Esempio n. 1
0
static void
build_matrix(MAT *mat, DOF *u_h)
{
    int N = u_h->type->nbas;	/* number of basis functions in an element */
    int i, j;
    GRID *g = u_h->g;
    ELEMENT *e;
    FLOAT A[N][N], buf[N];
    INT I[N];

    assert(u_h->dim == 1);
    ForAllElements(g, e) {
	/* compute \int \grad\phi_j \cdot \grad\phi_i making use of symmetry */
	for (i = 0; i < N; i++) {
	    I[i] = phgMapE2L(mat->cmap, 0, e, i);
	    for (j = 0; j <= i; j++)
		A[j][i] = A[i][j] =
		    phgQuadGradBasDotGradBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
	}

	/* loop on basis functions */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(u_h, e, i, NULL, buf, NULL, DOF_PROJ_NONE)) {
		phgMatAddEntries(mat, 1, I + i, N, I, buf); 
	    }
	    else {	/* interior node */
		phgMatAddEntries(mat, 1, I + i, N, I, A[i]); 
	    }
	}
    }
}
Esempio n. 2
0
static void
build_matrices(MAT *matA, MAT *matM, DOF *u_h, DOF *p_h)
{
    int N = u_h->type->nbas;	/* number of basis functions in an element */
    int M = p_h->type->nbas;
    int i, j;
    GRID *g = u_h->g;
    ELEMENT *e;
    FLOAT A[N][N], B[N][N], C[M][N];
    INT I[N], Ip[N];
    INT k;

    assert(DofTypeDim(u_h) == Dim);

    assert(u_h->dim == 1);
    ForAllElements(g, e) {
	for (i = 0; i < N; i++)
	    I[i] = phgMapE2L(matA->rmap, 0, e, i);
	for (i = 0; i < M; i++)
	    Ip[i] = phgMapE2L(matA->rmap, 1, e, i);
	for (i = 0; i < N; i++) {
	    for (k = 0; k < M; k++) {
		/* \int \grad\psi_k\cdot\phi_i */
		C[k][i] =
		    phgQuadGradBasDotBas(e, p_h, k, u_h, i, QUAD_DEFAULT);
	    }
	    for (j = 0; j <= i; j++) {
		/* \int \phi_j\cdot\phi_i */
		B[j][i] = B[i][j] = 
		    phgQuadBasDotBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
		/* \int \curl\phi_j\cdot\curl\phi_i */
		A[j][i] = A[i][j] =
		    phgQuadCurlBasDotCurlBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
	    }
	}

	/* loop on basis functions of u_h */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(u_h, e, i, NULL, NULL, NULL, DOF_PROJ_CROSS))
		continue;
	    phgMatAddEntries(matA, 1, I + i, N, I, A[i]); 
	    phgMatAddEntries(matM, 1, I + i, N, I, B[i]); 
	    for (j = 0; j < M; j++)
		phgMatAddEntry(matA, I[i], Ip[j], C[j][i]); 
	}

	/* loop on basis functions of p_h */
	for (i = 0; i < M; i++)
	    phgMatAddEntries(matA, 1, Ip + i, N, I, C[i]); 
    }
}
Esempio n. 3
0
static void
build_matrices(MAT *ma, MAT *mb, VEC *rhs_vec, DOF *u_h, DOF *f)
/* build stiffness (ma) and mass (mb) matrices */
{
    int N = u_h->type->nbas;	/* number of element basis functions */
    int i, j, k, l;
    GRID *g = u_h->g;
    ELEMENT *e;
    FLOAT A[N][3][N][3], buffer[N], rhs[N][3], d;
    static FLOAT *B0 = NULL;
    FLOAT B[N][N];
    INT I[N][3], J[3][N];
    QUAD *quad = phgQuadGetQuad3D((u_h->type->order - 1) * 2);

    assert(u_h->type->dim == 1 && u_h->dim == 3);
    assert(mb == NULL || u_h->type->invariant);

    if (mb != NULL && B0 == NULL && g->nroot > 0) {
	/* (\int \phi_j\cdot\phi_i)/vol is independent of element */
	FreeAtExit(B0);
	B0 = phgAlloc(N * N * sizeof(*B0));
	e = g->roots;
	d = 1. / phgGeomGetVolume(g, e);
	for (i = 0; i < N; i++)
	    for (j = 0; j <= i; j++)
		B0[i * N + j] = B0[i + j * N] = d *
		    phgQuadBasDotBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
    }

    ForAllElements(g, e) {
	d = phgGeomGetVolume(g, e) * rho;
	for (i = 0; i < N; i++) {
	    for (k = 0; k < 3; k++)
		J[k][i] = I[i][k] = phgMapE2L(ma->rmap, 0, e, i * 3 + k);
	    for (j = 0; j <= i; j++) {
		/* the stiffness matrix */
		stiffness_matrix(e, u_h, i, j, E, nu, 3 * N, &A[i][0][j][0],
				 quad);
		if (j != i) {
		    for (k = 0; k < 3; k++)
			for (l = 0; l < 3; l++)
			    A[j][k][i][l] = A[i][l][j][k];
		}
		/* the mass matrix: \int \phi_i\cdot\phi_j */
		if (mb != NULL)
		    B[j][i] = B[i][j] = B0[i * N + j] * d;
	    }
	}
#if 0
/* print element stiffness matrix */
FLOAT *p = (void *)A;
printf("vol = %0.16lg;\n", phgGeomGetVolume(g, e));
printf("a = [\n");
for (i = 0; i < 3 * N; i++) {
 for (j = 0; j < 3 * N; j++) printf("%0.16lg ", p[i * 3 * N + j]); printf("\n");
}
printf("];\n");
printf("b = [\n");
for (i = 0; i < N; i++) for (k = 0; k < 3; k++) {
 for (j = 0; j < N; j++) for (l = 0; l < 3; l++)
  printf("%0.16lg ", l == k ? B[i][j] : 0.0);
 printf("\n");
}
printf("];\n");
exit(0);
#endif

