/*! * pixMorphDwa_3() * * Input: pixd (usual 3 choices: null, == pixs, != pixs) * pixs (1 bpp) * operation (L_MORPH_DILATE, L_MORPH_ERODE, * L_MORPH_OPEN, L_MORPH_CLOSE) * sel name * Return: pixd * * Notes: * (1) This simply adds a border, calls the appropriate * pixFMorphopGen_*(), and removes the border. * See the notes for that function. * (2) The size of the border depends on the operation * and the boundary conditions. */ PIX * pixMorphDwa_3(PIX *pixd, PIX *pixs, l_int32 operation, char *selname) { l_int32 bordercolor, bordersize; PIX *pixt1, *pixt2, *pixt3; PROCNAME("pixMorphDwa_3"); if (!pixs) return (PIX *)ERROR_PTR("pixs not defined", procName, pixd); if (pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs must be 1 bpp", procName, pixd); /* Set the border size */ bordercolor = getMorphBorderPixelColor(L_MORPH_ERODE, 1); bordersize = 32; if (bordercolor == 0 && operation == L_MORPH_CLOSE) bordersize += 32; pixt1 = pixAddBorder(pixs, bordersize, 0); pixt2 = pixFMorphopGen_3(NULL, pixt1, operation, selname); pixt3 = pixRemoveBorder(pixt2, bordersize); pixDestroy(&pixt1); pixDestroy(&pixt2); if (!pixd) return pixt3; pixCopy(pixd, pixt3); pixDestroy(&pixt3); return pixd; }
main(int argc, char **argv) { l_int32 i; PIX *pixs, *pixt0, *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6; static char mainName[] = "binmorph4_reg"; pixs = pixRead("feyn.tif"); #if TEST_SYMMETRIC /* This works properly if there is an added border */ resetMorphBoundaryCondition(SYMMETRIC_MORPH_BC); #if 1 pixt1 = pixAddBorder(pixs, 64, 0); pixTransferAllData(pixs, &pixt1, 0, 0); #endif #endif /* TEST_SYMMETRIC */ pixt1 = pixCreateTemplateNoInit(pixs); pixt2 = pixCreateTemplateNoInit(pixs); pixt3 = pixCreateTemplateNoInit(pixs); pixt4 = pixCreateTemplateNoInit(pixs); pixt5 = pixCreateTemplateNoInit(pixs); pixt6 = pixCreateTemplateNoInit(pixs); for (i = 2; i < 64; i++) { #if 1 /* Compare morph composite with morph non-composite */ DoComparisonDwa1(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); #endif #if 1 /* Compare DWA non-composite with morph composite */ if (i < 16) DoComparisonDwa2(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); /* Compare DWA composite with DWA non-composite */ if (i < 16) DoComparisonDwa3(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); /* Compare DWA composite with morph composite */ DoComparisonDwa4(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); /* Compare DWA composite with morph non-composite */ DoComparisonDwa5(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); #endif } pixDestroy(&pixs); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); return 0; }
/*! * pixHMTDwa_1() * * Input: pixd (usual 3 choices: null, == pixs, != pixs) * pixs (1 bpp) * sel name * Return: pixd * * Notes: * (1) This simply adds a 32 pixel border, calls the appropriate * pixFHMTGen_*(), and removes the border. * See notes below for that function. */ PIX * pixHMTDwa_1(PIX *pixd, PIX *pixs, char *selname) { PIX *pixt1, *pixt2, *pixt3; PROCNAME("pixHMTDwa_1"); if (!pixs) return (PIX *)ERROR_PTR("pixs not defined", procName, pixd); if (pixGetDepth(pixs) != 1) return (PIX *)ERROR_PTR("pixs must be 1 bpp", procName, pixd); pixt1 = pixAddBorder(pixs, 32, 0); pixt2 = pixFHMTGen_1(NULL, pixt1, selname); pixt3 = pixRemoveBorder(pixt2, 32); pixDestroy(&pixt1); pixDestroy(&pixt2); if (!pixd) return pixt3; pixCopy(pixd, pixt3); pixDestroy(&pixt3); return pixd; }
int main(int argc, char **argv) { l_int32 i, nsels, same1, same2, ok; char *filein, *selname; PIX *pixs, *pixref, *pixt1, *pixt2, *pixt3, *pixt4; SEL *sel; SELA *sela; static char mainName[] = "fhmtauto_reg"; if (argc != 2) return ERROR_INT(" Syntax: fhmtauto_reg filein", mainName, 1); filein = argv[1]; if ((pixs = pixRead(filein)) == NULL) return ERROR_INT("pixs not made", mainName, 1); sela = selaAddHitMiss(NULL); nsels = selaGetCount(sela); ok = TRUE; for (i = 0; i < nsels; i++) { sel = selaGetSel(sela, i); selname = selGetName(sel); pixref = pixHMT(NULL, pixs, sel); pixt1 = pixAddBorder(pixs, 32, 0); pixt2 = pixFHMTGen_1(NULL, pixt1, selname); pixt3 = pixRemoveBorder(pixt2, 32); pixt4 = pixHMTDwa_1(NULL, pixs, selname); pixEqual(pixref, pixt3, &same1); pixEqual(pixref, pixt4, &same2); if (same1 && same2) fprintf(stderr, "hmt are identical for sel %d (%s)\n", i, selname); else { fprintf(stderr, "hmt differ for sel %d (%s)\n", i, selname); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); } if (ok) fprintf(stderr, "\n ******** All hmt are correct *******\n"); else fprintf(stderr, "\n ******** ERROR in at least one hmt *******\n"); pixDestroy(&pixs); selaDestroy(&sela); return 0; }
void PixAddEdgeData(PIXA *pixa, PIX *pixs, l_int32 side, l_int32 minjump, l_int32 minreversal) { l_float32 jpl, jspl, rpl; PIX *pixt1, *pixt2; pixMeasureEdgeSmoothness(pixs, side, minjump, minreversal, &jpl, &jspl, &rpl, "/tmp/junkedge.png"); fprintf(stderr, "side = %d: jpl = %6.3f, jspl = %6.3f, rpl = %6.3f\n", side, jpl, jspl, rpl); pixt1 = pixRead("/tmp/junkedge.png"); pixt2 = pixAddBorder(pixt1, 10, 0); /* 10 pixel white border */ pixaAddPix(pixa, pixt2, L_INSERT); pixDestroy(&pixt1); return; }
/*! * pixSaveTiledWithText() * * Input: pixs (1, 2, 4, 8, 32 bpp) * pixa (the pix are accumulated here; as 32 bpp) * outwidth (in pixels; use 0 to disable entirely) * newrow (1 to start a new row; 0 to go on same row as previous) * space (horizontal and vertical spacing, in pixels) * linewidth (width of added outline for image; 0 for no outline) * bmf (<optional> font struct) * textstr (<optional> text string to be added) * val (color to set the text) * location (L_ADD_ABOVE, L_ADD_AT_TOP, L_ADD_AT_BOT, L_ADD_BELOW) * Return: 0 if OK, 1 on error. * * Notes: * (1) Before calling this function for the first time, use * pixaCreate() to make the @pixa that will accumulate the pix. * This is passed in each time pixSaveTiled() is called. * (2) @outwidth is the scaled width. After scaling, the image is * saved in the input pixa, along with a box that specifies * the location to place it when tiled later. Disable saving * the pix by setting @outwidth == 0. * (3) @newrow and @space specify the location of the new pix * with respect to the last one(s) that were entered. * (4) All pix are saved as 32 bpp RGB. * (5) If both @bmf and @textstr are defined, this generates a pix * with the additional text; otherwise, no text is written. * (6) The text is written before scaling, so it is properly * antialiased in the scaled pix. However, if the pix on * different calls have different widths, the size of the * text will vary. * (7) See pixSaveTiledOutline() for other implementation details. */ l_int32 pixSaveTiledWithText(PIX *pixs, PIXA *pixa, l_int32 outwidth, l_int32 newrow, l_int32 space, l_int32 linewidth, L_BMF *bmf, const char *textstr, l_uint32 val, l_int32 location) { PIX *pix1, *pix2, *pix3, *pix4; PROCNAME("pixSaveTiledWithText"); if (outwidth == 0) return 0; if (!pixs) return ERROR_INT("pixs not defined", procName, 1); if (!pixa) return ERROR_INT("pixa not defined", procName, 1); pix1 = pixConvertTo32(pixs); if (linewidth > 0) pix2 = pixAddBorder(pix1, linewidth, 0); else pix2 = pixClone(pix1); if (bmf && textstr) pix3 = pixAddSingleTextblock(pix2, bmf, textstr, val, location, NULL); else pix3 = pixClone(pix2); pix4 = pixScaleToSize(pix3, outwidth, 0); pixSaveTiled(pix4, pixa, 1.0, newrow, space, 32); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pix3); pixDestroy(&pix4); return 0; }
