Esempio n. 1
0
static void
do_test(MAP *rmap, MAP *cmap)
{
    MAT *A;
    VEC *x, *y;
    INT i, j, m0, n0;
    INT *cols = phgAlloc(cmap->nglobal * sizeof(*cols));
    FLOAT *data = phgAlloc(cmap->nglobal * sizeof(*data));

    A = phgMapCreateMat(rmap, cmap);
    m0 = A->rmap->partition[A->rmap->rank];
    n0 = A->cmap->partition[A->cmap->rank];

    /* Matrix entries: A(I,J) = 1 + (I-1) + (J-1) */
    for (i = m0; i < m0 + A->rmap->nlocal; i++) {
#if 0
	/* Test MatAddEntry */
	for (j = 0; j < A->cmap->nglobal; j++)
	    phgMatAddGlobalEntry(A, i, j, 1.0 + i + j);
#else
	/* Test MatAddEntries */
	for (j = 0; j < A->cmap->nglobal; j++) {
	    cols[j] = j;
	    data[j] = 1.0 + i + j;
	}
	phgMatAddGlobalEntries(A, 1, &i, A->cmap->nglobal, cols, data);
#endif
    }
    phgFree(cols);
    phgFree(data);
    phgMatAssemble(A);

    phgInfo(-1, "y = A * x\n");
    x = phgMapCreateVec(A->cmap, 1);
    for (i = 0; i < x->map->nlocal; i++)
	x->data[i] = 1.0 + i + n0;
    phgVecAssemble(x);
    y = phgMatVec(MAT_OP_N, 1.0, A, x, 0.0, NULL);
    for (i = 0; i < y->map->nlocal; i++)
	phgInfo(-1, "    y->data[%d] = %lg\n", i + m0, (double)y->data[i]);
    phgVecDestroy(&x);
    phgVecDestroy(&y);

    phgInfo(-1, "y = A' * x\n");
    x = phgMapCreateVec(A->rmap, 1);
    for (i = 0; i < x->map->nlocal; i++)
	x->data[i] = 1.0 + i + m0;
    phgVecAssemble(x);
    y = phgMatVec(MAT_OP_T, 1.0, A, x, 0.0, NULL);
    for (i = 0; i < y->map->nlocal; i++)
	phgInfo(-1, "    y->data[%d] = %lg\n", i + n0, (double)y->data[i]);
    phgVecDestroy(&x);
    phgVecDestroy(&y);

    phgMatDestroy(&A);
}
Esempio n. 2
0
/*
 * Jacobi smoother2:
 *   Implement using details of matvec
 *   ref: matvec in matvec.c
 * 
 *  */
void 
mg_Jacobi2(MAT *A, VEC *x, VEC *b, int nsmooth, void *ctx)
{
    INT i, j, k, n, *pc, *pc_offp;
    FLOAT *pd, *pd_offp, *vx, *vx0, *vb;
    FLOAT sum, omega = _p->smooth_damp;;
    VEC *x0;
#if USE_MPI
    FLOAT *offp_data = NULL;
#endif	/* USE_MPI */

    MagicCheck(VEC, x);
    MagicCheck(VEC, b);
    assert(x == NULL || x->nvec == 1);
    assert(b == NULL || b->nvec == 1);
    if (x != NULL && !x->assembled)
	phgVecAssemble(x);
    if (b != NULL && !b->assembled)
	phgVecAssemble(b);
    x0 = phgMapCreateVec(x->map, 1);
    
    assert(A->type != PHG_DESTROYED);
    if (!A->assembled)
	phgMatAssemble(A);
    assert(A->type != PHG_MATRIX_FREE);
    phgMatPack(A);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	offp_data = phgAlloc(A->cinfo->rsize * sizeof(*offp_data));
    }
#endif	/* USE_MPI */

    if (A->cmap->nlocal != A->rmap->nlocal ||
	A->cmap->nlocal != x->map->nlocal  ||
	A->cmap->nlocal != b->map->nlocal)
	phgError(1, "%s:%d: inconsistent matrix-vector.", __FILE__,
		 __LINE__);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
    }
#endif	/* USE_MPI */

    /* iteration */
    for (k = 0; k < nsmooth; k++) {
	phgVecCopy(x, &x0);

	/* multiply with local data */
	vx = x->data;
	vx0 = x0->data;
	vb = b->data;
	pc = A->packed_cols;
	pd = A->packed_data;
	if (A->cmap->nprocs > 1) {
	    pc_offp = A->packed_cols + A->rmap->nlocal + A->nnz_d;
	    pd_offp = A->packed_data + A->nnz_d;
	} else {
	    pc_offp = NULL;
	    pd_offp = NULL;
	}

	for (i = 0; i < A->rmap->nlocal;  i++) {
	    INT jcol;
	    FLOAT aa = 0., dx;
	    /* x_i = (b_i - \sum_{j ~= i} a_ij * x_j) / a_ii */

	    sum = vb[i];
	    /* local data */
	    if ((n = *(pc++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc++);
		    if (jcol != i) {
			sum -= *(pd++) * vx0[jcol];
		    } else {
			aa = *(pd++);
			assert(fabs(aa) > 1e-14);
		    }
		}
	    }
	    