	/* loop on basis functions */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(u_h, e, i, func_g, buffer, rhs[i],
					DOF_PROJ_NONE)) {
		/* Dirichlet boundary */
		for (k = 0; k < 3; k++) {
		    phgMatAddEntries(ma, 1, I[i] + k, N, J[k], buffer);
		    if (mb != NULL)
			phgMatAddEntries(mb, 1, I[i] + k, N, J[k], buffer);
		}
	    }
	    else {
		/* interior node */
		phgMatAddEntries(ma, 3, I[i], 3 * N, I[0], &A[i][0][0][0]);
		if (mb == NULL) {
		    phgQuadDofTimesBas(e, f, u_h, i, QUAD_DEFAULT, rhs[i]);
		    for (k = 0; k < 3; k++)
			rhs[i][k] = -rhs[i][k];
		}
		else {
		    for (k = 0; k < 3; k++)
			phgMatAddEntries(mb, 1, I[i] + k, N, J[k], B[i]);
		}
	    }
	}
	if (rhs_vec != NULL)
	    phgVecAddEntries(rhs_vec, 0, N * 3, I[0], rhs[0]);
    }
/***************************************************************************
 * Build matrices *F, *Fu, *B, *Bt, *Fp, *Ap, and *Qp used * by the solvers.
 **************************************************************************/
static void
build_matrices(SOLVER *solver, SOLVER *pc, DOF **dofs, MAT **mats, LTYPE type)
{
    DOF *u = dofs[0], *p = dofs[1];
    DOF *f, *pbc, *gn[3], *gradu, *divu;
    int M = u->type->nbas;	/* num of bases of Velocity */
    int N = p->type->nbas;	/* num of bases of Pressure */
    int i, j, k, l;
    GRID *g = u->g;
    ELEMENT *e;
    MAT *matB, *matC, *matAp, *matQp;
    FLOAT F[M][Dim][M][Dim], Fu[M][M],
	B[N][M][Dim], Bt[M][Dim][N],
	Ap[N][N], Fp[N][N], Qp[N][N], bufu[M], bufp[N], tmp[9];
    INT Iu[M][Dim], Ju[Dim][M], Iu0[M], Ip[N];

    /* Unpack Dofs */
    unpackDof(dofs, 9, &u, &p, &gradu, &divu, &f, &pbc, &gn[0], &gn[1], &gn[2]);
    unpackMat(mats, 4, &matB, &matC, &matAp, &matQp);

#if 0
#warning remove me!
SOLVER *s = phgSolverCreate(SOLVER_PCG, p, NULL);
#endif

    ForAllElements(g, e) {
	/* Map: Element -> system */
	for (i = 0; i < M; i++) {
	    for (k = 0; k < Dim; k++)
		Ju[k][i] = Iu[i][k] = phgMapE2L(matF->cmap, 0, e, i * Dim + k);
	    Iu0[i] = phgMapE2L(matFu->cmap, 0, e, i);
	}
	for (i = 0; i < N; i++) {
	    Ip[i] = phgMapE2L(matFp->cmap, 0, e, i);
	}

	/* A V W */
	for (i = 0; i < M; i++) {
	    for (j = 0; j < M; j++) {
		FLOAT m, a, v, w[9];
		/* \phi_j \dot \phi_i */
		m = phgQuadBasDotBas(e, u, j, u, i, QUAD_DEFAULT);

		/* (\grad \phi_j) \cdot (\grad \phi_i) */
		a = nu * phgQuadGradBasDotGradBas(e, u, j, u, i,
						  QUAD_DEFAULT);
		/* (u \cdot \grad) \phi_j \times \phi_i, 1 item */
		v = phgQuadDofDotGradBasBas(e, u, u, j, i, QUAD_DEFAULT);
		Fu[i][j] = a + v;
		if (type == PICARD) {
		    memset(w, 0, sizeof(w));
		}
		else {
		    /* \phi_j (\grad u) \times \phi_i, 9 items */
		    phgQuadGradDofBasDotBas(e, gradu, u, j, i, QUAD_DEFAULT, w);
		}
		for (k = 0; k < Dim; k++) {
		    for (l = 0; l < Dim; l++) {
			F[i][k][j][l] = Theta * dt * *(w + k * Dim + l);
			if (k == l)
			    F[i][k][j][k] += m + Theta * dt * (a + v);
		    }
		}
	    }
	}

	/* B Bt */
	for (i = 0; i < M; i++) {
	    for (j = 0; j < N; j++) {
		FLOAT bxyz[3];
		phgQuadGradBasDotBas3(e, u, i, p, j, bxyz, QUAD_DEFAULT);
		for (k = 0; k < Dim; k++)
		    Bt[i][k][j] = B[j][i][k] = -Theta * dt * bxyz[k];
	    }
	}

	/* Ap Qp;  Fp(update) */
	for (i = 0; i < N; i++) {
	    for (j = 0; j < N; j++) {
		FLOAT ap, qp, cp;
		ap = phgQuadGradBasDotGradBas(e, p, j, p, i,
						   QUAD_DEFAULT);
		Ap[i][j] = Theta * dt * ap;

		qp = phgQuadBasDotBas(e, p, j, p, i, QUAD_DEFAULT);
		Qp[i][j] = Theta * dt * qp;

		cp = phgQuadDofDotGradBasBas(e, u, p, j, i, QUAD_DEFAULT);
		Fp[i][j] = qp + Theta * dt * (nu * ap + cp);
	    }
	}