/*! * \brief pixSetStrokeWidth() * * \param[in] pixs 1 bpp pix * \param[in] width set stroke width to this value, in [1 ... 100]. * \param[in] thinfirst 1 to thin all pix to a skeleton first; 0 to skip * \param[in] connectivity 4 or 8, to be used if %thinfirst == 1 * \return pixd with stroke width set to %width, or NULL on error * * <pre> * Notes: * (1) See notes in pixaSetStrokeWidth(). * (2) A white border of sufficient width to avoid boundary * artifacts in the thickening step is added before thinning. * (3) %connectivity == 8 usually gives a slightly smoother result. * </pre> */ PIX * pixSetStrokeWidth(PIX *pixs, l_int32 width, l_int32 thinfirst, l_int32 connectivity) { char buf[16]; l_int32 border; PIX *pix1, *pix2, *pixd; PROCNAME("pixSetStrokeWidth"); if (!pixs || (pixGetDepth(pixs) != 1)) return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL); if (width < 1 || width > 100) return (PIX *)ERROR_PTR("width not in [1 ... 100]", procName, NULL); if (connectivity != 4 && connectivity != 8) return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL); if (!thinfirst && width == 1) /* nothing to do */ return pixCopy(NULL, pixs); /* Add a white border */ border = width / 2; pix1 = pixAddBorder(pixs, border, 0); /* Thin to a skeleton */ if (thinfirst) pix2 = pixThinConnected(pix1, L_THIN_FG, connectivity, 0); else pix2 = pixClone(pix1); pixDestroy(&pix1); /* Dilate */ snprintf(buf, sizeof(buf), "D%d.%d", width, width); pixd = pixMorphSequence(pix2, buf, 0); pixCopyText(pixd, pixs); pixDestroy(&pix2); return pixd; }
void TestAll(L_REGPARAMS *rp, PIX *pixs, l_int32 symmetric) { l_int32 i, n, rsize, fact1, fact2, extra; l_int32 size, lastsize; l_int32 dwasize[256]; l_int32 ropsize[256]; PIX *pix1, *pix2, *pix3, *pix4, *pix5, *pix6; if (symmetric) { /* This works properly with an added border of 128 */ resetMorphBoundaryCondition(SYMMETRIC_MORPH_BC); pix1 = pixAddBorder(pixs, 128, 0); pixTransferAllData(pixs, &pix1, 0, 0); fprintf(stderr, "Testing with symmetric boundary conditions\n"); } else { resetMorphBoundaryCondition(ASYMMETRIC_MORPH_BC); fprintf(stderr, "Testing with asymmetric boundary conditions\n"); } pix1 = pixCreateTemplateNoInit(pixs); pix2 = pixCreateTemplateNoInit(pixs); pix3 = pixCreateTemplateNoInit(pixs); pix4 = pixCreateTemplateNoInit(pixs); pix5 = pixCreateTemplateNoInit(pixs); pix6 = pixCreateTemplateNoInit(pixs); /* ---------------------------------------------------------------- * * Faster test; testing fewer sizes * * ---------------------------------------------------------------- */ #if FASTER_TEST /* Compute the actual sizes used for each input size 'i' */ for (i = 0; i < 256; i++) { dwasize[i] = 0; ropsize[i] = 0; } for (i = 65; i < 256; i++) { selectComposableSizes(i, &fact1, &fact2); rsize = fact1 * fact2; ropsize[i] = rsize; getExtendedCompositeParameters(i, &n, &extra, &dwasize[i]); } /* Use only values where the resulting sizes are equal */ for (i = 65; i < 240; i++) { n = 1 + (l_int32)((i - 63) / 62); extra = i - 63 - (n - 1) * 62 + 1; if (extra == 2) continue; /* don't use this one (e.g., i == 126) */ if (ropsize[i] == dwasize[i]) DoComparisonDwa1(rp, pixs, pix1, pix2, pix3, pix4, pix5, pix6, i); } #endif /* FASTER_TEST */ /* ---------------------------------------------------------------- * * Slower test; testing maximum number of sizes * * ---------------------------------------------------------------- */ #if SLOWER_TEST lastsize = 0; for (i = 65; i < 199; i++) { getExtendedCompositeParameters(i, &n, &extra, &size); if (size == lastsize) continue; if (size == 126 || size == 188) continue; /* deliberately off by one */ lastsize = size; DoComparisonDwa2(rp, pixs, pix1, pix2, pix3, pix4, pix5, pix6, size); } #endif /* SLOWER_TEST */ fprintf(stderr, "\n"); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pix3); pixDestroy(&pix4); pixDestroy(&pix5); pixDestroy(&pix6); }
/*! * pixSaveTiledOutline() * * Input: pixs (1, 2, 4, 8, 32 bpp) * pixa (the pix are accumulated here) * scalefactor (0.0 to disable; otherwise this is a scale factor) * newrow (0 if placed on the same row as previous; 1 otherwise) * space (horizontal and vertical spacing, in pixels) * linewidth (width of added outline for image; 0 for no outline) * dp (depth of pixa; 8 or 32 bpp; only used on first call) * Return: 0 if OK, 1 on error. * * Notes: * (1) Before calling this function for the first time, use * pixaCreate() to make the @pixa that will accumulate the pix. * This is passed in each time pixSaveTiled() is called. * (2) @scalefactor scales the input image. After scaling and * possible depth conversion, the image is saved in the input * pixa, along with a box that specifies the location to * place it when tiled later. Disable saving the pix by * setting @scalefactor == 0.0. * (3) @newrow and @space specify the location of the new pix * with respect to the last one(s) that were entered. * (4) @dp specifies the depth at which all pix are saved. It can * be only 8 or 32 bpp. Any colormap is removed. This is only * used at the first invocation. * (5) This function uses two variables from call to call. * If they were static, the function would not be .so or thread * safe, and furthermore, there would be interference with two or * more pixa accumulating images at a time. Consequently, * we use the first pix in the pixa to store and obtain both * the depth and the current position of the bottom (one pixel * below the lowest image raster line when laid out using * the boxa). The bottom variable is stored in the input format * field, which is the only field available for storing an int. */ l_int32 pixSaveTiledOutline(PIX *pixs, PIXA *pixa, l_float32 scalefactor, l_int32 newrow, l_int32 space, l_int32 linewidth, l_int32 dp) { l_int32 n, top, left, bx, by, bw, w, h, depth, bottom; BOX *box; PIX *pix1, *pix2, *pix3, *pix4; PROCNAME("pixSaveTiledOutline"); if (scalefactor == 0.0) return 0; if (!pixs) return ERROR_INT("pixs not defined", procName, 1); if (!pixa) return ERROR_INT("pixa not defined", procName, 1); n = pixaGetCount(pixa); if (n == 0) { bottom = 0; if (dp != 8 && dp != 32) { L_WARNING("dp not 8 or 32 bpp; using 32\n", procName); depth = 32; } else { depth = dp; } } else { /* extract the depth and bottom params from the first pix */ pix1 = pixaGetPix(pixa, 0, L_CLONE); depth = pixGetDepth(pix1); bottom = pixGetInputFormat(pix1); /* not typical usage! */ pixDestroy(&pix1); } /* Remove colormap if it exists; otherwise a copy. This * guarantees that pix4 is not a clone of pixs. */ pix1 = pixRemoveColormapGeneral(pixs, REMOVE_CMAP_BASED_ON_SRC, L_COPY); /* Scale and convert to output depth */ if (scalefactor == 1.0) { pix2 = pixClone(pix1); } else if (scalefactor > 1.0) { pix2 = pixScale(pix1, scalefactor, scalefactor); } else if (scalefactor < 1.0) { if (pixGetDepth(pix1) == 1) pix2 = pixScaleToGray(pix1, scalefactor); else pix2 = pixScale(pix1, scalefactor, scalefactor); } pixDestroy(&pix1); if (depth == 8) pix3 = pixConvertTo8(pix2, 0); else pix3 = pixConvertTo32(pix2); pixDestroy(&pix2); /* Add black outline */ if (linewidth > 0) pix4 = pixAddBorder(pix3, linewidth, 0); else pix4 = pixClone(pix3); pixDestroy(&pix3); /* Find position of current pix (UL corner plus size) */ if (n == 0) { top = 0; left = 0; } else if (newrow == 1) { top = bottom + space; left = 0; } else if (n > 0) { pixaGetBoxGeometry(pixa, n - 1, &bx, &by, &bw, NULL); top = by; left = bx + bw + space; } pixGetDimensions(pix4, &w, &h, NULL); bottom = L_MAX(bottom, top + h); box = boxCreate(left, top, w, h); pixaAddPix(pixa, pix4, L_INSERT); pixaAddBox(pixa, box, L_INSERT); /* Save the new bottom value */ pix1 = pixaGetPix(pixa, 0, L_CLONE); pixSetInputFormat(pix1, bottom); /* not typical usage! */ pixDestroy(&pix1); return 0; }