	    /* remote data */
	    if (pc_offp != NULL && (n = *(pc_offp++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc_offp++);
		    sum -= *(pd_offp++) * offp_data[jcol];
		}
	    }
	    
	    dx = sum / aa - vx[i];
	    vx[i] += omega * dx;
	}

#if USE_MPI
	if (A->cmap->nprocs > 1) {
	    phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	    phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
	}
#endif	/* USE_MPI */
    }


    phgVecDestroy(&x0);
#if USE_MPI
    phgFree(offp_data);
#endif	/* USE_MPI */

    return;
}
Esempio n. 3
0
/*
 * Gauss-Sidel smoother for vector:
 *
 * As GS: 
 *   1. exchange off proc data
 *   2. smooth local dof
 *
 * Assumption:
 *   1. unknow dof is vector of dim 3
 *   2. Matrix block for vector is 
 *      | a1  -b   0 |
 *      |  b  a2   0 |
 *      |  0   0  a3 |
 * 
 *  */
void 
mg_GaussSidel_vec(MAT *A, VEC *x, VEC *b, int nsmooth, void *ctx)
{
    INT i, j, k, l, n, *pc, *pc0, *pc_offp, nlocal;
    FLOAT *pd, *pd0, *pd_offp, *vx, *vb;
    size_t *ps; 
    FLOAT sum[Dim], omega = _p->smooth_damp;
#if USE_MPI
    FLOAT *offp_data = NULL;
#endif	/* USE_MPI */

    MagicCheck(VEC, x);
    MagicCheck(VEC, b);
    assert(x == NULL || x->nvec == 1);
    assert(b == NULL || b->nvec == 1);
    if (x != NULL && !x->assembled)
	phgVecAssemble(x);
    if (b != NULL && !b->assembled)
	phgVecAssemble(b);
    
    assert(A->type != PHG_DESTROYED);
    if (!A->assembled)
	phgMatAssemble(A);
    assert(A->type != PHG_MATRIX_FREE);
    phgMatPack(A);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	offp_data = phgAlloc(A->cinfo->rsize * sizeof(*offp_data));
    }
#endif	/* USE_MPI */

    if (A->cmap->nlocal != A->rmap->nlocal ||
	A->cmap->nlocal != x->map->nlocal  ||
	A->cmap->nlocal != b->map->nlocal)
	phgError(1, "%s:%d: inconsistent matrix-vector.", __FILE__,
		 __LINE__);

    if (A->cmap->nlocal % Dim != 0)
	phgError(1, "%s: assume vector dof of dim 3!\n", __FUNCTION__);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
    }
#endif	/* USE_MPI */

    /* iteration */
    for (l = 0; l < nsmooth; l++) {
	INT i_start, i_add;

	/* multiply with local data */
	vx = x->data;
	vb = b->data;
	pc0 = A->packed_cols;
	pd0 = A->packed_data;
	ps = A->packed_ind;
	nlocal = A->rmap->nlocal;

	/*
	 * lexicographic order: low to high
	 * Note: low->high and high->low alternatively does not help.
	 * */
	if (TRUE || l % 2 == 0) {
	    i_start = 0;
	    i_add = Dim;
	} else {
	    i_start = nlocal - Dim;
	    i_add = -Dim;
	}

	//for (i = i_start; i < A->rmap->nlocal && i >= 0;  i += i_add) {
	for (i = 0; i < nlocal ;  i += Dim) {
	    INT jcol;
	    FLOAT aa[Dim][Dim], det, dx[Dim];

	    memset(aa, 0, sizeof(aa));
	    sum[0] = vb[i  ];
	    sum[1] = vb[i+1];
	    sum[2] = vb[i+2];

	    /* local data */
	    pc = pc0 + PACK_COL(ps, i);
	    pd = pd0 + PACK_DAT(ps, i);
	    for (k = 0; k < Dim; k++) {
		if ((n = *(pc++)) != 0) {
		    for (j = 0; j < n; j++) {
			jcol = *(pc++);
			if (jcol < i || jcol > i+2) {
			    sum[k] -= *(pd++) * vx[jcol];
			} else { /* offD, jcol = i,i+1,i+2 */
			    aa[k][jcol - i] = *(pd++);
			}
		    }
		}
	    }

	    /* remote data */
	    if (A->cmap->nprocs > 1) {
		pc_offp = pc0 + PACK_COL_OFFP(ps, i, nlocal);
		pd_offp = pd0 + PACK_DAT_OFFP(ps, i, nlocal);
		for (k = 0; k < Dim; k++) {
		    if ((n = *(pc_offp++)) != 0) {
			for (j = 0; j < n; j++) {
			    jcol = *(pc_offp++);
			    sum[k] -= *(pd_offp++) * offp_data[jcol];
			}
		    }
		}
	    }