	/* Global Matrix */
	for (i = 0; i < M; i++) {
	    /* Dirichle Boundary for velocity. */
	    if (phgDofDirichletBC(u, e, i, NULL, bufu, NULL, DOF_PROJ_NONE)) {
		for (k = 0; k < Dim; k++)
		    phgMatAddEntries(matF, 1, Iu[i] + k, M, Ju[k], bufu);
		phgMatAddEntries(matFu, 1, Iu0 + i, M, Iu0, bufu);
	    }
	    else {		/* interior node Or Neumann */
		/* Matrix F */
		phgMatAddEntries(matF, Dim, Iu[i], M * Dim, Iu[0],
				 &(F[i][0][0][0]));
		/* Matrix Fu */
		phgMatAddEntries(matFu, 1, Iu0 + i, M, Iu0, &(Fu[i][0]));
		/* Matrix Bt */
		for (k = 0; k < Dim; k++)
		    phgMatAddEntries(matBt, 1, &Iu[i][k], N, Ip, &Bt[i][k][0]);
	    }
	}			/* end of Block (1,1), (1,2) */

	for (i = 0; i < N; i++)
	    phgMatAddEntries(matB, 1, Ip + i, M * Dim, Iu[0], &B[i][0][0]);

	/* Matrix Ap Qp Fp */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(pbc, e, i, NULL, bufp, tmp, DOF_PROJ_NONE)) {
		/* Dirichle Boundary for pressure PC. */
		phgMatAddEntries(matAp, 1, Ip + i, N, Ip, bufp);
		phgMatAddEntries(matFp, 1, Ip + i, N, Ip, bufp);
	    }
	    else {
		/* interior node Or Neumann */
		phgMatAddEntries(matAp, 1, Ip + i, N, Ip, Ap[i]);
		phgMatAddEntries(matFp, 1, Ip + i, N, Ip, Fp[i]);
	    }
#if 0
	    /* use only diagonal of the mass matrix in the preconditioner */
	    phgMatAddEntries(matQp, 1, Ip + i, 1, Ip + i, &Qp[i][i]);
#else
	    /* use full mass matrix in the preconditioner */
	    phgMatAddEntries(matQp, 1, Ip + i, N, Ip, Qp[i]);
#endif
#if 0
phgMatAddEntries(s->mat, 1, Ip + i, N, Ip, Qp[i]);
#endif
	}
    }				/* end element */

#if 0
VEC *v = phgMapCreateVec(s->rhs->map, 1);
memcpy(s->rhs->data, solver->rhs->data + DofGetDataCount(u), s->rhs->map->nlocal * sizeof(FLOAT));
s->rhs_updated = TRUE;
s->rhs->assembled = TRUE;
s->rtol = 1e-10;
s->maxit = 10000;
phgSolverVecSolve(s, TRUE, v);
phgPrintf("v = %e\n", phgVecNormInfty(v, 0, NULL));
phgVecDestroy(&v);
phgSolverDestroy(&s);
#endif

    return;
}
Esempio n. 5
0
static void
build_matrices(MAT *matA, MAT *matM, MAT *matC, MAT *S, FLOAT s,
		DOF *u_h, DOF *p_h)
/* S is used to store s*diag(M(p_h))^(-1) */
{
    int N = u_h->type->nbas;	/* number of basis functions in an element */
    int M = p_h->type->nbas;
    int i, j;
    GRID *g = u_h->g;
    ELEMENT *e;
    FLOAT A[N][N], B[N][N], C[N][M];
    INT I[N], Ip[M];
    INT k, n0;
    VEC *V = phgMapCreateVec(S->rmap, 1);

    phgVecDisassemble(V);	/* for phgVecAddEntry */
    ForAllElements(g, e) {
	for (i = 0; i < N; i++) {
	    I[i] = phgMapE2L(matA->rmap, 0, e, i);
	    for (k = 0; k < M; k++) {
		/* \int \grad\psi_k\cdot\phi_i */
		C[i][k] = phgQuadGradBasDotBas(e, p_h, k, u_h, i, QUAD_DEFAULT);
	    }
	    for (j = 0; j <= i; j++) {
		/* \int \phi_i\cdot\phi_j */
		B[j][i] = B[i][j] = 
		    phgQuadBasDotBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
		/* \int \curl\phi_i\cdot\curl\phi_j */
		A[j][i] = A[i][j] =
		    phgQuadCurlBasDotCurlBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
	    }
	}

	for (i = 0; i < M; i++) {
	    Ip[i] = phgMapE2L(matC->cmap, 0, e, i);
	    if (Ip[i] < 0)	/* boundary entry */
		continue;
	    phgVecAddEntry(V, 0, Ip[i],
			phgQuadBasDotBas(e, p_h, i, p_h, i, QUAD_DEFAULT));
	}

	/* loop on basis functions */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(u_h, e, i, NULL, NULL, NULL, DOF_PROJ_CROSS))
		continue;
	    phgMatAddEntries(matA, 1, I + i, N, I, A[i]); 
	    phgMatAddEntries(matM, 1, I + i, N, I, B[i]); 
	    phgMatAddEntries(matC, 1, I + i, M, Ip, C[i]); 
	}
    }