main(int argc, char **argv) { l_int32 i, d, h; l_float32 rat; PIX *pixs, *pixgb, *pixt1, *pixt2, *pixt3, *pixt4, *pixg, *pixd; PIXA *pixa; PTA *ptas, *ptad; static char mainName[] = "bilinear_reg"; if (argc != 1) exit(ERROR_INT(" Syntax: bilinear_reg", mainName, 1)); pixs = pixRead("feyn.tif"); pixg = pixScaleToGray3(pixs); #if ALL /* Test non-invertability of sampling */ pixa = pixaCreate(0); for (i = 1; i < 3; i++) { pixgb = pixAddBorder(pixg, ADDED_BORDER_PIXELS, 255); MakePtas(i, &ptas, &ptad); pixt1 = pixBilinearSampledPta(pixgb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 2, 1, 20, 8); pixt2 = pixBilinearSampledPta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 2, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixInvert(pixd, pixd); pixXor(pixd, pixd, pixg); pixSaveTiled(pixd, pixa, 2, 0, 20, 0); if (i == 0) pixWrite("/tmp/junksamp.png", pixt1, IFF_PNG); pixDestroy(&pixgb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkbilin1.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 300); pixDestroy(&pixt1); pixaDestroy(&pixa); #endif #if ALL /* Test non-invertability of interpolation */ pixa = pixaCreate(0); for (i = 1; i < 3; i++) { pixgb = pixAddBorder(pixg, ADDED_BORDER_PIXELS, 255); MakePtas(i, &ptas, &ptad); pixt1 = pixBilinearPta(pixgb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 2, 1, 20, 8); pixt2 = pixBilinearPta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 2, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixInvert(pixd, pixd); pixXor(pixd, pixd, pixg); pixSaveTiled(pixd, pixa, 2, 0, 20, 0); if (i == 0) pixWrite("/tmp/junkinterp.png", pixt1, IFF_PNG); pixDestroy(&pixgb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkbilin2.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 300); pixDestroy(&pixt1); pixaDestroy(&pixa); #endif #if ALL /* test with large distortion and inversion */ MakePtas(0, &ptas, &ptad); pixa = pixaCreate(0); startTimer(); pixt1 = pixBilinearSampledPta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixBilinearSampled(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt1, pixa, 2, 1, 20, 8); startTimer(); pixt2 = pixBilinearPta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixBilinearInterpolated(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt2, pixa, 2, 0, 20, 8); pixt3 = pixBilinearSampledPta(pixt1, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt3, pixa, 2, 0, 20, 8); pixt4 = pixBilinearPta(pixt2, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt4, pixa, 2, 0, 20, 8); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkbilin3.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 300); pixDestroy(&pixt1); pixaDestroy(&pixa); pixDestroy(&pixs); pixDestroy(&pixg); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif return 0; }
/*! * pixSaveTiledOutline() * * Input: pixs (1, 2, 4, 8, 32 bpp) * pixa (the pix are accumulated here) * reduction (0 to disable; otherwise this is a reduction factor) * newrow (0 if placed on the same row as previous; 1 otherwise) * space (horizontal and vertical spacing, in pixels) * linewidth (width of added outline for image; 0 for no outline) * dp (depth of pixa; 8 or 32 bpp; only used on first call) * Return: 0 if OK, 1 on error. * * Notes: * (1) Before calling this function for the first time, use * pixaCreate() to make the @pixa that will accumulate the pix. * This is passed in each time pixSaveTiled() is called. * (2) @reduction is the integer reduction factor for the input * image. After reduction and possible depth conversion, * the image is saved in the input pixa, along with a box * that specifies the location to place it when tiled later. * Disable saving the pix by setting reduction == 0. * (3) @newrow and @space specify the location of the new pix * with respect to the last one(s) that were entered. * (4) @dp specifies the depth at which all pix are saved. It can * be only 8 or 32 bpp. Any colormap is removed. This is only * used at the first invocation. * (5) This function uses two variables from call to call. * If they were static, the function would not be .so or thread * safe, and furthermore, there would be interference with two or * more pixa accumulating images at a time. Consequently, * we use the first pix in the pixa to store and obtain both * the depth and the current position of the bottom (one pixel * below the lowest image raster line when laid out using * the boxa). The bottom variable is stored in the input format * field, which is the only field available for storing an int. */ l_int32 pixSaveTiledOutline(PIX *pixs, PIXA *pixa, l_int32 reduction, l_int32 newrow, l_int32 space, l_int32 linewidth, l_int32 dp) { l_int32 n, top, left, bx, by, bw, w, h, depth, bottom; l_float32 scale; BOX *box; PIX *pix, *pixt1, *pixt2, *pixt3; PROCNAME("pixSaveTiledOutline"); if (reduction == 0) return 0; if (!pixs) return ERROR_INT("pixs not defined", procName, 1); if (!pixa) return ERROR_INT("pixa not defined", procName, 1); n = pixaGetCount(pixa); if (n == 0) { bottom = 0; if (dp != 8 && dp != 32) { L_WARNING("dp not 8 or 32 bpp; using 32", procName); depth = 32; } else depth = dp; } else { /* extract the depth and bottom params from the first pix */ pix = pixaGetPix(pixa, 0, L_CLONE); depth = pixGetDepth(pix); bottom = pixGetInputFormat(pix); /* not typical usage! */ pixDestroy(&pix); } /* Scale and convert to output depth */ if (reduction == 1) pixt1 = pixClone(pixs); else { scale = 1. / (l_float32)reduction; if (pixGetDepth(pixs) == 1) pixt1 = pixScaleToGray(pixs, scale); else pixt1 = pixScale(pixs, scale, scale); } if (depth == 8) pixt2 = pixConvertTo8(pixt1, 0); else pixt2 = pixConvertTo32(pixt1); pixDestroy(&pixt1); /* Add black outline */ if (linewidth > 0) pixt3 = pixAddBorder(pixt2, linewidth, 0); else pixt3 = pixClone(pixt2); pixDestroy(&pixt2); /* Find position of current pix (UL corner plus size) */ if (n == 0) { top = 0; left = 0; } else if (newrow == 1) { top = bottom + space; left = 0; } else if (n > 0) { pixaGetBoxGeometry(pixa, n - 1, &bx, &by, &bw, NULL); top = by; left = bx + bw + space; } pixGetDimensions(pixt3, &w, &h, NULL); bottom = L_MAX(bottom, top + h); box = boxCreate(left, top, w, h); pixaAddPix(pixa, pixt3, L_INSERT); pixaAddBox(pixa, box, L_INSERT); /* Save the new bottom value */ pix = pixaGetPix(pixa, 0, L_CLONE); pixSetInputFormat(pix, bottom); /* not typical usage! */ pixDestroy(&pix); return 0; }
/*! * pixaDisplayTiledAndScaled() * * Input: pixa * outdepth (output depth: 1, 8 or 32 bpp) * tilewidth (each pix is scaled to this width) * ncols (number of tiles in each row) * background (0 for white, 1 for black; this is the color * of the spacing between the images) * spacing (between images, and on outside) * border (width of additional black border on each image; * use 0 for no border) * Return: pix of tiled images, or null on error * * Notes: * (1) This can be used to tile a number of renderings of * an image that are at different scales and depths. * (2) Each image, after scaling and optionally adding the * black border, has width 'tilewidth'. Thus, the border does * not affect the spacing between the image tiles. The * maximum allowed border width is tilewidth / 5. */ PIX * pixaDisplayTiledAndScaled(PIXA *pixa, l_int32 outdepth, l_int32 tilewidth, l_int32 ncols, l_int32 background, l_int32 spacing, l_int32 border) { l_int32 x, y, w, h, wd, hd, d; l_int32 i, n, nrows, maxht, ninrow, irow, bordval; l_int32 *rowht; l_float32 scalefact; PIX *pix, *pixn, *pixt, *pixb, *pixd; PIXA *pixan; PROCNAME("pixaDisplayTiledAndScaled"); if (!pixa) return (PIX *)ERROR_PTR("pixa not defined", procName, NULL); if (outdepth != 1 && outdepth != 8 && outdepth != 32) return (PIX *)ERROR_PTR("outdepth not in {1, 8, 32}", procName, NULL); if (border < 0 || border > tilewidth / 5) border = 0; if ((n = pixaGetCount(pixa)) == 0) return (PIX *)ERROR_PTR("no components", procName, NULL); /* Normalize scale and depth for each pix; optionally add border */ pixan = pixaCreate(n); bordval = (outdepth == 1) ? 1 : 0; for (i = 0; i < n; i++) { if ((pix = pixaGetPix(pixa, i, L_CLONE)) == NULL) continue; pixGetDimensions(pix, &w, &h, &d); scalefact = (l_float32)(tilewidth - 2 * border) / (l_float32)w; if (d == 1 && outdepth > 1 && scalefact < 1.0) pixt = pixScaleToGray(pix, scalefact); else pixt = pixScale(pix, scalefact, scalefact); if (outdepth == 1) pixn = pixConvertTo1(pixt, 128); else if (outdepth == 8) pixn = pixConvertTo8(pixt, FALSE); else /* outdepth == 32 */ pixn = pixConvertTo32(pixt); pixDestroy(&pixt); if (border) pixb = pixAddBorder(pixn, border, bordval); else pixb = pixClone(pixn); pixaAddPix(pixan, pixb, L_INSERT); pixDestroy(&pix); pixDestroy(&pixn); } if ((n = pixaGetCount(pixan)) == 0) { /* should not have changed! */ pixaDestroy(&pixan); return (PIX *)ERROR_PTR("no components", procName, NULL); } /* Determine the size of each row and of pixd */ wd = tilewidth * ncols + spacing * (ncols + 1); nrows = (n + ncols - 1) / ncols; if ((rowht = (l_int32 *)CALLOC(nrows, sizeof(l_int32))) == NULL) return (PIX *)ERROR_PTR("rowht array not made", procName, NULL); maxht = 0; ninrow = 0; irow = 0; for (i = 0; i < n; i++) { pix = pixaGetPix(pixan, i, L_CLONE); ninrow++; pixGetDimensions(pix, &w, &h, NULL); maxht = L_MAX(h, maxht); if (ninrow == ncols) { rowht[irow] = maxht; maxht = ninrow = 0; /* reset */ irow++; } pixDestroy(&pix); } if (ninrow > 0) { /* last fencepost */ rowht[irow] = maxht; irow++; /* total number of rows */ } nrows = irow; hd = spacing * (nrows + 1); for (i = 0; i < nrows; i++) hd += rowht[i]; pixd = pixCreate(wd, hd, outdepth); if ((background == 1 && outdepth == 1) || (background == 0 && outdepth != 1)) pixSetAll(pixd); /* Now blit images to pixd */ x = y = spacing; irow = 0; for (i = 0; i < n; i++) { pix = pixaGetPix(pixan, i, L_CLONE); pixGetDimensions(pix, &w, &h, NULL); if (i && ((i % ncols) == 0)) { /* start new row */ x = spacing; y += spacing + rowht[irow]; irow++; } pixRasterop(pixd, x, y, w, h, PIX_SRC, pix, 0, 0); x += tilewidth + spacing; pixDestroy(&pix); } pixaDestroy(&pixan); FREE(rowht); return pixd; }
