ElementLoop& BoundaryTerm::access_element_loop( const std::string& type_name ) { // ensure that the fields are present link_fields(); // get the element loop or create it if does not exist ElementLoop::Ptr loop; Common::Component::Ptr cloop = get_child_ptr( "LOOP" ); if( is_null( cloop ) ) { const std::string update_vars_type = physical_model().get_child( RDM::Tags::update_vars() ) .as_type<Physics::Variables>() .type(); loop = build_component_abstract_type_reduced< FaceLoop >( "FaceLoopT<" + type_name + "," + update_vars_type + ">" , "LOOP"); add_component(loop); } else loop = cloop->as_ptr_checked<ElementLoop>(); return *loop; }
void PrepareMesh::execute() { // configuration of all solver components. // This component and its children should be part of it. solver().configure_option_recursively(sdm::Tags::solution_order(),solver().options().option(sdm::Tags::solution_order()).value<Uint>()); solver().configure_option_recursively(sdm::Tags::mesh(),mesh().handle<Component>()); solver().configure_option_recursively(sdm::Tags::regions(),solver().options().option(sdm::Tags::regions()).value< std::vector<URI> >()); solver().configure_option_recursively(sdm::Tags::physical_model(),physical_model().handle<Component>()); solver().configure_option_recursively(sdm::Tags::solver(),solver().handle<Component>()); configure_option_recursively(sdm::Tags::solution_order(),solver().options().option(sdm::Tags::solution_order()).value<Uint>()); configure_option_recursively(sdm::Tags::mesh(),mesh().handle<Component>()); configure_option_recursively(sdm::Tags::regions(),solver().options().option(sdm::Tags::regions()).value< std::vector<URI> >()); configure_option_recursively(sdm::Tags::physical_model(),physical_model().handle<Component>()); configure_option_recursively(sdm::Tags::solver(),solver().handle<Component>()); // execution of prepare mesh ActionDirector::execute(); std::vector<URI> fields; fields.push_back( follow_link( solver().field_manager().get_child(sdm::Tags::solution()) )->uri() ); solver().handle<SDSolver>()->time_stepping().post_actions().get_child("Periodic")->configure_option_recursively("fields",fields); solver().handle<SDSolver>()->time_stepping().post_actions().get_child("Periodic")->configure_option_recursively("file",URI("sdm_output_${time}.msh")); }
Term& DomainDiscretization::create_term( const std::string& type, const std::string& name, const std::vector<URI>& regions ) { CFinfo << "Creating cell term " << name << "(" << type << ")" << CFendl; Handle< Term > term = m_terms->create_component<Term>(name, type); if (regions.size() == 0) term->options().configure_option("regions", std::vector<URI>(1,mesh().topology().uri())); else term->options().configure_option("regions", regions); term->options().configure_option( SFDM::Tags::mesh(), mesh().handle<Component>()); term->options().configure_option( SFDM::Tags::solver(), solver().handle<Component>()); term->options().configure_option( SFDM::Tags::physical_model(), physical_model().handle<Component>()); return *term; }
void LSSAction::on_regions_set() { if(m_implementation->m_updating) // avoid recursion return; m_implementation->m_lss = options().value< Handle<LSS::System> >("lss"); if(is_null(m_implementation->m_lss)) return; if(is_null(m_dictionary)) return; m_implementation->m_updating = true; // Create the LSS if the mesh is set if(!m_loop_regions.empty() && !m_implementation->m_lss->is_created()) { VariablesDescriptor& descriptor = find_component_with_tag<VariablesDescriptor>(physical_model().variable_manager(), solution_tag()); Handle< List<Uint> > gids = m_implementation->m_lss->create_component< List<Uint> >("GIDs"); Handle< List<Uint> > ranks = m_implementation->m_lss->create_component< List<Uint> >("Ranks"); Handle< List<Uint> > used_node_map = m_implementation->m_lss->create_component< List<Uint> >("used_node_map"); std::vector<Uint> node_connectivity, starting_indices; boost::shared_ptr< List<Uint> > used_nodes = build_sparsity(m_loop_regions, *m_dictionary, node_connectivity, starting_indices, *gids, *ranks, *used_node_map); add_component(used_nodes); // This comm pattern is valid only over the used nodes for the supplied regions PE::CommPattern& comm_pattern = *create_component<PE::CommPattern>("CommPattern"); comm_pattern.insert("gid",gids->array(),false); comm_pattern.setup(Handle<PE::CommWrapper>(comm_pattern.get_child("gid")),ranks->array()); CFdebug << "Creating LSS for " << starting_indices.size()-1 << " blocks with descriptor " << solution_tag() << ": " << descriptor.description() << CFendl; m_implementation->m_lss->create(comm_pattern, descriptor.size(), node_connectivity, starting_indices); CFdebug << "Finished creating LSS" << CFendl; configure_option_recursively(solver::Tags::regions(), options().option(solver::Tags::regions()).value()); configure_option_recursively("lss", m_implementation->m_lss); } // Update the regions of any owned initial conditions BOOST_FOREACH(const Handle<Component>& ic, m_created_initial_conditions) { ic->options().set(solver::Tags::regions(), options().option(solver::Tags::regions()).value()); }
ElementLoop& BoundaryTerm::access_element_loop( const std::string& type_name ) { // ensure that the fields are present link_fields(); // get the element loop or create it if does not exist Handle< ElementLoop > loop(get_child( "LOOP" )); if( is_null( loop ) ) { const std::string update_vars_type = physical_model().get_child( RDM::Tags::update_vars() ) ->handle<physics::Variables>() ->type(); loop = create_component<FaceLoop>("LOOP", "FaceLoopT<" + type_name + "," + update_vars_type + ">"); } return *loop; }
void SetupMultipleSolutions::execute() { RDM::RDSolver& mysolver = solver().as_type< RDM::RDSolver >(); /* nb_levels == rkorder */ const Uint nb_levels = option("nb_levels").value<Uint>(); CMesh& mesh = *m_mesh.lock(); CGroup& fields = mysolver.fields(); // get the geometry field group Geometry& geometry = mesh.geometry(); const std::string solution_space = mysolver.option("solution_space").value<std::string>(); // check that the geometry belongs to the same space as selected by the user FieldGroup::Ptr solution_group; if( solution_space == geometry.space() ) solution_group = geometry.as_ptr<FieldGroup>(); else { // check if solution space already exists solution_group = find_component_ptr_with_name<FieldGroup>( mesh, RDM::Tags::solution() ); if ( is_null(solution_group) ) { boost_foreach(CEntities& elements, mesh.topology().elements_range()) elements.create_space( RDM::Tags::solution(), "CF.Mesh.SF.SF"+elements.element_type().shape_name() + solution_space ); solution_group = mesh.create_field_group( RDM::Tags::solution(), FieldGroup::Basis::POINT_BASED).as_ptr<FieldGroup>(); } else // not null so check that space is what user wants { if( solution_space != solution_group->space() ) throw NotImplemented( FromHere(), "Changing solution space not supported" ); } } // construct vector of variables const Uint nbdofs = physical_model().neqs(); std::string vars; for(Uint i = 0; i < nbdofs; ++i) { vars += "u" + to_str(i) + "[1]"; if( i != nbdofs-1 ) vars += ","; } // configure 1st solution Field::Ptr solution = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::solution() ); if ( is_null( solution ) ) { solution = solution_group->create_field( RDM::Tags::solution(), vars ).as_ptr<Field>(); solution->add_tag(Tags::solution()); } // create the other solutions based on the first solution field std::vector< Field::Ptr > rk_steps; rk_steps.push_back(solution); for(Uint step = 1; step < nb_levels; ++step) { Field::Ptr solution_k = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::solution() + to_str(step)); if ( is_null( solution_k ) ) { std::string name = std::string(Tags::solution()) + to_str(step); solution_k = solution_group->create_field( name, solution->descriptor().description() ).as_ptr<Field>(); solution_k->descriptor().prefix_variable_names("rk" + to_str(step) + "_"); solution_k->add_tag("rksteps"); } cf_assert( solution_k ); rk_steps.push_back(solution_k); } /// @todo here we should check if space() order is correct, /// if not the change space() by enriching or other appropriate action // configure residual Field::Ptr residual = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::residual()); if ( is_null( residual ) ) { residual = solution_group->create_field(Tags::residual(), solution->descriptor().description() ).as_ptr<Field>(); residual->descriptor().prefix_variable_names("rhs_"); residual->add_tag(Tags::residual()); } // configure wave_speed Field::Ptr wave_speed = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::wave_speed()); if ( is_null( wave_speed ) ) { wave_speed = solution_group->create_field(Tags::wave_speed(), "ws[1]" ).as_ptr<Field>(); wave_speed->add_tag(Tags::wave_speed()); } // create links if( ! fields.get_child_ptr( solution->name() ) ) fields.create_component<CLink>( solution->name() ).link_to(solution).add_tag(RDM::Tags::solution()); if( ! fields.get_child_ptr( RDM::Tags::residual() ) ) fields.create_component<CLink>( RDM::Tags::residual() ).link_to(residual).add_tag(RDM::Tags::residual()); if( ! fields.get_child_ptr( RDM::Tags::wave_speed() ) ) fields.create_component<CLink>( RDM::Tags::wave_speed() ).link_to(wave_speed).add_tag(RDM::Tags::wave_speed()); for( Uint step = 1; step < rk_steps.size(); ++step) { if( ! fields.get_child_ptr( rk_steps[step]->name() ) ) fields.create_component<CLink>( rk_steps[step]->name() ).link_to(solution).add_tag("rksteps"); } // parallelize the solution if not yet done CommPattern& pattern = solution->parallelize(); std::vector<URI> parallel_fields; parallel_fields.push_back( solution->uri() ); for(Uint step = 1; step < nb_levels; ++step) { rk_steps[step]->parallelize_with( pattern ); parallel_fields.push_back( rk_steps[step]->uri() ); } mysolver.actions().get_child("Synchronize").configure_option("Fields", parallel_fields); // std::cout << "solution " << solution->uri().string() << std::endl; // std::cout << "residual " << residual->uri().string() << std::endl; // std::cout << "wave_speed " << wave_speed->uri().string() << std::endl; }
void YPlus::execute() { Mesh& mesh = this->mesh(); // Geometry data const Field& coords = mesh.geometry_fields().coordinates(); const Uint nb_nodes = coords.size(); const Uint dim = coords.row_size(); // Velocity data const Field& velocity_field = common::find_component_recursively_with_tag<Field>(mesh, options().value<std::string>("velocity_tag")); const auto velocity_dict_handle = Handle<Dictionary const>(velocity_field.parent()); cf3_assert(velocity_dict_handle != nullptr); const Dictionary& velocity_dict = *velocity_dict_handle; const Uint vel_offset = velocity_field.descriptor().offset("Velocity"); // initialize if needed auto volume_node_connectivity = Handle<NodeConnectivity>(mesh.get_child("volume_node_connectivity")); if(m_normals.empty()) { // Node-to-element connectivity for the volume elements volume_node_connectivity = mesh.create_component<NodeConnectivity>("volume_node_connectivity"); std::vector< Handle<Entities const> > volume_entities; for(const mesh::Elements& elements : common::find_components_recursively_with_filter<mesh::Elements>(mesh, IsElementsVolume())) { volume_entities.push_back(elements.handle<Entities const>()); } volume_node_connectivity->initialize(nb_nodes, volume_entities); mesh.geometry_fields().create_field("wall_velocity_gradient_nodal").add_tag("wall_velocity_gradient_nodal"); Dictionary& wall_P0 = *mesh.create_component<DiscontinuousDictionary>("wall_P0"); m_normals.clear(); for(const Handle<Region>& region : regions()) { for(mesh::Elements& wall_entity : common::find_components_recursively_with_filter<mesh::Elements>(*region, IsElementsSurface())) { const Uint nb_elems = wall_entity.size(); const auto& geom_conn = wall_entity.geometry_space().connectivity(); const ElementType& etype = wall_entity.element_type(); const Uint element_nb_nodes = etype.nb_nodes(); m_normals.push_back(std::vector<RealVector>(nb_elems, RealVector(dim))); RealMatrix elem_coords(element_nb_nodes, dim); for(Uint elem_idx = 0; elem_idx != nb_elems; ++elem_idx) { const Connectivity::ConstRow conn_row = geom_conn[elem_idx]; fill(elem_coords, coords, conn_row); RealVector normal(dim); etype.compute_normal(elem_coords, m_normals.back()[elem_idx]); m_normals.back()[elem_idx] /= m_normals.back()[elem_idx].norm(); } wall_entity.create_component<FaceConnectivity>("wall_face_connectivity")->initialize(*volume_node_connectivity); wall_entity.create_space("cf3.mesh.LagrangeP0."