    phgVecAssemble(V);
    n0 = V->map->partition[V->map->rank];
    for (k = 0; k < V->map->nlocal; k++)
	phgMatAddGlobalEntry(S, k + n0, k + n0, s / V->data[k]);
    phgVecDestroy(&V);
    phgMatAssemble(S);
    phgMatSetupDiagonal(S);
    phgMatAssemble(matA);
    phgMatAssemble(matM);
    phgMatAssemble(matC);
}
Esempio n. 6
0
/* build linear system */
static void
build_mat_vec(DOF *u_w, DOF *dp, DOF *p_nk, DOF *ds, DOF *s_w, DOF *s_w_l, DOF *b_o, DOF *b_o_l, DOF *kro, DOF *dot_kro, DOF *q_o, DOF *b_w, DOF *b_w_l, DOF *krw, DOF *dot_krw, DOF *q_w, DOF *phi, DOF *phi_l, MAP *map_u, MAP *map_p, MAT *A, MAT *B, MAT *TB, MAT *C, VEC *vec_f, VEC *vec_g)
{
    GRID *g = u_w->g;
    SIMPLEX *e;
    FLOAT *p_bo, *p_bw, *p_bol, *p_bwl, *p_kro, *p_dotkro, *p_krw, *p_dotkrw, *p_swl, *p_dp, *p_ds, *p_sw, *p_phi;
    INT N = u_w->type->nbas * u_w->dim;
    INT M = dp->type->nbas * dp->dim;
    INT I[N], J[M];
    FLOAT mat_A[N][N], mat_TB[N][M], mat_B[M][N], mat_C[M][M], rhs_f[N], rhs_g[M];
    phgVecDisassemble(vec_f);
    phgVecDisassemble(vec_g);
    int i, j, k;
    ForAllElements(g, e) {
        p_phi = DofElementData(phi, e->index);
        p_bo = DofElementData(b_o, e->index);
        p_bol = DofElementData(b_o_l, e->index);
        p_bw = DofElementData(b_w, e->index);
        p_bwl = DofElementData(b_w_l, e->index);
        p_sw = DofElementData(s_w, e->index);
        p_swl = DofElementData(s_w_l, e->index);
        p_kro  = DofElementData(kro, e->index);
        p_dotkro  = DofElementData(dot_kro, e->index);
        p_krw  = DofElementData(krw, e->index);
        p_dotkrw  = DofElementData(dot_krw, e->index);
        p_dp = DofElementData(dp, e->index);
        p_ds = DofElementData(ds, e->index);
        FLOAT T_o = 0, T_w = 0;
        T_w = K * p_krw[0] * p_bw[0] / MU_W + K * p_krw[0] * C_W / (MU_W * B0_W)  * p_dp[0] + K * p_bw[0] * p_dotkrw[0] / MU_W * p_ds[0];
        T_o = K * p_kro[0] * p_bo[0] / MU_O + K * p_kro[0] * C_O / (MU_O * B0_O)  * p_dp[0] + K * p_bo[0] * p_dotkro[0] / MU_O * p_ds[0];
        for (i = 0; i < N; i++) {
            for (j = 0; j < N; j++) {
                mat_A[i][j] = stime * phgQuadBasDotBas(e, u_w, i, u_w, j, QUAD_DEFAULT) / T_w;
            }
        }
        for (i = 0; i < N; i++) {
            for (j = 0; j < M; j++) {
                mat_TB[i][j] = -stime * phgQuadDivBasDotBas(e, u_w, i, dp, j, QUAD_DEFAULT);
            }
        }
        FLOAT wat_sw = 0, oil_sw = 0, wat_cp = 0, oil_cp = 0, beta = 0;
        for (i = 0; i < M; i++) {
            for (j = 0; j < M; j++) {
                wat_sw = p_phi[0] * p_bw[0] * phgQuadBasDotBas(e, ds, i, ds, j, QUAD_DEFAULT);
                oil_sw = p_phi[0] * p_bo[0] * phgQuadBasDotBas(e, ds, i, ds, j, QUAD_DEFAULT);
            }
        }
        wat_cp = p_sw[0] * (p_bw[0] * PHI0 * C_R + p_phi[0] * C_W / B0_W);
        oil_cp = (1. - p_sw[0]) * (p_bo[0] * PHI0 * C_R + p_phi[0] * C_O / B0_O);
        beta = 1. / wat_sw + T_o / (T_w * oil_sw);
        FLOAT quad = 0.;
        for (i = 0; i < M; i++) {
            for (j = 0; j < M; j++) {
                quad =  phgQuadBasDotBas(e, dp, i, dp, j, QUAD_DEFAULT);
                mat_C[i][j] = (wat_cp / wat_sw + oil_cp / oil_sw) * quad / beta;
            }
        }
        /*create oil rhs*/
        FLOAT quad_phi = 0., quad_phil = 0., quad_qo = 0, quad_qw = 0;
        FLOAT rhs_oil = 0., rhs_wat = 0.;
        for (i = 0; i < M; i++) {
            phgQuadDofTimesBas(e, q_o, dp, i, QUAD_DEFAULT, &quad_qo);
            phgQuadDofTimesBas(e, q_w, dp, i, QUAD_DEFAULT, &quad_qw);
            phgQuadDofTimesBas(e, phi, dp, i, QUAD_DEFAULT, &quad_phi);
            phgQuadDofTimesBas(e, phi_l, dp, i, QUAD_DEFAULT, &quad_phil);
            rhs_oil = -stime * quad_qo + p_bo[0] * (1. - p_sw[0]) * quad_phi - p_bol[0] * (1. - p_swl[0]) * quad_phil;
            rhs_wat = -stime * quad_qw + p_bw[0] * p_sw[0] * quad_phi - p_bwl[0] * p_swl[0] * quad_phil;
            rhs_g[i] = (rhs_wat / wat_sw + rhs_oil / oil_sw) / beta;
        }
        for (i = 0; i < N; i++) {
            rhs_f[i] = stime * phgQuadDofTimesDivBas(e, p_nk, u_w, i, QUAD_DEFAULT);
        }
        /* Handle Bdry Conditions*/
        for (i = 0; i < N; i++) {
            if (phgDofGetElementBoundaryType(u_w, e, i) & (NEUMANN | DIRICHLET)) {
                bzero(mat_A[i], N * sizeof(mat_A[i][0]));
                bzero(mat_TB[i], M * sizeof(mat_TB[i][0]));
                for (j = 0; j < N; j++) {
                    mat_A[j][i] = 0.;
                }
                mat_A[i][i] = 1.;
                rhs_f[i] = 0.;
            }
        }