bool MakeIndividualGlyphs(Pix* pix, const std::vector<BoxChar*>& vbox, const int input_tiff_page) { // If checks fail, return false without exiting text2image if (!pix) { tprintf("ERROR: MakeIndividualGlyphs(): Input Pix* is nullptr\n"); return false; } else if (FLAGS_glyph_resized_size <= 0) { tprintf("ERROR: --glyph_resized_size must be positive\n"); return false; } else if (FLAGS_glyph_num_border_pixels_to_pad < 0) { tprintf("ERROR: --glyph_num_border_pixels_to_pad must be 0 or positive\n"); return false; } const int n_boxes = vbox.size(); int n_boxes_saved = 0; int current_tiff_page = 0; int y_previous = 0; static int glyph_count = 0; for (int i = 0; i < n_boxes; i++) { // Get one bounding box Box* b = vbox[i]->mutable_box(); if (!b) continue; const int x = b->x; const int y = b->y; const int w = b->w; const int h = b->h; // Check present tiff page (for multipage tiff) if (y < y_previous-pixGetHeight(pix)/10) { tprintf("ERROR: Wrap-around encountered, at i=%d\n", i); current_tiff_page++; } if (current_tiff_page < input_tiff_page) continue; else if (current_tiff_page > input_tiff_page) break; // Check box validity if (x < 0 || y < 0 || (x+w-1) >= pixGetWidth(pix) || (y+h-1) >= pixGetHeight(pix)) { tprintf("ERROR: MakeIndividualGlyphs(): Index out of range, at i=%d" " (x=%d, y=%d, w=%d, h=%d\n)", i, x, y, w, h); continue; } else if (w < FLAGS_glyph_num_border_pixels_to_pad && h < FLAGS_glyph_num_border_pixels_to_pad) { tprintf("ERROR: Input image too small to be a character, at i=%d\n", i); continue; } // Crop the boxed character Pix* pix_glyph = pixClipRectangle(pix, b, nullptr); if (!pix_glyph) { tprintf("ERROR: MakeIndividualGlyphs(): Failed to clip, at i=%d\n", i); continue; } // Resize to square Pix* pix_glyph_sq = pixScaleToSize(pix_glyph, FLAGS_glyph_resized_size, FLAGS_glyph_resized_size); if (!pix_glyph_sq) { tprintf("ERROR: MakeIndividualGlyphs(): Failed to resize, at i=%d\n", i); continue; } // Zero-pad Pix* pix_glyph_sq_pad = pixAddBorder(pix_glyph_sq, FLAGS_glyph_num_border_pixels_to_pad, 0); if (!pix_glyph_sq_pad) { tprintf("ERROR: MakeIndividualGlyphs(): Failed to zero-pad, at i=%d\n", i); continue; } // Write out Pix* pix_glyph_sq_pad_8 = pixConvertTo8(pix_glyph_sq_pad, false); char filename[1024]; snprintf(filename, 1024, "%s_%d.jpg", FLAGS_outputbase.c_str(), glyph_count++); if (pixWriteJpeg(filename, pix_glyph_sq_pad_8, 100, 0)) { tprintf("ERROR: MakeIndividualGlyphs(): Failed to write JPEG to %s," " at i=%d\n", filename, i); continue; } pixDestroy(&pix_glyph); pixDestroy(&pix_glyph_sq); pixDestroy(&pix_glyph_sq_pad); pixDestroy(&pix_glyph_sq_pad_8); n_boxes_saved++; y_previous = y; } if (n_boxes_saved == 0) { return false; } else { tprintf("Total number of characters saved = %d\n", n_boxes_saved); return true; } }
int main(int argc, char **argv) { l_int32 w, h, wd, hd; l_float32 deg2rad, angle, conf; PIX *pixs, *pixb1, *pixb2, *pixr, *pixf, *pixd, *pixc; PIXA *pixa; L_REGPARAMS *rp; if (regTestSetup(argc, argv, &rp)) return 1; deg2rad = 3.1415926535 / 180.; pixa = pixaCreate(0); pixs = pixRead("feyn.tif"); pixSetOrClearBorder(pixs, 100, 250, 100, 0, PIX_CLR); pixb1 = pixReduceRankBinaryCascade(pixs, 2, 2, 0, 0); regTestWritePixAndCheck(rp, pixb1, IFF_PNG); /* 0 */ pixDisplayWithTitle(pixb1, 0, 100, NULL, rp->display); /* Add a border and locate and deskew a 40 degree rotation */ pixb2 = pixAddBorder(pixb1, BORDER, 0); pixGetDimensions(pixb2, &w, &h, NULL); pixSaveTiled(pixb2, pixa, 0.5, 1, 20, 8); pixr = pixRotateBySampling(pixb2, w / 2, h / 2, deg2rad * 40., L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pixr, IFF_PNG); /* 1 */ pixSaveTiled(pixr, pixa, 0.5, 0, 20, 0); pixFindSkewSweepAndSearchScorePivot(pixr, &angle, &conf, NULL, 1, 1, 0.0, 45.0, 2.0, 0.03, L_SHEAR_ABOUT_CENTER); fprintf(stderr, "Should be 40 degrees: angle = %7.3f, conf = %7.3f\n", angle, conf); pixf = pixRotateBySampling(pixr, w / 2, h / 2, deg2rad * angle, L_BRING_IN_WHITE); pixd = pixRemoveBorder(pixf, BORDER); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 2 */ pixSaveTiled(pixd, pixa, 0.5, 0, 20, 0); pixDestroy(&pixr); pixDestroy(&pixf); pixDestroy(&pixd); /* Do a rotation larger than 90 degrees using embedding; * Use 2 sets of measurements at 90 degrees to scan the * full range of possible rotation angles. */ pixGetDimensions(pixb1, &w, &h, NULL); pixr = pixRotate(pixb1, deg2rad * 37., L_ROTATE_SAMPLING, L_BRING_IN_WHITE, w, h); regTestWritePixAndCheck(rp, pixr, IFF_PNG); /* 3 */ pixSaveTiled(pixr, pixa, 0.5, 1, 20, 0); startTimer(); pixFindSkewOrthogonalRange(pixr, &angle, &conf, 2, 1, 47.0, 1.0, 0.03, 0.0); fprintf(stderr, "Orth search time: %7.3f sec\n", stopTimer()); fprintf(stderr, "Should be about -128 degrees: angle = %7.3f\n", angle); pixd = pixRotate(pixr, deg2rad * angle, L_ROTATE_SAMPLING, L_BRING_IN_WHITE, w, h); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 4 */ pixGetDimensions(pixd, &wd, &hd, NULL); pixc = pixCreate(w, h, 1); pixRasterop(pixc, 0, 0, w, h, PIX_SRC, pixd, (wd - w) / 2, (hd - h) / 2); regTestWritePixAndCheck(rp, pixc, IFF_PNG); /* 5 */ pixSaveTiled(pixc, pixa, 0.5, 0, 20, 0); pixDestroy(&pixr); pixDestroy(&pixf); pixDestroy(&pixd); pixDestroy(&pixc); pixd = pixaDisplay(pixa, 0, 0); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 6 */ pixDisplayWithTitle(pixd, 100, 100, NULL, rp->display); pixDestroy(&pixd); pixDestroy(&pixs); pixDestroy(&pixb1); pixDestroy(&pixb2); pixaDestroy(&pixa); return regTestCleanup(rp); }
main(int argc, char **argv) { l_int32 i, ok, same; char sequence[512]; PIX *pixs, *pixref; PIX *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6; PIX *pixt7, *pixt8, *pixt9, *pixt10, *pixt11; PIX *pixt12, *pixt13, *pixt14; SEL *sel; static char mainName[] = "binmorph1_reg"; if (argc != 1) exit(ERROR_INT(" Syntax: binmorph1_reg", mainName, 1)); if ((pixs = pixRead("feyn.tif")) == NULL) exit(ERROR_INT("pix not made", mainName, 1)); #if TEST_SYMMETRIC /* This works properly if there is an added border */ resetMorphBoundaryCondition(SYMMETRIC_MORPH_BC); #if 1 pixt1 = pixAddBorder(pixs, 32, 0); pixTransferAllData(pixs, &pixt1, 0, 0); #endif #endif /* TEST_SYMMETRIC */ /* This is our test sel */ sel = selCreateBrick(HEIGHT, WIDTH, HEIGHT / 2, WIDTH / 2, SEL_HIT); /* Dilation */ fprintf(stderr, "Testing dilation\n"); ok = TRUE; pixref = pixDilate(NULL, pixs, sel); /* new one */ pixt1 = pixCreateTemplate(pixs); pixDilate(pixt1, pixs, sel); /* existing one */ pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixt2 = pixCopy(NULL, pixs); pixDilate(pixt2, pixt2, sel); /* in-place */ pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } sprintf(sequence, "d%d.%d", WIDTH, HEIGHT); pixt3 = pixMorphSequence(pixs, sequence, 0); /* sequence, atomic */ pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } sprintf(sequence, "d%d.1 + d1.%d", WIDTH, HEIGHT); pixt4 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable */ pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixt5 = pixDilateBrick(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt5, &same); if (!same) { fprintf(stderr, "pixref != pixt5 !\n"); ok = FALSE; } pixt6 = pixCreateTemplate(pixs); pixDilateBrick(pixt6, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt6, &same); if (!same) { fprintf(stderr, "pixref != pixt6 !