	    /* solve */
	    det = (aa[0][0] * aa[1][1] - aa[0][1] * aa[1][0]);
	    assert(Fabs(det) > 1e-12);
	    det = 1. / det;
	    dx[0] = (aa[1][1] * sum[0] - aa[0][1] * sum[1]) * det - vx[i  ];
	    dx[1] = (aa[0][0] * sum[1] - aa[1][0] * sum[1]) * det - vx[i+1];
	    dx[2] = (1./aa[2][2] * sum[2]) - vx[i+2];
	    vx[i  ] += omega * dx[0];
	    vx[i+1] += omega * dx[1];
	    vx[i+2] += omega * dx[2];
	}

#if USE_MPI
	if (A->cmap->nprocs > 1) {
	    phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	    phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
	}
#endif	/* USE_MPI */
    }


#if USE_MPI
    phgFree(offp_data);
#endif	/* USE_MPI */

    return;
}
Esempio n. 4
0
/*
 * Gauss-Sidel smoother2:
 *
 *   1. interior dof (!REMOTE) is smoothed, and then offp data is updated; 
 *   2. proc boundary dof (REMOTE) is smoothed, and then offp data is updated.
 *
 * Note: need types_vec.
 *  */
void 
mg_GaussSidel2(MAT *A, VEC *x, VEC *b, int nsmooth, void *ctx)
{
    MG_LEVEL *ml = (MG_LEVEL *)ctx;
    INT i, j, k, n, *pc, *pc_offp;
    FLOAT *pd, *pd_offp, *vx, *vb;
    FLOAT sum, omega = _p->smooth_damp;;
#if USE_MPI
    FLOAT *offp_data = NULL;
#endif	/* USE_MPI */

    MagicCheck(VEC, x);
    MagicCheck(VEC, b);
    assert(x == NULL || x->nvec == 1);
    assert(b == NULL || b->nvec == 1);
    if (x != NULL && !x->assembled)
	phgVecAssemble(x);
    if (b != NULL && !b->assembled)
	phgVecAssemble(b);
    
    assert(A->type != PHG_DESTROYED);
    if (!A->assembled)
	phgMatAssemble(A);
    assert(A->type != PHG_MATRIX_FREE);
    phgMatPack(A);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	offp_data = phgAlloc(A->cinfo->rsize * sizeof(*offp_data));
    }
#endif	/* USE_MPI */

    if (A->cmap->nlocal != A->rmap->nlocal ||
	A->cmap->nlocal != x->map->nlocal  ||
	A->cmap->nlocal != b->map->nlocal)
	phgError(1, "%s:%d: inconsistent matrix-vector.", __FILE__,
		 __LINE__);

#if USE_MPI
    if (A->cmap->nprocs > 1) {
	phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
    }
#endif	/* USE_MPI */

    /* iteration */
    for (k = 0; k < nsmooth; k++) {

	/* multiply with local data */
	vx = x->data;
	vb = b->data;

	/* First, interior dof (!REMOTE) is smoothed, and then offp data is updated */
	pc = A->packed_cols;
	pd = A->packed_data;
	if (A->cmap->nprocs > 1) {
	    pc_offp = A->packed_cols + A->rmap->nlocal + A->nnz_d;
	    pd_offp = A->packed_data + A->nnz_d;
	} else {
	    pc_offp = NULL;
	    pd_offp = NULL;
	}
	for (i = 0; i < A->rmap->nlocal;  i++) {
	    INT jcol;
	    FLOAT aa = 0., dx;

	    if (ml->types_vec[i] & REMOTE) {
		if ((n = *(pc++)) != 0) {
		    pc += n; 
		    pd += n;
		}
		if (pc_offp != NULL && (n = *(pc_offp++)) != 0) {
		    pc_offp += n; 
		    pd_offp += n;
		}
		continue;
	    }

	    sum = vb[i];
	    /* local data */
	    if ((n = *(pc++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc++);
		    if (jcol != i) {
			sum -= *(pd++) * vx[jcol];
		    } else {
			aa = *(pd++);
			assert(fabs(aa) > 1e-14);
		    }
		}
	    }
	    
	    /* remote data */
	    if (pc_offp != NULL && (n = *(pc_offp++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc_offp++);
		    sum -= *(pd_offp++) * offp_data[jcol];
		}
	    }
	    
	    dx = sum / aa - vx[i];
	    vx[i] += omega * dx;
	}

#if USE_MPI
	if (A->cmap->nprocs > 1) {
	    phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	    phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
	}
#endif	/* USE_MPI */