        for (i = 0; i < N; i++) {
            for (j = 0; j < M; j++) {
                mat_B[j][i] = mat_TB[i][j];
            }
        }
        for (i = 0; i < N; i++) {
            I[i] = phgMapE2L(map_u, 0, e, i);
        }
        for (i = 0; i < M; i++) {
            J[i] = phgMapE2L(map_p, 0, e, i);
        }
        phgMatAddEntries(A, N, I, N, I, mat_A[0]);
        phgMatAddEntries(TB, N, I, M, J, mat_TB[0]);
        phgMatAddEntries(B, M, J, N, I, mat_B[0]);
        phgMatAddEntries(C, M, J, M, J, mat_C[0]);
        phgVecAddEntries(vec_f, 0, N, I, rhs_f);
        phgVecAddEntries(vec_g, 0, M, J, rhs_g);
    }
Esempio n. 7
0
static void
/*build_linear_system*/
build_mat_vec(DOF *dp, DOF *d_so, DOF *d_sw, DOF *dot_muo, DOF *dot_muw, DOF *dot_mug, DOF *dso_kro, DOF *dsw_kro, DOF *dsw_krw, DOF *dso_krg, DOF *dsw_krg, DOF *u_o, DOF *p_h, DOF *p_h_newton, DOF *s_o, DOF *s_o_l, DOF *mu_o, DOF *b_o, DOF *b_o_l, DOF *kro, DOF *dot_bo, DOF *q_o, DOF *s_w, DOF *s_w_l, DOF *mu_w, DOF *b_w, DOF *b_w_l, DOF *krw, DOF *dot_bw, DOF *q_w, DOF *phi, DOF *phi_l, DOF *dot_phi, DOF *Rs, DOF *Rs_l, DOF *dot_Rs, DOF *mu_g, DOF *b_g, DOF *b_g_l, DOF *krg, DOF *dot_bg, DOF *q_g, MAP *map_u, MAP *map_p, MAT *A, MAT *B, MAT *TB, MAT *C, VEC *vec_f, VEC *vec_g)
{
	GRID *g = u_o->g;
	SIMPLEX *e;
	FLOAT *p_so, *p_sol, *p_bo, *p_bol, *p_kro, *p_phi, *p_phil, *p_dotbo, *p_Rs, *p_dotRs, *p_bg, *p_bgl, *p_krg, *p_dotbg, *p_muo, *p_mug, *p_dotphi, *p_Rsl, *p_sw, *p_swl, *p_bw, *p_bwl, *p_krw, *p_dotbw, *p_muw;
	FLOAT *p_dotmuo, *p_dotmuw, *p_dotmug, *p_dsokro, *p_dswkro, *p_dswkrw, *p_dsokrg, *p_dswkrg, *p_dp, *p_dso, *p_dsw;
	INT N = u_o->type->nbas * u_o->dim;
	INT M = dp->type->nbas * dp->dim;
	INT I[N], J[M];
	FLOAT mat_A[N][N], mat_TB[N][M], mat_B[M][N], mat_C[M][M], rhs_f[N], rhs_g[M];
	phgVecDisassemble(vec_f);
	phgVecDisassemble(vec_g);
	int i, j, k;
	ForAllElements(g, e){
		p_so = DofElementData(s_o, e->index);
		p_sol = DofElementData(s_o_l, e->index);
		p_bo = DofElementData(b_o, e->index);
		p_bol = DofElementData(b_o_l, e->index);
		p_kro = DofElementData(kro, e->index);
		p_phi = DofElementData(phi, e->index);
		p_phil = DofElementData(phi_l, e->index);
		p_dotphi = DofElementData(dot_phi, e->index);
		p_dotbo = DofElementData(dot_bo, e->index);
		p_Rs = DofElementData(Rs, e->index);
		p_Rsl = DofElementData(Rs_l, e->index);
		p_dotRs = DofElementData(dot_Rs, e->index);
		p_bg = DofElementData(b_g, e->index);
		p_bgl = DofElementData(b_g_l, e->index);
		p_krg= DofElementData(krg, e->index);
		p_dotbg = DofElementData(dot_bg, e->index);
		p_muo = DofElementData(mu_o, e->index);
		p_muw = DofElementData(mu_w, e->index);
		p_mug = DofElementData(mu_g, e->index);
		p_sw = DofElementData(s_w, e->index);
		p_swl = DofElementData(s_w_l, e->index);
		p_bw = DofElementData(b_w, e->index);
		p_bwl = DofElementData(b_w_l, e->index);
		p_krw = DofElementData(krw, e->index);
		p_dotbw = DofElementData(dot_bw, e->index);
		/* Add Dofs For SS */
		p_dp = DofElementData(dp, e->index);
		p_dso = DofElementData(d_so, e->index);
		p_dsw = DofElementData(d_sw, e->index);
		p_dotmuo = DofElementData(dot_muo, e->index);
		p_dotmuw = DofElementData(dot_muw, e->index);
		p_dotmug = DofElementData(dot_mug, e->index);
		p_dsokro = DofElementData(dso_kro, e->index);
		p_dswkro = DofElementData(dsw_kro, e->index);
		p_dswkrw = DofElementData(dsw_krw, e->index);
		p_dsokrg = DofElementData(dso_krg, e->index);
		p_dswkrg = DofElementData(dsw_krg, e->index);
		/*Create inverse matrix*/
		FLOAT oil_so = 0., wat_sw = 0., gas_so = 0., gas_sw = 0.;
		for (i = 0; i < M; i++){
			for (j = 0; j < M; j++){
				oil_so = p_phi[0] * p_bo[0] * phgQuadBasDotBas(e, d_so, i, d_so, j, QUAD_DEFAULT);
				wat_sw = p_phi[0] * p_bw[0] * phgQuadBasDotBas(e, d_sw, i, d_sw, j, QUAD_DEFAULT);
				gas_so = p_phi[0] * (p_bg[0] - p_Rs[0] * p_bo[0]) * phgQuadBasDotBas(e, d_so, i, d_so, j, QUAD_DEFAULT);
				gas_sw = p_phi[0] * p_bg[0] * phgQuadBasDotBas(e, d_sw, i, d_sw, j, QUAD_DEFAULT);
			}
		}
#if SS
		FLOAT alpha_o = 0., alpha_w = 0., alpha_g = 0.;
		alpha_o = K * p_kro[0] * p_bo[0] * p_muo[0] + K * p_kro[0] * (p_bo[0] * p_dotmuo[0] + p_dotbo[0] * p_muo[0]) * p_dp[0] \ 