\n"); ok = FALSE; } pixt7 = pixCopy(NULL, pixs); pixDilateBrick(pixt7, pixt7, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt7, &same); if (!same) { fprintf(stderr, "pixref != pixt7 !\n"); ok = FALSE; } pixt8 = pixDilateBrickDwa(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt8, &same); if (!same) { fprintf(stderr, "pixref != pixt8 !\n"); ok = FALSE; } pixt9 = pixCreateTemplate(pixs); pixDilateBrickDwa(pixt9, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt9, &same); if (!same) { fprintf(stderr, "pixref != pixt9 !\n"); ok = FALSE; } pixt10 = pixCopy(NULL, pixs); pixDilateBrickDwa(pixt10, pixt10, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt10, &same); if (!same) { fprintf(stderr, "pixref != pixt10 !\n"); ok = FALSE; } pixt11 = pixCreateTemplate(pixs); pixDilateCompBrickDwa(pixt11, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt11, &same); if (!same) { fprintf(stderr, "pixref != pixt11 !\n"); ok = FALSE; } sprintf(sequence, "d%d.%d", WIDTH, HEIGHT); pixt12 = pixMorphCompSequence(pixs, sequence, 0); /* comp sequence */ pixEqual(pixref, pixt12, &same); if (!same) { fprintf(stderr, "pixref != pixt12!\n"); ok = FALSE; } pixt13 = pixMorphSequenceDwa(pixs, sequence, 0); /* dwa sequence */ pixEqual(pixref, pixt13, &same); if (!same) { fprintf(stderr, "pixref != pixt13!\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); pixDestroy(&pixt7); pixDestroy(&pixt8); pixDestroy(&pixt9); pixDestroy(&pixt10); pixDestroy(&pixt11); pixDestroy(&pixt12); pixDestroy(&pixt13); /* Erosion */ fprintf(stderr, "Testing erosion\n"); pixref = pixErode(NULL, pixs, sel); /* new one */ pixt1 = pixCreateTemplate(pixs); pixErode(pixt1, pixs, sel); /* existing one */ pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixt2 = pixCopy(NULL, pixs); pixErode(pixt2, pixt2, sel); /* in-place */ pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } sprintf(sequence, "e%d.%d", WIDTH, HEIGHT); pixt3 = pixMorphSequence(pixs, sequence, 0); /* sequence, atomic */ pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } sprintf(sequence, "e%d.1 + e1.%d", WIDTH, HEIGHT); pixt4 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable */ pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixt5 = pixErodeBrick(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt5, &same); if (!same) { fprintf(stderr, "pixref != pixt5 !\n"); ok = FALSE; } pixt6 = pixCreateTemplate(pixs); pixErodeBrick(pixt6, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt6, &same); if (!same) { fprintf(stderr, "pixref != pixt6 !\n"); ok = FALSE; } pixt7 = pixCopy(NULL, pixs); pixErodeBrick(pixt7, pixt7, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt7, &same); if (!same) { fprintf(stderr, "pixref != pixt7 !\n"); ok = FALSE; } pixt8 = pixErodeBrickDwa(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt8, &same); if (!same) { fprintf(stderr, "pixref != pixt8 !\n"); ok = FALSE; } pixt9 = pixCreateTemplate(pixs); pixErodeBrickDwa(pixt9, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt9, &same); if (!same) { fprintf(stderr, "pixref != pixt9 !\n"); ok = FALSE; } pixt10 = pixCopy(NULL, pixs); pixErodeBrickDwa(pixt10, pixt10, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt10, &same); if (!same) { fprintf(stderr, "pixref != pixt10 !\n"); ok = FALSE; } pixt11 = pixCreateTemplate(pixs); pixErodeCompBrickDwa(pixt11, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt11, &same); if (!same) { fprintf(stderr, "pixref != pixt11 !\n"); ok = FALSE; } sprintf(sequence, "e%d.%d", WIDTH, HEIGHT); pixt12 = pixMorphCompSequence(pixs, sequence, 0); /* comp sequence */ pixEqual(pixref, pixt12, &same); if (!same) { fprintf(stderr, "pixref != pixt12!\n"); ok = FALSE; } pixt13 = pixMorphSequenceDwa(pixs, sequence, 0); /* dwa sequence */ pixEqual(pixref, pixt13, &same); if (!same) { fprintf(stderr, "pixref != pixt13!\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); pixDestroy(&pixt7); pixDestroy(&pixt8); pixDestroy(&pixt9); pixDestroy(&pixt10); pixDestroy(&pixt11); pixDestroy(&pixt12); pixDestroy(&pixt13); /* Opening */ fprintf(stderr, "Testing opening\n"); pixref = pixOpen(NULL, pixs, sel); /* new one */ pixt1 = pixCreateTemplate(pixs); pixOpen(pixt1, pixs, sel); /* existing one */ pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixt2 = pixCopy(NULL, pixs); pixOpen(pixt2, pixt2, sel); /* in-place */ pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } sprintf(sequence, "o%d.%d", WIDTH, HEIGHT); pixt3 = pixMorphSequence(pixs, sequence, 0); /* sequence, atomic */ pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } sprintf(sequence, "e%d.%d + d%d.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt4 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable */ pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } sprintf(sequence, "e%d.1 + e1.%d + d%d.1 + d1.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt5 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable^2 */ pixEqual(pixref, pixt5, &same); if (!same) { fprintf(stderr, "pixref != pixt5 !\n"); ok = FALSE; } pixt6 = pixOpenBrick(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt6, &same); if (!same) { fprintf(stderr, "pixref != pixt6 !\n"); ok = FALSE; } pixt7 = pixCreateTemplate(pixs); pixOpenBrick(pixt7, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt7, &same); if (!same) { fprintf(stderr, "pixref != pixt7 !\n"); ok = FALSE; } pixt8 = pixCopy(NULL, pixs); /* in-place */ pixOpenBrick(pixt8, pixt8, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt8, &same); if (!same) { fprintf(stderr, "pixref != pixt8 !\n"); ok = FALSE; } pixt9 = pixOpenBrickDwa(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt9, &same); if (!same) { fprintf(stderr, "pixref != pixt9 !\n"); ok = FALSE; } pixt10 = pixCreateTemplate(pixs); pixOpenBrickDwa(pixt10, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt10, &same); if (!same) { fprintf(stderr, "pixref != pixt10 !\n"); ok = FALSE; } pixt11 = pixCopy(NULL, pixs); pixOpenBrickDwa(pixt11, pixt11, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt11, &same); if (!same) { fprintf(stderr, "pixref != pixt11 !\n"); ok = FALSE; } sprintf(sequence, "o%d.%d", WIDTH, HEIGHT); pixt12 = pixMorphCompSequence(pixs, sequence, 0); /* comp sequence */ pixEqual(pixref, pixt12, &same); if (!same) { fprintf(stderr, "pixref != pixt12!\n"); ok = FALSE; } #if 0 pixWrite("/tmp/junkref.png", pixref, IFF_PNG); pixWrite("/tmp/junk12.png", pixt12, IFF_PNG); pixt13 = pixXor(NULL, pixref, pixt12); pixWrite("/tmp/junk12a.png", pixt13, IFF_PNG); pixDestroy(&pixt13); #endif pixt13 = pixMorphSequenceDwa(pixs, sequence, 0); /* dwa sequence */ pixEqual(pixref, pixt13, &same); if (!same) { fprintf(stderr, "pixref != pixt13!\n"); ok = FALSE; } pixt14 = pixCreateTemplate(pixs); pixOpenCompBrickDwa(pixt14, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt14, &same); if (!same) { fprintf(stderr, "pixref != pixt14 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); pixDestroy(&pixt7); pixDestroy(&pixt8); pixDestroy(&pixt9); pixDestroy(&pixt10); pixDestroy(&pixt11); pixDestroy(&pixt12); pixDestroy(&pixt13); pixDestroy(&pixt14); /* Closing */ fprintf(stderr, "Testing closing\n"); pixref = pixClose(NULL, pixs, sel); /* new one */ pixt1 = pixCreateTemplate(pixs); pixClose(pixt1, pixs, sel); /* existing one */ pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixt2 = pixCopy(NULL, pixs); pixClose(pixt2, pixt2, sel); /* in-place */ pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } sprintf(sequence, "d%d.%d + e%d.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt3 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable */ pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } sprintf(sequence, "d%d.1 + d1.%d + e%d.1 + e1.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt4 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable^2 */ pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixt5 = pixCloseBrick(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt5, &same); if (!same) { fprintf(stderr, "pixref != pixt5 !