	/* Second, proc boundary dof (!REMOTE) is smoothed, and then offp data is updated */
	pc = A->packed_cols;
	pd = A->packed_data;
	if (A->cmap->nprocs > 1) {
	    pc_offp = A->packed_cols + A->rmap->nlocal + A->nnz_d;
	    pd_offp = A->packed_data + A->nnz_d;
	} else {
	    pc_offp = NULL;
	    pd_offp = NULL;
	}
	for (i = 0; i < A->rmap->nlocal;  i++) {
	    INT jcol;
	    FLOAT aa = 0., dx;

	    if (!(ml->types_vec[i] & REMOTE)) {
		if ((n = *(pc++)) != 0) {
		    pc += n; 
		    pd += n;
		}
		if (pc_offp != NULL && (n = *(pc_offp++)) != 0) {
		    pc_offp += n; 
		    pd_offp += n;
		}
		continue;
	    }

	    sum = vb[i];
	    /* local data */
	    if ((n = *(pc++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc++);
		    if (jcol != i) {
			sum -= *(pd++) * vx[jcol];
		    } else {
			aa = *(pd++);
			assert(fabs(aa) > 1e-14);
		    }
		}
	    }
	    
	    /* remote data */
	    if (pc_offp != NULL && (n = *(pc_offp++)) != 0) {
		for (j = 0; j < n; j++) {
		    jcol = *(pc_offp++);
		    sum -= *(pd_offp++) * offp_data[jcol];
		}
	    }
	    
	    dx = sum / aa - vx[i];
	    vx[i] += omega * dx;
	}

#if USE_MPI
	if (A->cmap->nprocs > 1) {
	    phgMapScatterBegin(A->cinfo, x->nvec, x->data, offp_data);
	    phgMapScatterEnd(A->cinfo, x->nvec, x->data, offp_data);
	}
#endif	/* USE_MPI */
    }


#if USE_MPI
    phgFree(offp_data);
#endif	/* USE_MPI */

    return;
}
Esempio n. 5
0
int
main(int argc, char *argv[])
{
    MAT *A, *B;
    VEC *U = NULL, *x;
    FLOAT *C;
    SOLVER *solver, *solver1 = NULL;
    INT i, j, k, n, *pvt, N = 1000, K = 2;
    char *main_opts = NULL, *sub_opts = NULL;

    phgOptionsRegisterInt("-n", "N value", &N);
    phgOptionsRegisterInt("-k", "K value", &K);
    phgOptionsRegisterString("-main_solver_opts", "Options for the main solver",
				&main_opts);
    phgOptionsRegisterString("-sub_solver_opts", "Options for the subsolver",
				&sub_opts);

    /* a direct solver is preferable for the sparse matrix */
    phgOptionsPreset("-solver mumps");
    phgInit(&argc, &argv);

    phgPrintf(
"----------------------------------------------------------------------------\n"
"This code solves (A+UU^t)x=b using the Sherman-Morrison-Woodbury formula.\n"
"Note: may use the following to disable use of the Sherman-Morrison-Woodbury\n"
"algorithm and change to the default solver instead:\n"
"	-preonly_pc_type solver -preonly_pc_opts \"-solver_maxit 2000\"\n"
"----------------------------------------------------------------------------\n"
    );

   phgPrintf("Generating the linear system: N = %"dFMT", K = %"dFMT"\n", N, K);

    /* A is a distributed NxN SPD tridiagonal matrix (A = [-1, 2, -1]) */
    n = N / phgNProcs + (phgRank < (N % phgNProcs) ? 1 : 0);
    A = phgMatCreate(phgComm, n, N);
    phgPrintf("  Generating matrix A.\n");
    for (i = 0; i < n; i++) {
	/* diagonal */
	phgMatAddEntry(A, i, i, 2.0);
	/* diagonal - 1 */
	if (i > 0)
	    phgMatAddEntry(A, i, i - 1, -1.0);
	else if (phgRank > 0)
	    phgMatAddLGEntry(A, i, A->rmap->partition[phgRank] - 1, -1.0);
	/* diagonal + 1 */
	if (i < n - 1)
	    phgMatAddEntry(A, i, i + 1, -1.0);
	else if (phgRank < phgNProcs - 1)
	    phgMatAddLGEntry(A, i, A->rmap->partition[phgRank] + n, -1.0);
    }
    phgMatAssemble(A);

    /* U is a K-component vector */
    U = phgMapCreateVec(A->rmap, K);
    phgVecRandomize(U, 123);

    /* solver1 is the solver for A */
    phgOptionsPush();
    phgOptionsSetOptions(sub_opts);
    solver1 = phgMat2Solver(SOLVER_DEFAULT, A);
    phgOptionsPop();

    /* x is a scratch vector */
    x = phgMapCreateVec(A->rmap, 1);