				+ K * p_bo[0] * p_muo[0] * (p_dsokro[0] * p_dso[0] + p_dswkro[0] * p_dsw[0]);
		alpha_w = K * p_krw[0] * p_bw[0] * p_muw[0] + K * p_krw[0] * (p_bw[0] * p_dotmuw[0] + p_dotbw[0] * p_muw[0]) * p_dp[0] \ 
				+ K * p_bw[0] * p_muw[0] * p_dswkrw[0] * p_dsw[0];
		alpha_g = K * p_krg[0] * p_bg[0] * p_mug[0] + K * p_krg[0] * (p_bg[0] * p_dotmug[0] + p_dotbg[0] * p_mug[0]) * p_dp[0] \ 
				+ K * p_bg[0] * p_mug[0] * (p_dsokrg[0] * p_dso[0] + p_dswkrg[0] * p_dsw[0]);
		for (i = 0; i < N; i++){
			for (j = 0; j < N; j++){
				mat_A[i][j] = stime * phgQuadBasDotBas(e, u_o, i, u_o, j, QUAD_DEFAULT) / alpha_o;
			}
		}
		FLOAT beta = 0;
		beta = gas_so / oil_so + gas_sw * alpha_w / (wat_sw * alpha_o) + (p_Rs[0] + alpha_g / alpha_o);
#endif
#if IMPES
		FLOAT T_o = 0, T_w = 0, T_g = 0;
		T_o = K * p_kro[0] * p_bo[0] * p_muo[0];
		T_w = K * p_krw[0] * p_bw[0] * p_muw[0];
		T_g = K * p_krg[0] * p_bg[0] * p_mug[0];
		for (i = 0; i < N; i++){
			for (j = 0; j < N; j++){
				mat_A[i][j] = stime * phgQuadBasDotBas(e, u_o, i, u_o, j, QUAD_DEFAULT) / T_o;
			}
		}
		FLOAT beta = 0;
		beta = gas_so / oil_so + gas_sw * T_w / (wat_sw * T_o) + (p_Rs[0] + T_g / T_o);
#endif
		for (i = 0; i < N; i++){
			for (j = 0; j < M; j++){
				mat_TB[i][j] = -stime * phgQuadDivBasDotBas(e, u_o, i, dp, j, QUAD_DEFAULT);
			}
		}
		FLOAT quad = 0., oil_cp = 0., wat_cp = 0., gas_cp = 0.;
		oil_cp = p_so[0] * (p_bo[0] * p_dotphi[0] + p_phi[0] * p_dotbo[0]);
		wat_cp = p_sw[0] * (p_bw[0] * p_dotphi[0] + p_phi[0] * p_dotbw[0]);
		gas_cp = p_so[0] * p_phi[0] * p_bo[0] * p_dotRs[0] + p_Rs[0] * oil_cp + (1. - p_so[0] - p_sw[0]) * (p_phi[0] * p_dotbg[0] + p_bg[0] * p_dotphi[0]);
		for (i = 0; i < M; i++){
			for (j = 0; j < M; j++){
				quad = phgQuadBasDotBas(e, dp, i, dp, j, QUAD_DEFAULT);
				mat_C[i][j] = (gas_so * oil_cp / oil_so + gas_sw * wat_cp / wat_sw + gas_cp) * quad / beta;
			}
		}
		/*Create rhs*/
		FLOAT quad_qo = 0;
		FLOAT quad_qw = 0.;
		FLOAT quad_qg = 0.;
		FLOAT quad_phi = 0, quad_phil = 0;
		FLOAT rhs_oil = 0, rhs_wat = 0., rhs_gas = 0;
		for (i = 0; i < M; i++){
			phgQuadDofTimesBas(e, q_o, dp, i, QUAD_DEFAULT, &quad_qo);
			phgQuadDofTimesBas(e, q_w, dp, i, QUAD_DEFAULT, &quad_qw);
			phgQuadDofTimesBas(e, q_g, dp, i, QUAD_DEFAULT, &quad_qg);
			phgQuadDofTimesBas(e, phi, dp, i, QUAD_DEFAULT, &quad_phi);
			phgQuadDofTimesBas(e, phi_l, dp, i, QUAD_DEFAULT, &quad_phil);
			rhs_oil = -stime * quad_qo  + p_so[0] * p_bo[0] * quad_phi - p_sol[0] * p_bol[0] * quad_phil;
			rhs_wat = -stime * quad_qw  + p_sw[0] * p_bw[0] * quad_phi - p_swl[0] * p_bwl[0] * quad_phil;
			rhs_gas = -stime * quad_qg  + (p_bg[0] * (1. - p_so[0] - p_sw[0]) + p_Rs[0] * p_so[0] * p_bo[0]) * quad_phi \
					  - (p_Rsl[0] * p_bol[0] * p_sol[0] + p_bgl[0] * (1. - p_sol[0] - p_swl[0])) * quad_phil;
			rhs_g[i] = (gas_so * rhs_oil / oil_so + gas_sw * rhs_wat / wat_sw + rhs_gas) / beta;
		}
		for (i = 0; i < N; i++){
			rhs_f[i] = stime * phgQuadDofTimesDivBas(e, p_h, u_o, i, QUAD_DEFAULT);
		}
		/* Handle Bdry Conditions */
		for (i = 0; i < N; i++){
			if (phgDofGetElementBoundaryType(u_o, e, i) & (NEUMANN | DIRICHLET)){
				bzero(mat_A[i], N *sizeof(mat_A[i][0]));
				bzero(mat_TB[i], M *sizeof(mat_TB[i][0]));
				for (j = 0; j < N; j++){
					mat_A[j][i] = 0.0;
				}
				mat_A[i][i] = 1.0;
				rhs_f[i] = 0.;
			}
		}
		for (i = 0; i < N; i++){
			for (j = 0; j < M; j++){
				mat_B[j][i] = mat_TB[i][j];
			}
		}
		for (i = 0; i < N; i++){
			I[i] = phgMapE2L(map_u, 0, e, i);
		}
		for (i = 0; i < M; i++){
			J[i] = phgMapE2L(map_p, 0, e, i);
		}
		phgMatAddEntries(A, N, I, N, I, mat_A[0]);
		phgMatAddEntries(TB, N, I, M, J, mat_TB[0]);
		phgMatAddEntries(B, M, J, N, I, mat_B[0]);
		phgMatAddEntries(C, M, J, M, J, mat_C[0]);
		phgVecAddEntries(vec_f, 0, N, I, rhs_f);
		phgVecAddEntries(vec_g, 0, M, J, rhs_g);
	}
Esempio n. 8
0
void
phgNSBuildPc(NSSolver *ns)
{
    GRID *g = ns->g;
    SIMPLEX *e;
    FLOAT *dt = ns->dt;
    int i, j, q, s, k, l;
    FLOAT Theta = _nsp->Theta, nu = _nsp->nu, Thet1, nu0 = 0;
    DOF *tmp_u1 = phgDofNew(g, _nsp->utype, Dim, "tmp u1", func_u);
    int viscosity_type = ns->viscosity_type;
    LTYPE ltype = ns->ltype;