\n"); ok = FALSE; } pixt6 = pixCreateTemplate(pixs); pixCloseBrick(pixt6, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt6, &same); if (!same) { fprintf(stderr, "pixref != pixt6 !\n"); ok = FALSE; } pixt7 = pixCopy(NULL, pixs); /* in-place */ pixCloseBrick(pixt7, pixt7, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt7, &same); if (!same) { fprintf(stderr, "pixref != pixt7 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); pixDestroy(&pixt7); /* Safe closing (using pix, not pixs) */ fprintf(stderr, "Testing safe closing\n"); pixref = pixCloseSafe(NULL, pixs, sel); /* new one */ pixt1 = pixCreateTemplate(pixs); pixCloseSafe(pixt1, pixs, sel); /* existing one */ pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixt2 = pixCopy(NULL, pixs); pixCloseSafe(pixt2, pixt2, sel); /* in-place */ pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } sprintf(sequence, "c%d.%d", WIDTH, HEIGHT); pixt3 = pixMorphSequence(pixs, sequence, 0); /* sequence, atomic */ pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } sprintf(sequence, "b32 + d%d.%d + e%d.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt4 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable */ pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } sprintf(sequence, "b32 + d%d.1 + d1.%d + e%d.1 + e1.%d", WIDTH, HEIGHT, WIDTH, HEIGHT); pixt5 = pixMorphSequence(pixs, sequence, 0); /* sequence, separable^2 */ pixEqual(pixref, pixt5, &same); if (!same) { fprintf(stderr, "pixref != pixt5 !\n"); ok = FALSE; } pixt6 = pixCloseSafeBrick(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt6, &same); if (!same) { fprintf(stderr, "pixref != pixt6 !\n"); ok = FALSE; } pixt7 = pixCreateTemplate(pixs); pixCloseSafeBrick(pixt7, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt7, &same); if (!same) { fprintf(stderr, "pixref != pixt7 !\n"); ok = FALSE; } pixt8 = pixCopy(NULL, pixs); /* in-place */ pixCloseSafeBrick(pixt8, pixt8, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt8, &same); if (!same) { fprintf(stderr, "pixref != pixt8 !\n"); ok = FALSE; } pixt9 = pixCloseBrickDwa(NULL, pixs, WIDTH, HEIGHT); /* new one */ pixEqual(pixref, pixt9, &same); if (!same) { fprintf(stderr, "pixref != pixt9 !\n"); ok = FALSE; } pixt10 = pixCreateTemplate(pixs); pixCloseBrickDwa(pixt10, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt10, &same); if (!same) { fprintf(stderr, "pixref != pixt10 !\n"); ok = FALSE; } pixt11 = pixCopy(NULL, pixs); pixCloseBrickDwa(pixt11, pixt11, WIDTH, HEIGHT); /* in-place */ pixEqual(pixref, pixt11, &same); if (!same) { fprintf(stderr, "pixref != pixt11 !\n"); ok = FALSE; } sprintf(sequence, "c%d.%d", WIDTH, HEIGHT); pixt12 = pixMorphCompSequence(pixs, sequence, 0); /* comp sequence */ pixEqual(pixref, pixt12, &same); if (!same) { fprintf(stderr, "pixref != pixt12!\n"); ok = FALSE; } pixt13 = pixMorphSequenceDwa(pixs, sequence, 0); /* dwa sequence */ pixEqual(pixref, pixt13, &same); if (!same) { fprintf(stderr, "pixref != pixt13!\n"); ok = FALSE; } pixt14 = pixCreateTemplate(pixs); pixCloseCompBrickDwa(pixt14, pixs, WIDTH, HEIGHT); /* existing one */ pixEqual(pixref, pixt14, &same); if (!same) { fprintf(stderr, "pixref != pixt14 !\n"); ok = FALSE; } #if 0 pixWrite("/tmp/junkref.png", pixref, IFF_PNG); pixWrite("/tmp/junk12.png", pixt12, IFF_PNG); pixt13 = pixXor(NULL, pixref, pixt12); pixWrite("/tmp/junk12a.png", pixt13, IFF_PNG); pixDestroy(&pixt13); #endif pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); pixDestroy(&pixt7); pixDestroy(&pixt8); pixDestroy(&pixt9); pixDestroy(&pixt10); pixDestroy(&pixt11); pixDestroy(&pixt12); pixDestroy(&pixt13); pixDestroy(&pixt14); if (ok) fprintf(stderr, "All morph tests OK!\n"); pixDestroy(&pixs); selDestroy(&sel); exit(0); }
/*! * pixMorphCompSequenceDwa() * * Input: pixs * sequence (string specifying sequence) * dispsep (horizontal separation in pixels between * successive displays; use zero to suppress display) * Return: pixd, or null on error * * Notes: * (1) This does dwa morphology on binary images, using brick Sels. * (2) This runs a pipeline of operations; no branching is allowed. * (3) It implements all brick Sels that have dimensions up to 63 * on each side, using a composite (linear + comb) when useful. * (4) A new image is always produced; the input image is not changed. * (5) This contains an interpreter, allowing sequences to be * generated and run. * (6) See pixMorphSequence() for further information about usage. */ PIX * pixMorphCompSequenceDwa(PIX *pixs, const char *sequence, l_int32 dispsep) { char *rawop, *op; l_int32 nops, i, j, nred, fact, w, h, x, y, border; l_int32 level[4]; PIX *pixt1, *pixt2; SARRAY *sa; PROCNAME("pixMorphCompSequenceDwa"); if (!pixs) return (PIX *)ERROR_PTR("pixs not defined", procName, NULL); if (!sequence) return (PIX *)ERROR_PTR("sequence not defined", procName, NULL); /* Split sequence into individual operations */ sa = sarrayCreate(0); sarraySplitString(sa, sequence, "+"); nops = sarrayGetCount(sa); if (!morphSequenceVerify(sa)) { sarrayDestroy(&sa); return (PIX *)ERROR_PTR("sequence not valid", procName, NULL); } /* Parse and operate */ border = 0; pixt1 = pixCopy(NULL, pixs); pixt2 = NULL; x = y = 0; for (i = 0; i < nops; i++) { rawop = sarrayGetString(sa, i, 0); op = stringRemoveChars(rawop, " \n\t"); switch (op[0]) { case 'd': case 'D': sscanf(&op[1], "%d.%d", &w, &h); pixt2 = pixDilateCompBrickDwa(NULL, pixt1, w, h); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'e': case 'E': sscanf(&op[1], "%d.%d", &w, &h); pixt2 = pixErodeCompBrickDwa(NULL, pixt1, w, h); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'o': case 'O': sscanf(&op[1], "%d.%d", &w, &h); pixOpenCompBrickDwa(pixt1, pixt1, w, h); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'c': case 'C': sscanf(&op[1], "%d.%d", &w, &h); pixCloseCompBrickDwa(pixt1, pixt1, w, h); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'r': case 'R': nred = strlen(op) - 1; for (j = 0; j < nred; j++) level[j] = op[j + 1] - '0'; for (j = nred; j < 4; j++) level[j] = 0; pixt2 = pixReduceRankBinaryCascade(pixt1, level[0], level[1], level[2], level[3]); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'x': case 'X': sscanf(&op[1], "%d", &fact); pixt2 = pixExpandReplicate(pixt1, fact); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; case 'b': case 'B': sscanf(&op[1], "%d", &border); pixt2 = pixAddBorder(pixt1, border, 0); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } break; default: /* All invalid ops are caught in the first pass */ break; } FREE(op); } if (border > 0) { pixt2 = pixRemoveBorder(pixt1, border); pixDestroy(&pixt1); pixt1 = pixClone(pixt2); pixDestroy(&pixt2); } sarrayDestroy(&sa); return pixt1; }
int main(int argc, char **argv) { char bufname[256]; l_int32 i, w, h; l_float32 *mat1, *mat2, *mat3, *mat1i, *mat2i, *mat3i, *matdinv; l_float32 matd[9], matdi[9]; BOXA *boxa, *boxa2; PIX *pix, *pixs, *pixb, *pixg, *pixc, *pixcs; PIX *pixd, *pix1, *pix2, *pix3; PIXA *pixa; PTA *ptas, *ptad; L_REGPARAMS *rp; if (regTestSetup(argc, argv, &rp)) return 1; pix = pixRead("feyn.tif"); pixs = pixScale(pix, 0.22, 0.22); pixDestroy(&pix); #if ALL /* Test invertability of sequential. */ fprintf(stderr, "Test invertability of sequential\n"); pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0); MakePtas(i, &ptas, &ptad); pix1 = pixAffineSequential(pixb, ptad, ptas, 0, 0); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 0,3,6 */ pixaAddPix(pixa, pix1, L_INSERT); pix2 = pixAffineSequential(pix1, ptas, ptad, 0, 0); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 1,4,7 */ pixaAddPix(pixa, pix2, L_INSERT); pixd = pixRemoveBorder(pix2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixs); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 2,5,8 */ pixaAddPix(pixa, pixd, L_INSERT); pixDestroy(&pixb); ptaDestroy(&ptas); ptaDestroy(&ptad); } pix1 = pixaDisplayTiledInColumns(pixa, 3, 1.0, 20, 3); pix2 = pixScaleToGray(pix1, 0.2); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 9 */ pixDisplayWithTitle(pix2, 0, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of sampling */ fprintf(stderr, "Test invertability of