    /* C is a KxK dense matrix, pvt is an integer array, they store the LU
     * factorization of (I + U^t*inv(A)*U) */
    phgPrintf("  Generating the dense matrix I+U^t*inv(A)*U.\n");
    C = phgCalloc(K * K, sizeof(*C));
    pvt = phgAlloc(K * sizeof(*pvt));
    for (i = 0; i < K; i++) {
	for (j = 0; j < n; j++) {
	    solver1->rhs->data[j] = U->data[i * n + j];
	    x->data[j] = 0.0;
	}
	solver1->rhs->assembled = TRUE;
	phgSolverVecSolve(solver1, FALSE, x);
	for (j = 0; j < K; j++)
	    for (k = 0; k < n; k++)
		C[i * K + j] += U->data[j * n + k] * x->data[k];
    }
#if USE_MPI
    if (U->map->nprocs > 1) {
	FLOAT *tmp = phgAlloc(K * K * sizeof(*tmp));
	MPI_Allreduce(C, tmp, K * K, PHG_MPI_FLOAT, MPI_SUM, U->map->comm);
	phgFree(C);
	C = tmp;
    }
#endif	/* USE_MPI */
    for (i = 0; i < K; i++)
	C[i * K + i] += 1.0;
    phgPrintf("  Factorizing the dense matrix I+U^t*inv(A)*U.\n");
    phgSolverDenseLU(K, C, pvt);

    /* B is a matrix-free matrix representing A + U*U^t, B->mv_data is used
     * to pass A, U, solver1, C and pvt to callback functions */
    B = phgMapCreateMatrixFreeMat(A->rmap, A->cmap, funcB,
				  /* arguments carried over to CB functions */
				  A, U, solver1, C, pvt, NULL);

    /* solver is a PreOnly solver for B whose pc_proc is set to sherman().
     * 
     * Note: can also use pcg, gmres, or petsc for this solver, in this case
     * the solution obtained with the Sherman-Morisson formula is iteratively
     * refined. */
    phgOptionsPush();
    phgOptionsSetOptions("-solver preonly");
    phgOptionsSetOptions(main_opts);
    solver = phgMat2Solver(SOLVER_DEFAULT, B);
    phgSolverSetPC(solver, solver, sherman);
    phgOptionsPop();

    for (i = 0; i < n; i++)
	x->data[i] = 1.0;
    phgMatVec(MAT_OP_N, 1.0, B, x, 0.0, &solver->rhs);

    phgPrintf("Solving the linear system.\n");

    /* reset initial solution to zero */
    memset(x->data, 0, n * sizeof(*x->data));
    phgSolverVecSolve(solver, TRUE, x);
    for (i = 0; i < n; i++)
	solver->rhs->data[i] = 1.0;
    phgVecAXPBY(-1.0, solver->rhs, 1.0, &x);
    phgPrintf("Checking the result: |x - x_exact| / |x_exact| = %lg\n",
			(double)phgVecNorm2(x, 0, NULL) / sqrt((double)N));

    phgSolverDestroy(&solver);
    phgSolverDestroy(&solver1);
    phgMatDestroy(&A);
    phgMatDestroy(&B);
    phgVecDestroy(&U);
    phgVecDestroy(&x);
    phgFree(C);
    phgFree(pvt);

    phgFinalize();

    return 0;
}
Esempio n. 6
0
static void
build_matrices(MAT *matA, MAT *matM, MAT *matC, MAT *S, FLOAT s,
		DOF *u_h, DOF *p_h)
/* S is used to store s*diag(M(p_h))^(-1) */
{
    int N = u_h->type->nbas;	/* number of basis functions in an element */
    int M = p_h->type->nbas;
    int i, j;
    GRID *g = u_h->g;
    ELEMENT *e;
    FLOAT A[N][N], B[N][N], C[N][M];
    INT I[N], Ip[M];
    INT k, n0;
    VEC *V = phgMapCreateVec(S->rmap, 1);

    phgVecDisassemble(V);	/* for phgVecAddEntry */
    ForAllElements(g, e) {
	for (i = 0; i < N; i++) {
	    I[i] = phgMapE2L(matA->rmap, 0, e, i);
	    for (k = 0; k < M; k++) {
		/* \int \grad\psi_k\cdot\phi_i */
		C[i][k] = phgQuadGradBasDotBas(e, p_h, k, u_h, i, QUAD_DEFAULT);
	    }
	    for (j = 0; j <= i; j++) {
		/* \int \phi_i\cdot\phi_j */
		B[j][i] = B[i][j] = 
		    phgQuadBasDotBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
		/* \int \curl\phi_i\cdot\curl\phi_j */
		A[j][i] = A[i][j] =
		    phgQuadCurlBasDotCurlBas(e, u_h, j, u_h, i, QUAD_DEFAULT);
	    }
	}

	for (i = 0; i < M; i++) {
	    Ip[i] = phgMapE2L(matC->cmap, 0, e, i);
	    if (Ip[i] < 0)	/* boundary entry */
		continue;
	    phgVecAddEntry(V, 0, Ip[i],
			phgQuadBasDotBas(e, p_h, i, p_h, i, QUAD_DEFAULT));
	}