#if STEADY_STATE
    assert(fabs(Theta - 1) < 1e-12);
    Thet1 = 0; Unused(Thet1);
    Unused(dt);
#else
    Thet1 = 1 - Theta;
#endif /* STEADY_STATE */


    ForAllElements(g, e) {
	int M = ns->u[1]->type->nbas;	/* num of bases of Velocity */
	int N = ns->p[1]->type->nbas;	/* num of bases of Pressure */
	int order = 2 * DofTypeOrder(ns->p[1], e) + 
	    DofTypeOrder(ns->u[1], e) - 1; 	/* highest order term (u \nabla p, psi)  */
	FLOAT Ap[N][N], Fp[N][N], Qp[N][N], bufp[N], rhs1 = 1;
	FLOAT F[M*Dim][M*Dim], B[N][M*Dim], Bt[M*Dim][N];
	INT Ip[N];
	QUAD *quad;
	FLOAT vol, det;
	const FLOAT *w, *p, *vw, *gu, *vTe;

	quad = phgQuadGetQuad3D(order);
	vw = phgQuadGetDofValues(e, ns->wind, quad);  /* value wind */
	gu = phgQuadGetDofValues(e, ns->gradu[1], quad);        /* grad u^{n+1} */
	if (ns_params->noniter_temp)
	    vTe = phgQuadGetDofValues(e, ns->T[1], quad);  /* value temp */
	else
	    vTe = phgQuadGetDofValues(e, ns->T[0], quad);  /* value temp */
	
	vol = 0;
	Bzero(Ap); Bzero(Fp); Bzero(Qp); 
	Bzero(F); Bzero(Bt); Bzero(B);
	Bzero(bufp); 

	p = quad->points;
	w = quad->weights;
	for (q = 0; q < quad->npoints; q++) {
	    phgGeomGetCurvedJacobianAtLambda(g, e, p, &det);
	    vol = fabs(det / 6.);

	    for (i = 0; i < N; i++) {
		const FLOAT *gi = phgQuadGetBasisValues(e, ns->p[1], i, quad) + q;       /* phi_i */
		const FLOAT *ggi = phgQuadGetBasisCurvedGradient(e, ns->p[1], i, quad, q);    /* grad phi_i */
		for (j = 0; j < N; j++) {
		    const FLOAT *gj = phgQuadGetBasisValues(e, ns->p[1], j, quad) + q;       /* phi_j */
		    const FLOAT *ggj = phgQuadGetBasisCurvedGradient(e, ns->p[1], j, quad, q);    /* grad phi_i */
		    
		    nu = get_effective_viscosity(gu, *vTe, 0, viscosity_type);
		    if (i == 0 && j == 0)
			nu0 += nu;
#if ICE_BENCH_TEST ||				\
    ESIMINT_TEST ||				\
    HEINO_TEST ||				\
    TEST_CASE == ICE_EXACT	||		\
    TEST_CASE == ICE_GREEN_LAND
		    Unused(dt);
		    /* Note: B Q^-1 Bt ~ Ap(nu=1),
		     *       Fp(nu varies) is very different to Ap */
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
#  if USE_QP_ONLY

		    //Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING /(nu) * (*gj) * (*gi);
		    Qp[i][j] += vol*(*w) * 1. /(EQU_SCALING * nu) * (*gj) * (*gi);
		    /* if (i < NVert && j < NVert) { */
		    /* 	Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */
		    /* } else if (i == NVert && j == NVert) { */
		    /* 	Qp[i][j] += vol*(*w) * LEN_SCALING * PRES_SCALING / (nu) * (*gj) * (*gi); */
		    /* } */