sampling\n"); pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0); MakePtas(i, &ptas, &ptad); pix1 = pixAffineSampledPta(pixb, ptad, ptas, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 10,13,16 */ pixaAddPix(pixa, pix1, L_INSERT); pix2 = pixAffineSampledPta(pix1, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 11,14,17 */ pixaAddPix(pixa, pix2, L_INSERT); pixd = pixRemoveBorder(pix2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixs); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 12,15,18 */ pixaAddPix(pixa, pixd, L_INSERT); pixDestroy(&pixb); ptaDestroy(&ptas); ptaDestroy(&ptad); } pix1 = pixaDisplayTiledInColumns(pixa, 3, 1.0, 20, 3); pix2 = pixScaleToGray(pix1, 0.2); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 19 */ pixDisplayWithTitle(pix2, 200, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pixs); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of interpolation on grayscale */ fprintf(stderr, "Test invertability of grayscale interpolation\n"); pix = pixRead("feyn.tif"); pixg = pixScaleToGray3(pix); pixDestroy(&pix); pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixg, ADDED_BORDER_PIXELS / 3, 255); MakePtas(i, &ptas, &ptad); pix1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG); /* 20,23,26 */ pixaAddPix(pixa, pix1, L_INSERT); pix2 = pixAffinePta(pix1, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG); /* 21,24,27 */ pixaAddPix(pixa, pix2, L_INSERT); pixd = pixRemoveBorder(pix2, ADDED_BORDER_PIXELS / 3); pixXor(pixd, pixd, pixg); pixInvert(pixd, pixd); regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG); /* 22,25,28 */ pixaAddPix(pixa, pixd, L_INSERT); pixDestroy(&pixb); ptaDestroy(&ptas); ptaDestroy(&ptad); } pix1 = pixaDisplayTiledInColumns(pixa, 3, 1.0, 20, 3); pix2 = pixScale(pix1, 0.2, 0.2); regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG); /* 29 */ pixDisplayWithTitle(pix2, 400, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pixg); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of interpolation on color */ fprintf(stderr, "Test invertability of color interpolation\n"); pixa = pixaCreate(0); pixc = pixRead("test24.jpg"); pixcs = pixScale(pixc, 0.3, 0.3); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixcs, ADDED_BORDER_PIXELS / 4, 0xffffff00); MakePtas(i, &ptas, &ptad); pix1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG); /* 30,33,36 */ pixaAddPix(pixa, pix1, L_INSERT); pix2 = pixAffinePta(pix1, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG); /* 31,34,37 */ pixaAddPix(pixa, pix2, L_INSERT); pixd = pixRemoveBorder(pix2, ADDED_BORDER_PIXELS / 4); pixXor(pixd, pixd, pixcs); pixInvert(pixd, pixd); regTestWritePixAndCheck(rp, pixd, IFF_JFIF_JPEG); /* 32,35,38 */ pixaAddPix(pixa, pixd, L_INSERT); pixDestroy(&pixb); ptaDestroy(&ptas); ptaDestroy(&ptad); } pix1 = pixaDisplayTiledInColumns(pixa, 3, 1.0, 20, 3); pix2 = pixScale(pix1, 0.25, 0.25); regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG); /* 39 */ pixDisplayWithTitle(pix2, 600, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pixc); pixaDestroy(&pixa); #endif #if ALL /* Comparison between sequential and sampling */ fprintf(stderr, "Compare sequential with sampling\n"); pix = pixRead("feyn.tif"); pixs = pixScale(pix, 0.22, 0.22); pixDestroy(&pix); MakePtas(3, &ptas, &ptad); pixa = pixaCreate(0); /* Use sequential transforms */ pix1 = pixAffineSequential(pixs, ptas, ptad, ADDED_BORDER_PIXELS, ADDED_BORDER_PIXELS); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 40 */ pixaAddPix(pixa, pix1, L_INSERT); /* Use sampled transform */ pix2 = pixAffineSampledPta(pixs, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 41 */ pixaAddPix(pixa, pix2, L_COPY); /* Compare the results */ pixXor(pix2, pix2, pix1); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 42 */ pixaAddPix(pixa, pix2, L_INSERT); pix1 = pixaDisplayTiledInColumns(pixa, 3, 1.0, 20, 3); pix2 = pixScale(pix1, 0.5, 0.5); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 43 */ pixDisplayWithTitle(pix2, 800, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pixs); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif #if ALL /* Test with large distortion */ fprintf(stderr, "Test with large distortion\n"); MakePtas(4, &ptas, &ptad); pixa = pixaCreate(0); pix = pixRead("feyn.tif"); pixg = pixScaleToGray6(pix); pixDestroy(&pix); pix1 = pixAffineSequential(pixg, ptas, ptad, 0, 0); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 44 */ pixaAddPix(pixa, pix1, L_COPY); pix2 = pixAffineSampledPta(pixg, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 45 */ pixaAddPix(pixa, pix2, L_COPY); pix3 = pixAffinePta(pixg, ptas, ptad, L_BRING_IN_WHITE); regTestWritePixAndCheck(rp, pix3, IFF_PNG); /* 46 */ pixaAddPix(pixa, pix3, L_INSERT); pixXor(pix1, pix1, pix2); pixInvert(pix1, pix1); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 47 */ pixaAddPix(pixa, pix1, L_INSERT); pixXor(pix2, pix2, pix3); pixInvert(pix2, pix2); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 48 */ pixaAddPix(pixa, pix2, L_INSERT); pix1 = pixaDisplayTiledInColumns(pixa, 5, 1.0, 20, 3); pix2 = pixScale(pix1, 0.8, 0.8); regTestWritePixAndCheck(rp, pix2, IFF_PNG); /* 49 */ pixDisplayWithTitle(pix2, 1000, 100, NULL, rp->display); pixDestroy(&pix1); pixDestroy(&pix2); pixDestroy(&pixg); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif #if ALL /* Set up pix and boxa */ fprintf(stderr, "Test affine transforms and inverses on pix and boxa\n"); pixa = pixaCreate(0); pix = pixRead("lucasta.1.300.tif"); pixTranslate(pix, pix, 70, 0, L_BRING_IN_WHITE); pix1 = pixCloseBrick(NULL, pix, 14, 5); pixOpenBrick(pix1, pix1, 1, 2); boxa = pixConnComp(pix1, NULL, 8); pixs = pixConvertTo32(pix); pixGetDimensions(pixs, &w, &h, NULL); pixc = pixCopy(NULL, pixs); RenderHashedBoxa(pixc, boxa, 113); regTestWritePixAndCheck(rp, pixc, IFF_PNG); /* 50 */ pixaAddPix(pixa, pixc, L_INSERT); pixDestroy(&pix); pixDestroy(&pix1); /* Set up an affine transform in matd, and apply it to boxa */ mat1 = createMatrix2dTranslate(SHIFTX, SHIFTY); mat2 = createMatrix2dScale(SCALEX, SCALEY); mat3 = createMatrix2dRotate(w / 2, h / 2, ROTATION); l_productMat3(mat3, mat2, mat1, matd, 3); boxa2 = boxaAffineTransform(boxa, matd); /* Set up the inverse transform --> matdi */ mat1i = createMatrix2dTranslate(-SHIFTX, -SHIFTY); mat2i = createMatrix2dScale(1.0/ SCALEX, 1.0 / SCALEY); mat3i = createMatrix2dRotate(w / 2, h / 2, -ROTATION); l_productMat3(mat1i, mat2i, mat3i, matdi, 3); /* Invert the original affine transform --> matdinv */ affineInvertXform(matd, &matdinv); if (rp->display) { fprintf(stderr, " Affine transform, applied to boxa\n"); for (i = 0; i < 9; i++) { if (i && (i % 3 == 0)) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matd[i]); } fprintf(stderr, "\n Inverse transform, by composing inverse parts"); for (i = 0; i < 9; i++) { if (i % 3 == 0) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matdi[i]); } fprintf(stderr, "\n Inverse transform, by inverting affine xform"); for (i = 0; i < 6; i++) { if (i % 3 == 0) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matdinv[i]); } fprintf(stderr, "\n"); } /* Apply the inverted affine transform --> pixs */ pixd = pixAffine(pixs, matdinv, L_BRING_IN_WHITE); RenderHashedBoxa(pixd, boxa2, 513); regTestWritePixAndCheck(rp, pixd, IFF_PNG); /* 51 */ pixaAddPix(pixa, pixd, L_INSERT); pix1 = pixaDisplayTiledInColumns(pixa, 2, 1.0, 30, 2); regTestWritePixAndCheck(rp, pix1, IFF_PNG); /* 52 */ pixDisplayWithTitle(pix1, 1200, 100, NULL, rp->display); pixDestroy(&pix1); pixaDestroy(&pixa); pixDestroy(&pixs); boxaDestroy(&boxa); boxaDestroy(&boxa2); lept_free(mat1); lept_free(mat2); lept_free(mat3); lept_free(mat1i); lept_free(mat2i); lept_free(mat3i); lept_free(matdinv); #endif return regTestCleanup(rp); }