	/* loop on basis functions */
	for (i = 0; i < N; i++) {
	    if (phgDofDirichletBC(u_h, e, i, NULL, NULL, NULL, DOF_PROJ_CROSS))
		continue;
	    phgMatAddEntries(matA, 1, I + i, N, I, A[i]); 
	    phgMatAddEntries(matM, 1, I + i, N, I, B[i]); 
	    phgMatAddEntries(matC, 1, I + i, M, Ip, C[i]); 
	}
    }

    phgVecAssemble(V);
    n0 = V->map->partition[V->map->rank];
    for (k = 0; k < V->map->nlocal; k++)
	phgMatAddGlobalEntry(S, k + n0, k + n0, s / V->data[k]);
    phgVecDestroy(&V);
    phgMatAssemble(S);
    phgMatSetupDiagonal(S);
    phgMatAssemble(matA);
    phgMatAssemble(matM);
    phgMatAssemble(matC);
}
Esempio n. 7
0
int
main(int argc, char *argv[])
{
    GRID *g;
    DOF *u_h;
    MAT *A, *A0, *B;
    MAP *map;
    INT i;
    size_t nnz, mem, mem_peak;
    VEC *x, *y0, *y1, *y2;
    double t0, t1, dnz, dnz1, mflops, mop;
    char *fn = "../test/cube.dat";
    FLOAT mem_max = 300;
    INT refine = 0;

    phgOptionsRegisterFilename("-mesh_file", "Mesh file", (char **)&fn);
    phgOptionsRegisterInt("-loop_count", "Loop count", &loop_count);
    phgOptionsRegisterInt("-refine", "Refinement level", &refine);
    phgOptionsRegisterFloat("-mem_max", "Maximum memory", &mem_max);

    phgInit(&argc, &argv);
    g = phgNewGrid(-1);
    if (!phgImport(g, fn, FALSE))
	phgError(1, "can't read file \"%s\".\n", fn);
    phgRefineAllElements(g, refine);
    u_h = phgDofNew(g, DOF_DEFAULT, 1, "u_h", DofNoAction);

    while (TRUE) {
	phgPrintf("\n");
	if (phgBalanceGrid(g, 1.2, 1, NULL, 0.))
	    phgPrintf("Repartition mesh, %d submeshes, load imbalance: %lg\n",
			g->nprocs, (double)g->lif);
	map = phgMapCreate(u_h, NULL);
	A = phgMapCreateMat(map, map);
	A->handle_bdry_eqns = TRUE;
	build_matrix(A, u_h);
	phgMatAssemble(A);

	/* Note: A is unsymmetric (A' != A) if boundary entries not removed */
	phgMatRemoveBoundaryEntries(A);

#if 0
	/* test block matrix operation */
	A0 = phgMatCreateBlockMatrix(g->comm, 1, 1, &A, NULL);
#else
	A0 = A;
#endif

	phgPrintf("%d DOF, %d elems, %d submeshes, matrix size: %d, LIF: %lg\n",
			DofGetDataCountGlobal(u_h), g->nleaf_global,
			g->nprocs, A->rmap->nglobal, (double)g->lif);

	/* test PHG mat-vec multiply */
	x = phgMapCreateVec(A->cmap, 1);
	y1 = phgMapCreateVec(A->rmap, 1);
	phgVecRandomize(x, 123);
	phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1);

	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	for (i = 0; i < loop_count; i++) {
	    phgMatVec(MAT_OP_N, 1.0, A0, x, 0.0, &y1);
	}
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	y0 = phgVecCopy(y1, NULL);
	nnz = A->nnz_d + A->nnz_o;
#if USE_MPI
	dnz1 = nnz;
	MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	dnz = nnz;
#endif
	mop = loop_count * (dnz + dnz - A->rmap->nlocal) * 1e-6;

	phgPrintf("\n");
	t1 -= t0;
	phgPrintf("   PHG:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF)\n",
			t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops);

	/* test trans(A)*x */
	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	for (i = 0; i < loop_count; i++) {
	    phgMatVec(MAT_OP_T, 1.0, A0, x, 0.0, &y1);
	}
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	t1 -= t0;
	phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		  "err: %le\n", t1, dnz, mop / (t1 == 0 ? 1. : t1), mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	/* time A * trans(A) */
	phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	t0 = phgGetTime(NULL);
	B = phgMatMat(MAT_OP_N, MAT_OP_N, 1.0, A, A, 0.0, NULL);
	t1 = phgGetTime(NULL);
	mflops = phgPerfGetMflops(g, NULL, NULL);
	nnz = B->nnz_d + B->nnz_o;
#if USE_MPI
	dnz1 = nnz;
	MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	dnz = nnz;
#endif
	/* compare B*x <--> A*A*x */
	y2 = phgMatVec(MAT_OP_N, 1.0, B, x, 0.0, NULL);
	phgMatVec(MAT_OP_N, 1.0, A0, y0, 0.0, &y1);
	phgMatDestroy(&B);
	t1 -= t0;
	phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