+wall_entity.element_type().shape_name(),wall_P0); } } wall_P0.build(); // to tell the dictionary that all spaces have been added mesh.update_structures(); // to tell the mesh there is a new dictionary added manually wall_P0.create_field("wall_velocity_gradient").add_tag("wall_velocity_gradient"); } // Create the y+ field in the geometry dictionary if(common::find_component_ptr_with_tag(mesh.geometry_fields(), "yplus") == nullptr) { mesh.geometry_fields().create_field("yplus").add_tag("yplus"); } // Compute shear stress Uint surface_idx = 0; Dictionary& wall_P0 = *Handle<mesh::Dictionary>(mesh.get_child_checked("wall_P0")); Field& wall_velocity_gradient_field = *Handle<Field>(wall_P0.get_child_checked("wall_velocity_gradient")); for(const Handle<Region>& region : regions()) { for(const mesh::Elements& elements : common::find_components_recursively_with_filter<mesh::Elements>(*region, IsElementsSurface())) { const Uint nb_elements = elements.geometry_space().connectivity().size(); cf3_assert(elements.element_type().nb_faces() == 1); const auto& face_connectivity = *Handle<FaceConnectivity const>(elements.get_child_checked("wall_face_connectivity")); const auto& wall_conn = elements.space(wall_P0).connectivity(); for(Uint surface_elm_idx = 0; surface_elm_idx != nb_elements; ++surface_elm_idx) { if(face_connectivity.has_adjacent_element(surface_elm_idx, 0)) { const Uint wall_field_idx = wall_conn[surface_elm_idx][0]; // Get the wall normal vector const RealVector& normal = m_normals[surface_idx][surface_elm_idx]; RealVector3 normal3; normal3[0] = normal[0]; normal3[1] = normal[1]; normal3[2] = dim == 3 ? normal[2] : 0.; // The connected volume element NodeConnectivity::ElementReferenceT connected = face_connectivity.adjacent_element(surface_elm_idx, 0); const mesh::Entities& volume_entities = *face_connectivity.node_connectivity().entities()[connected.first]; const Uint volume_elem_idx = connected.second; const auto& velocity_conn = volume_entities.space(velocity_dict).connectivity(); const auto& velocity_sf = volume_entities.space(velocity_dict).shape_function(); const auto& geom_conn = volume_entities.geometry_space().connectivity(); const ElementType& volume_etype = volume_entities.element_type(); const Uint nb_vel_nodes = velocity_sf.nb_nodes(); const RealVector centroid_mapped_coord = 0.5*(velocity_sf.local_coordinates().colwise().minCoeff() + velocity_sf.local_coordinates().colwise().maxCoeff()); RealMatrix elem_coords(geom_conn.row_size(), dim); fill(elem_coords, coords, geom_conn[volume_elem_idx]); RealVector tangential_velocity(nb_vel_nodes); // For every node, the component of the velocity tangential to the wall RealVector3 v3; for(Uint i = 0; i != nb_vel_nodes; ++i) { Eigen::Map<RealVector const> v(&velocity_field[velocity_conn[volume_elem_idx][i]][vel_offset], dim); v3[0] = v[0]; v3[1] = v[1]; v3[2] = dim == 3 ? v[2] : 0.; tangential_velocity[i] = v3.cross(normal3).norm(); } wall_velocity_gradient_field[wall_field_idx][0] = fabs((volume_etype.jacobian(centroid_mapped_coord, elem_coords).inverse() * velocity_sf.gradient(centroid_mapped_coord) * tangential_velocity).dot(-normal)); } } ++surface_idx; } } wall_velocity_gradient_field.synchronize(); // Compute a nodal version of the wall velocity gradient const auto& wall_node_connectivity = *Handle<NodeConnectivity>(mesh.get_child_checked("wall_node_connectivity")); Field& wall_velocity_gradient_field_nodal = *Handle<Field>(mesh.geometry_fields().get_child_checked("wall_velocity_gradient_nodal")); for(Uint node_idx = 0; node_idx != nb_nodes; ++node_idx) { Uint nb_connected_elems = 0; wall_velocity_gradient_field_nodal[node_idx][0] = 0; for(const NodeConnectivity::ElementReferenceT elref : wall_node_connectivity.node_element_range(node_idx)) { const Uint wall_field_idx = wall_node_connectivity.entities()[elref.first]->space(wall_P0).connectivity()[elref.second][0]; wall_velocity_gradient_field_nodal[node_idx][0] += wall_velocity_gradient_field[wall_field_idx][0]; ++nb_connected_elems; } if(nb_connected_elems != 0) { wall_velocity_gradient_field_nodal[node_idx][0] /= static_cast<Real>(nb_connected_elems); } } // Set Yplus Field& yplus_field = *Handle<Field>(mesh.geometry_fields().get_child_checked("yplus")); const Field& wall_distance_field = *Handle<Field>(mesh.geometry_fields().get_child_checked("wall_distance")); const auto& node_to_wall_element = *Handle<common::Table<Uint>>(mesh.get_child_checked("node_to_wall_element")); const Real nu = physical_model().options().value<Real>("kinematic_viscosity"); for(Uint node_idx = 0; node_idx != nb_nodes; ++node_idx) { yplus_field[node_idx][0] = 0; if(node_to_wall_element[node_idx][0] != 0) { const Entities& wall_entities = *wall_node_connectivity.entities()[node_to_wall_element[node_idx][1]]; const Uint wall_field_idx = wall_entities.space(wall_P0).connectivity()[node_to_wall_element[node_idx][2]][0]; yplus_field[node_idx][0] = wall_distance_field[node_idx][0] * sqrt(nu*wall_velocity_gradient_field[wall_field_idx][0]) / nu; } else { yplus_field[node_idx][0] = wall_distance_field[node_idx][0] * sqrt(nu*wall_velocity_gradient_field_nodal[node_to_wall_element[node_idx][1]][0]) / nu; } } }
void SetupSingleSolution::execute() { RDM::RDSolver& mysolver = *solver().handle< RDM::RDSolver >(); if(is_null(m_mesh)) throw SetupError(FromHere(), "SetupSingleSolution has no configured mesh in [" + uri().string() + "]" ); Mesh& mesh = *m_mesh; Group& fields = mysolver.fields(); const Uint nbdofs = physical_model().neqs(); // get the geometry field group SpaceFields& geometry = mesh.geometry_fields(); const std::string solution_space = mysolver.options().option("solution_space").value<std::string>(); // check that the geometry belongs to the same space as selected by the user Handle< SpaceFields > solution_group; if( solution_space == geometry.space() ) solution_group = geometry.handle<SpaceFields>(); else { // check if solution space already exists solution_group = find_component_ptr_with_name<SpaceFields>( mesh, RDM::Tags::solution() ); if ( is_null(solution_group) ) { solution_group = mesh.create_space_and_field_group( RDM::Tags::solution(), SpaceFields::Basis::POINT_BASED, "cf3.mesh."+solution_space).handle<SpaceFields>(); } else // not null so check that space is what user wants { if( solution_space != solution_group->space() ) throw NotImplemented( FromHere(), "Changing solution space not supported" ); } } solution_group->add_tag( solution_space ); // configure solution Handle< Field > solution = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::solution() ); if ( is_null( solution ) ) { std::string vars; for(Uint i = 0; i < nbdofs; ++i) { vars += "u" + to_str(i) + "[1]"; if( i != nbdofs-1 ) vars += ","; } solution = solution_group->create_field( RDM::Tags::solution(), vars ).handle<Field>(); solution->add_tag(RDM::Tags::solution()); } /// @todo here we should check if space() order is correct, /// if not the change space() by enriching or other appropriate action // configure residual Handle< Field > residual = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::residual()); if ( is_null( residual ) ) { residual = solution_group->create_field(Tags::residual(), solution->descriptor().description() ).handle<Field>(); residual->descriptor().prefix_variable_names("rhs_"); residual->add_tag(Tags::residual()); } // configure wave_speed Handle< Field > wave_speed = find_component_ptr_with_tag<Field>( *solution_group, RDM::Tags::wave_speed()); if ( is_null( wave_speed ) ) { wave_speed = solution_group->create_field( Tags::wave_speed(), "ws[1]" ).handle<Field>(); wave_speed->add_tag(Tags::wave_speed()); } // place link to the fields in the Fields group if( ! fields.get_child( RDM::Tags::solution() ) ) fields.create_component<Link>( RDM::Tags::solution() )->link_to(*solution).add_tag(RDM::Tags::solution()); if( ! fields.get_child( RDM::Tags::residual() ) ) fields.create_component<Link>( RDM::Tags::residual() )->link_to(*residual).add_tag(RDM::Tags::residual()); if( ! fields.get_child( RDM::Tags::wave_speed() ) ) fields.create_component<Link>( RDM::Tags::wave_speed() )->link_to(*wave_speed).add_tag(RDM::Tags::wave_speed()); /// @todo apply here the bubble insertion if needed // parallelize the solution if not yet done solution->parallelize(); std::vector<URI> sync_fields; sync_fields.push_back( solution->uri() ); mysolver.actions().get_child("Synchronize")->options().configure_option("Fields", sync_fields); }