pcd->solver_Qp->verb = SUB_SOLVER_VERB; phgOptionsPop(); _pcd->pc_Qp = NULL; #if USE_MG if (ns_params->use_mg_Qp) { MAT *matQp = _pcd->matQp; assert(ns_params->use_PCD); _pcd->pc_Qp = phgMat2Solver(SOLVER_PreOnly, matQp); phgOptionsSetOptions("-solver petsc "); matQp->mv_data = phgAlloc(sizeof(*matQp->mv_data)); matQp->mv_data[0] = (void *) ns->mg; phgSolverSetPC(_pcd->solver_Qp, _pcd->pc_Qp, mg_pc_proc); } #endif /* USE_MG */ /* Fu for solve F^{-1} */ if (use_Fu) { /* _nsp->implicit_centrip && */ DOF *u1; MAP *u1map; MAT *matFu; u1 = _pcd->u1 = phgDofNew(g, _nsp->utype, 1, "velocity component u", DofNoAction); phgDofSetDirichletBoundaryMask(u1, SETFLOW); u1map = _pcd->u1map = phgMapCreate(_pcd->u1, NULL); matFu = _pcd->matFu = phgMapCreateMat(u1map, u1map); if (_nsp->use_symetric) matFu->handle_bdry_eqns = TRUE; /* solver Fu */ phgOptionsPush(); phgOptionsSetOptions("-solver hypre " "-hypre_solver pcg " "-hypre_pc boomeramg " "-solver_maxit 10 " "-solver_rtol 1e-4"); phgOptionsSetOptions(_nsp->Fu_opts); _pcd->solver_Fu = phgMat2Solver(SOLVER_DEFAULT, _pcd->matFu); _pcd->solver_Fu->warn_maxit = FALSE; _pcd->solver_Fu->verb = SUB_SOLVER_VERB; phgOptionsPop(); } return; }