#if USE_PETSC
	{
	    Mat ma, mb;
	    MatInfo info;
	    Vec va, vb, vc;
	    PetscScalar *vec;

	    ma = phgPetscCreateMatAIJ(A);
	    MatGetVecs(ma, PETSC_NULL, &va);
	    VecDuplicate(va, &vb);
	    VecGetArray(va, &vec);
	    memcpy(vec, x->data, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(va, &vec);
	    MatMult(ma, va, vb);
	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		MatMult(ma, va, vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);

	    MatGetInfo(ma, MAT_GLOBAL_SUM, &info);
	    /*phgPrintf("    --------------------------------------------"
		      "-------------------------\n");*/
	    phgPrintf("\n");
	    t1 -= t0;
	    dnz = info.nz_used;
	    phgPrintf(" PETSc:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		MatMultTranspose(ma, va, vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);
	    t1 -= t0;
	    phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    MatMatMult(ma, ma, MAT_INITIAL_MATRIX, PETSC_DEFAULT, &mb);
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    t1 -= t0;
	    MatGetInfo(mb, MAT_GLOBAL_SUM, &info);
	    dnz = info.nz_used;
	    VecDuplicate(va, &vc);
	    /* compare B*x <--> A*A*x */
	    MatMult(ma, vb, vc);
	    MatMult(mb, va, vb);
	    VecGetArray(vb, &vec);
	    memcpy(y1->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vb, &vec);
	    VecGetArray(vc, &vec);
	    memcpy(y2->data, vec, x->map->nlocal * sizeof(*vec));
	    VecRestoreArray(vc, &vec);
	    phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

	    phgPetscMatDestroy(&mb);
	    phgPetscMatDestroy(&ma);
	    phgPetscVecDestroy(&va);
	    phgPetscVecDestroy(&vb);
	    phgPetscVecDestroy(&vc);
	}
#endif	/* USE_PETSC */

#if USE_HYPRE
	{
	    HYPRE_IJMatrix ma;
	    HYPRE_IJVector va, vb, vc;
	    HYPRE_ParCSRMatrix  par_ma;
	    hypre_ParCSRMatrix  *par_mb;
	    HYPRE_ParVector	par_va, par_vb, par_vc;
	    HYPRE_Int offset, *ni, start, end;
	    assert(sizeof(INT)==sizeof(int) && sizeof(FLOAT)==sizeof(double));
	    setup_hypre_mat(A, &ma);
	    ni = phgAlloc(2 * A->rmap->nlocal * sizeof(*ni));
	    offset = A->cmap->partition[A->cmap->rank];
	    for (i = 0; i < A->rmap->nlocal; i++)
		ni[i] = i + offset;
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &va);
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &vb);
	    HYPRE_IJVectorCreate(g->comm, offset, offset + A->rmap->nlocal - 1,
				 &vc);
	    HYPRE_IJVectorSetObjectType(va, HYPRE_PARCSR);
	    HYPRE_IJVectorSetObjectType(vb, HYPRE_PARCSR);
	    HYPRE_IJVectorSetObjectType(vc, HYPRE_PARCSR);
	    HYPRE_IJVectorSetMaxOffProcElmts(va, 0);
	    HYPRE_IJVectorSetMaxOffProcElmts(vb, 0);
	    HYPRE_IJVectorSetMaxOffProcElmts(vc, 0);
	    HYPRE_IJVectorInitialize(va);
	    HYPRE_IJVectorInitialize(vb);
	    HYPRE_IJVectorInitialize(vc);
	    HYPRE_IJMatrixGetObject(ma, (void **)(void *)&par_ma);
	    HYPRE_IJVectorGetObject(va, (void **)(void *)&par_va);
	    HYPRE_IJVectorGetObject(vb, (void **)(void *)&par_vb);
	    HYPRE_IJVectorGetObject(vc, (void **)(void *)&par_vc);
	    HYPRE_IJVectorSetValues(va, A->cmap->nlocal, ni, (double *)x->data);
	    HYPRE_IJVectorAssemble(va);
	    HYPRE_IJVectorAssemble(vb);
	    HYPRE_IJVectorAssemble(vc);

	    HYPRE_IJMatrixGetRowCounts(ma, A->cmap->nlocal,
					ni, ni + A->rmap->nlocal);
	    for (i = 0, nnz = 0; i < A->rmap->nlocal; i++)
		nnz += ni[A->rmap->nlocal + i];
#if USE_MPI
	    dnz1 = nnz;
	    MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	    dnz = nnz;
#endif