#  else
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
#  endif
		    Fp[i][j] += vol*(*w) * (EQU_SCALING * nu * INNER_PRODUCT(ggj, ggi)
					    );
#elif STEADY_STATE 
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
		    Fp[i][j] += vol*(*w) * (nu * INNER_PRODUCT(ggj, ggi) * EQU_SCALING
					    );
#elif TIME_DEP_NON
		    Ap[i][j] += vol*(*w) * INNER_PRODUCT(ggj, ggi);
		    Qp[i][j] += vol*(*w) * (*gj) * (*gi);
		    Fp[i][j] += vol*(*w) * ((*gj) * (*gi) / dt[0]
					    + Theta * (nu * INNER_PRODUCT(ggj, ggi)
						       )
					    );
#else
		    TIME_DEP_LINEAR_ENTRY; /* Unavailable */
#endif /* STEADY_STATE */
		}
	    }

	    vw += Dim; 
	    gu += DDim;
	    vTe++;
	    w++; p += Dim+1;
	}


	/* Map: Element -> system */
	for (i = 0; i < N; i++) 
	    Ip[i] = phgMapE2L(_pcd->matFp->cmap, 0, e, i);

	/*
	 * PCD boundary setup I:
	 * Automaticly decide inflow boundary condition using wind direction.
	 *
	 * NOT active.
	 * */
	if (FALSE && !_nsp->pin_node) {
	    for (i = 0; i < N; i++) {
		BOOLEAN flag_inflow = FALSE;
		for (s = 0; s < NFace; s++) {
		    SHORT bases[NbasFace(ns->p[1])];
		    FLOAT *coord, vw_[3]; 
		    const FLOAT *lam, *normal;

		    if (!(e->bound_type[s] & BDRY_MASK))
			//if (!(e->bound_type[s] & INFLOW))
			continue;	/* boundary face */

		    phgDofGetBasesOnFace(ns->p[1], e, s, bases);
		    for (j = 0; j < NbasFace(ns->p[1]); j++) 
			if (i == bases[j]) {
			    normal = phgGeomGetFaceOutNormal(g, e, s);
			    coord = phgDofGetElementCoordinates(ns->p[1], e, i);
			    lam = phgGeomXYZ2Lambda(g, e, coord[0], coord[1], coord[2]);
			    phgDofEval(tmp_u1, e, lam, vw_);
			    if (INNER_PRODUCT(vw_, normal) > 1e-8) 
				flag_inflow = TRUE;
			}
		}
		
		if (flag_inflow) {
		    Bzero(bufp); bufp[i] = 1.0;
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		}
		else {
		    /* interior node Or Neumann */
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}
		phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
	    }
	} 
	/*
	 * PCD boundary setup II:
	 * Enclose flow: use pinnode boundary.
	 *
	 * Qp is pinned, this is different to open flow.
	 * 
	 * */
	else if (_nsp->pin_node) {

	    for (i = 0; i < N; i++) {
		if (phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
#if PIN_AT_ROOT 
		    if (g->rank != 0)
		    	phgError(1, "Pinned node only on rank 0!\n");
		    if (e->verts[i] != ns->pinned_node_id)
			phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n",
				 e->verts[i], ns->pinned_node_id);
#else
		    if (GlobalVertex(g, e->verts[i]) != ns->pinned_node_id)
			phgError(1, "pinned node [%d] & [%d] doesn't coincide when build pc!\n",
				 e->verts[i], ns->pinned_node_id);
#endif /* PIN_AT_ROOT */

		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		} else {
		    /* interior node Or Neumann */
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}
	    }
	}
	/*
	 * PCD boundary setup III:
	 * Open flow: there could be varies kinds of combination on seting up
	 *   boundary conditon, but Inflow:Robin & Outflow:scaled Dirich is
	 *   prefered. See Ref[2].
	 * 
	 * */
	else {
	    for (i = 0; i < N; i++) {

		/*****************/
                /* Inflow	 */
                /*****************/
#warning PCD B.C.: Step 2.1. build mat, all neumann, add dirich entries
		if (FALSE && phgDofDirichletBC(_pcd->dof_inflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		} else if (FALSE && phgDofDirichletBC(_pcd->dof_outflow, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)
			   && !(phgDofGetElementBoundaryType(ns->p[1], e, i) & INFLOW) ) {

		    ERROR_MSG("Fp, Qp");
		    nu = get_effective_viscosity(NULL, 0, 0, viscosity_type);
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    bufp[i] *= EQU_SCALING * nu;
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);

		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		} else if (FALSE && phgDofDirichletBC(_pcd->pbc, e, i, NULL, bufp, NULL, DOF_PROJ_NONE)) {
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, bufp);
		    phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, bufp);
		    phgVecAddEntries(_pcd->rhsScale, 0, 1, Ip + i, &rhs1);
		}
		else if (FALSE) {
		    /* interior node Or Neumann */

		    ERROR_MSG("Fp, Qp");
		    phgMatAddEntries(_pcd->matAp, 1, Ip + i, N, Ip, Ap[i]);
		    phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		    //phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
		}

		/******************/
                /* No bdry	  */
                /******************/
		//phgMatAddEntries(_pcd->matFp, 1, Ip + i, N, Ip, Fp[i]);
		phgMatAddEntries(_pcd->matQp, 1, Ip + i, N, Ip, Qp[i]);
	    }
	}


	if (0) {
	    /* Special term <[[p_i]], [[p_j]]> */
	    int face;
	    nu0 /= quad->npoints;
	    for (face = 0; face < NFace; face++) {
		FLOAT area =  phgGeomGetFaceArea(g, e, face);
		//FLOAT value = {area, -area};
		FLOAT values[2] = {vol * 1. /(EQU_SCALING * nu0),
				   -vol * 1. /(EQU_SCALING * nu0)};
		SIMPLEX *e_neigh;

		phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, Ip+NVert, values);
		if ((e_neigh = GetNeighbour(e, face)) != NULL) {
		    INT Ip_neigh = phgMapE2L(_pcd->matFp->cmap, 0, e_neigh, NVert);
		    phgMatAddEntries(_pcd->matQp, 1, Ip+NVert, 1, &Ip_neigh, values + 1);
		}
	    }
	}

    }	/* end element */