	    HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb);
	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_va, 0.0, par_vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    /*phgPrintf("    --------------------------------------------"
		      "-------------------------\n");*/
	    phgPrintf("\n");
	    t1 -= t0;
	    phgPrintf(" HYPRE:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    for (i = 0; i < loop_count; i++) {
		HYPRE_ParCSRMatrixMatvecT(1.0, par_ma, par_va, 0.0, par_vb);
	    }
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    t1 -= t0;
	    phgPrintf("  A'*x:  time %0.4lf, nnz %0.16lg, %0.2lfMF (%0.2lfMF), "
		      "err: %le\n", t1, dnz, mop / (t1==0 ? 1.:t1), mflops,
		(double)phgVecNorm2(phgVecAXPBY(-1.0, y0, 1.0, &y1), 0, NULL));

	    phgPerfGetMflops(g, NULL, NULL);	/* reset flops counter */
	    t0 = phgGetTime(NULL);
	    /* Note: 'HYPRE_ParCSRMatrix' is currently typedef'ed to
	     *	     'hypre_ParCSRMatrix *' */
	    par_mb = hypre_ParMatmul((hypre_ParCSRMatrix *)par_ma,
					(hypre_ParCSRMatrix *)par_ma);
	    t1 = phgGetTime(NULL);
	    mflops = phgPerfGetMflops(g, NULL, NULL);
	    start = hypre_ParCSRMatrixFirstRowIndex(par_mb);
	    end = hypre_ParCSRMatrixLastRowIndex(par_mb) + 1;
	    for (i = start, nnz = 0; i < end; i++) {
		HYPRE_Int ncols;
		hypre_ParCSRMatrixGetRow(par_mb, i, &ncols, NULL, NULL);
		hypre_ParCSRMatrixRestoreRow(par_mb, i, &ncols, NULL, NULL);
		nnz += ncols;
	    }
#if USE_MPI
	    dnz1 = nnz;
	    MPI_Reduce(&dnz1, &dnz, 1, MPI_DOUBLE, MPI_SUM, 0, g->comm);
#else
	    dnz = nnz;
#endif
	    /* compare B*x <--> A*A*x */
	    HYPRE_ParCSRMatrixMatvec(1.0, par_ma, par_vb, 0.0, par_vc);
	    HYPRE_ParCSRMatrixMatvec(1.0, (void *)par_mb, par_va, 0.0, par_vb);
	    HYPRE_IJVectorGetValues(vb, A->rmap->nlocal, ni, (double*)y1->data);
	    HYPRE_IJVectorGetValues(vc, A->rmap->nlocal, ni, (double*)y2->data);
	    hypre_ParCSRMatrixDestroy((par_mb));
	    t1 -= t0;
	    phgPrintf("   A*A:  time %0.4lf, nnz %0.16lg, %0.2lfMF, err: %le\n",
		  t1, dnz, mflops,
		 (double)phgVecNorm2(phgVecAXPBY(-1.0, y1, 1.0, &y2), 0, NULL));

	    phgFree(ni);
	    HYPRE_IJMatrixDestroy(ma);
	    HYPRE_IJVectorDestroy(va);
	    HYPRE_IJVectorDestroy(vb);
	    HYPRE_IJVectorDestroy(vc);
	}
#endif	/* USE_HYPRE */

	if (A0 != A)
	    phgMatDestroy(&A0);
#if 0
if (A->rmap->nglobal > 1000) {
    VEC *v = phgMapCreateVec(A->rmap, 3);
    for (i = 0; i < v->map->nlocal; i++) {
	v->data[i + 0 * v->map->nlocal] = 1 * (i + v->map->partition[g->rank]);
	v->data[i + 1 * v->map->nlocal] = 2 * (i + v->map->partition[g->rank]);
	v->data[i + 2 * v->map->nlocal] = 3 * (i + v->map->partition[g->rank]);
    }
    phgMatDumpMATLAB(A, "A", "A.m");
    phgVecDumpMATLAB(v, "v", "v.m");
    phgFinalize();
    exit(0);
}
#endif
	phgMatDestroy(&A);
	phgVecDestroy(&x);
	phgVecDestroy(&y0);
	phgVecDestroy(&y1);
	phgVecDestroy(&y2);
	phgMapDestroy(&map);
	mem = phgMemoryUsage(g, &mem_peak);
	dnz = mem / (1024.0 * 1024.0);
	dnz1 = mem_peak / (1024.0 * 1024.0);
	/*phgPrintf("    --------------------------------------------"
		  "-------------------------\n");*/
	phgPrintf("\n");
	phgPrintf("  Memory: current %0.4lgMB, peak %0.4lgMB\n", dnz, dnz1);
#if 0
{
    static int loop_count = 0;
    if (++loop_count == 4)
	break;
}
#endif
	if (mem_peak > 1024 * (size_t)1024 * mem_max)
	    break;
	phgRefineAllElements(g, 1);
    }
    phgDofFree(&u_h);
    phgFreeGrid(&g);
    phgFinalize();

    return 0;
}