/*! * pixProjectivePtaWithAlpha() * * Input: pixs (32 bpp rgb) * ptad (4 pts of final coordinate space) * ptas (4 pts of initial coordinate space) * pixg (<optional> 8 bpp, for alpha channel, can be null) * fract (between 0.0 and 1.0, with 0.0 fully transparent * and 1.0 fully opaque) * border (of pixels added to capture transformed source pixels) * Return: pixd, or null on error * * Notes: * (1) The alpha channel is transformed separately from pixs, * and aligns with it, being fully transparent outside the * boundary of the transformed pixs. For pixels that are fully * transparent, a blending function like pixBlendWithGrayMask() * will give zero weight to corresponding pixels in pixs. * (2) If pixg is NULL, it is generated as an alpha layer that is * partially opaque, using @fract. Otherwise, it is cropped * to pixs if required and @fract is ignored. The alpha channel * in pixs is never used. * (3) Colormaps are removed. * (4) When pixs is transformed, it doesn't matter what color is brought * in because the alpha channel will be transparent (0) there. * (5) To avoid losing source pixels in the destination, it may be * necessary to add a border to the source pix before doing * the projective transformation. This can be any non-negative * number. * (6) The input @ptad and @ptas are in a coordinate space before * the border is added. Internally, we compensate for this * before doing the projective transform on the image after * the border is added. * (7) The default setting for the border values in the alpha channel * is 0 (transparent) for the outermost ring of pixels and * (0.5 * fract * 255) for the second ring. When blended over * a second image, this * (a) shrinks the visible image to make a clean overlap edge * with an image below, and * (b) softens the edges by weakening the aliasing there. * Use l_setAlphaMaskBorder() to change these values. */ PIX * pixProjectivePtaWithAlpha(PIX *pixs, PTA *ptad, PTA *ptas, PIX *pixg, l_float32 fract, l_int32 border) { l_int32 ws, hs, d; PIX *pixd, *pixb1, *pixb2, *pixg2, *pixga; PTA *ptad2, *ptas2; PROCNAME("pixProjectivePtaWithAlpha"); if (!pixs) return (PIX *)ERROR_PTR("pixs not defined", procName, NULL); pixGetDimensions(pixs, &ws, &hs, &d); if (d != 32 && pixGetColormap(pixs) == NULL) return (PIX *)ERROR_PTR("pixs not cmapped or 32 bpp", procName, NULL); if (pixg && pixGetDepth(pixg) != 8) { L_WARNING("pixg not 8 bpp; using @fract transparent alpha", procName); pixg = NULL; } if (!pixg && (fract < 0.0 || fract > 1.0)) { L_WARNING("invalid fract; using 1.0 (fully transparent)", procName); fract = 1.0; } if (!pixg && fract == 0.0) L_WARNING("fully opaque alpha; image will not be blended", procName); if (!ptad) return (PIX *)ERROR_PTR("ptad not defined", procName, NULL); if (!ptas) return (PIX *)ERROR_PTR("ptas not defined", procName, NULL); /* Add border; the color doesn't matter */ pixb1 = pixAddBorder(pixs, border, 0); /* Transform the ptr arrays to work on the bordered image */ ptad2 = ptaTransform(ptad, border, border, 1.0, 1.0); ptas2 = ptaTransform(ptas, border, border, 1.0, 1.0); /* Do separate projective transform of rgb channels of pixs * and of pixg */ pixd = pixProjectivePtaColor(pixb1, ptad2, ptas2, 0); if (!pixg) { pixg2 = pixCreate(ws, hs, 8); if (fract == 1.0) pixSetAll(pixg2); else pixSetAllArbitrary(pixg2, (l_int32)(255.0 * fract)); } else pixg2 = pixResizeToMatch(pixg, NULL, ws, hs); if (ws > 10 && hs > 10) { /* see note 7 */ pixSetBorderRingVal(pixg2, 1, (l_int32)(255.0 * fract * AlphaMaskBorderVals[0])); pixSetBorderRingVal(pixg2, 2, (l_int32)(255.0 * fract * AlphaMaskBorderVals[1])); } pixb2 = pixAddBorder(pixg2, border, 0); /* must be black border */ pixga = pixProjectivePtaGray(pixb2, ptad2, ptas2, 0); pixSetRGBComponent(pixd, pixga, L_ALPHA_CHANNEL); pixDestroy(&pixg2); pixDestroy(&pixb1); pixDestroy(&pixb2); pixDestroy(&pixga); ptaDestroy(&ptad2); ptaDestroy(&ptas2); return pixd; }
/*! * \brief pixMorphCompSequenceDwa() * * \param[in] pixs * \param[in] sequence string specifying sequence * \param[in] dispsep controls debug display of each result in the sequence: * 0: no output * > 0: gives horizontal separation in pixels between * successive displays * < 0: pdf output; abs(dispsep) is used for naming * \return pixd, or NULL on error * * <pre> * Notes: * (1) This does dwa morphology on binary images, using brick Sels. * (2) This runs a pipeline of operations; no branching is allowed. * (3) It implements all brick Sels that have dimensions up to 63 * on each side, using a composite (linear + comb) when useful. * (4) A new image is always produced; the input image is not changed. * (5) This contains an interpreter, allowing sequences to be * generated and run. * (6) See pixMorphSequence() for further information about usage. * </pre> */ PIX * pixMorphCompSequenceDwa(PIX *pixs, const char *sequence, l_int32 dispsep) { char *rawop, *op, *fname; char buf[256]; l_int32 nops, i, j, nred, fact, w, h, x, y, border, pdfout; l_int32 level[4]; PIX *pixt1, *pixt2; PIXA *pixa; SARRAY *sa; PROCNAME("pixMorphCompSequenceDwa"); if (!pixs) return (PIX *)ERROR_PTR("pixs not defined", procName, NULL); if (!sequence) return (PIX *)ERROR_PTR("sequence not defined", procName, NULL); /* Split sequence into individual operations */ sa = sarrayCreate(0); sarraySplitString(sa, sequence, "+"); nops = sarrayGetCount(sa); pdfout = (dispsep < 0) ? 1 : 0; if (!morphSequenceVerify(sa)) { sarrayDestroy(&sa); return (PIX *)ERROR_PTR("sequence not valid", procName, NULL); } /* Parse and operate */ pixa = NULL; if (pdfout) { pixa = pixaCreate(0); pixaAddPix(pixa, pixs, L_CLONE); snprintf(buf, sizeof(buf), "/tmp/seq_output_%d.pdf", L_ABS(dispsep)); fname = genPathname(buf, NULL); } border = 0; pixt1 = pixCopy(NULL, pixs); pixt2 = NULL; x = y = 0; for (i = 0; i < nops; i++) { rawop = sarrayGetString(sa, i, L_NOCOPY); op = stringRemoveChars(rawop, " \n\t"); switch (op[0]) { case 'd': case 'D': sscanf(&op[1], "%d.%d", &w, &h); pixt2 = pixDilateCompBrickDwa(NULL, pixt1, w, h); pixSwapAndDestroy(&pixt1, &pixt2); break; case 'e': case 'E': sscanf(&op[1], "%d.%d", &w, &h); pixt2 = pixErodeCompBrickDwa(NULL, pixt1, w, h); pixSwapAndDestroy(&pixt1, &pixt2); break; case 'o': case 'O': sscanf(&op[1], "%d.%d", &w, &h); pixOpenCompBrickDwa(pixt1, pixt1, w, h); break; case 'c': case 'C': sscanf(&op[1], "%d.%d", &w, &h); pixCloseCompBrickDwa(pixt1, pixt1, w, h); break; case 'r': case 'R': nred = strlen(op) - 1; for (j = 0; j < nred; j++) level[j] = op[j + 1] - '0'; for (j = nred; j < 4; j++) level[j] = 0; pixt2 = pixReduceRankBinaryCascade(pixt1, level[0], level[1], level[2], level[3]); pixSwapAndDestroy(&pixt1, &pixt2); break; case 'x': case 'X': sscanf(&op[1], "%d", &fact); pixt2 = pixExpandReplicate(pixt1, fact); pixSwapAndDestroy(&pixt1, &pixt2); break; case 'b': case 'B': sscanf(&op[1], "%d", &border); pixt2 = pixAddBorder(pixt1, border, 0); pixSwapAndDestroy(&pixt1, &pixt2); break; default: /* All invalid ops are caught in the first pass */ break; } LEPT_FREE(op); /* Debug output */ if (dispsep > 0) { pixDisplay(pixt1, x, y); x += dispsep; } if (pdfout) pixaAddPix(pixa, pixt1, L_COPY); } if (border > 0) { pixt2 = pixRemoveBorder(pixt1, border); pixSwapAndDestroy(&pixt1, &pixt2); } if (pdfout) { pixaConvertToPdf(pixa, 0, 1.0, L_FLATE_ENCODE, 0, fname, fname); LEPT_FREE(fname); pixaDestroy(&pixa); } sarrayDestroy(&sa); return pixt1; }
main(int argc, char **argv) { char *selnameh, *selnamev; l_int32 ok, same, w, h, i, bordercolor, extraborder; l_int32 width[3] = {21, 1, 21}; l_int32 height[3] = {1, 7, 7}; PIX *pixs, *pixref; PIX *pixt0, *pixt1, *pixt2, *pixt3, *pixt4; SEL *sel; SELA *sela; static char mainName[] = "binmorph3_reg"; if (argc != 1) exit(ERROR_INT(" Syntax: binmorph3_reg", mainName, 1)); if ((pixs = pixRead("feyn.tif")) == NULL) exit(ERROR_INT("pix not made", mainName, 1)); #if TEST_SYMMETRIC resetMorphBoundaryCondition(SYMMETRIC_MORPH_BC); #endif /* TEST_SYMMETRIC */ for (i = 0; i < 3; i++) { w = width[i]; h = height[i]; sel = selCreateBrick(h, w, h / 2, w / 2, SEL_HIT); selnameh = NULL; selnamev = NULL; /* Get the selnames for horiz and vert */ sela = selaAddBasic(NULL); if (w > 1) { if ((selnameh = selaGetBrickName(sela, w, 1)) == NULL) { selaDestroy(&sela); return ERROR_INT("dwa hor sel not defined", mainName, 1); } } if (h > 1) { if ((selnamev = selaGetBrickName(sela, 1, h)) == NULL) { selaDestroy(&sela); return ERROR_INT("dwa vert sel not defined", mainName, 1); } } fprintf(stderr, "w = %d, h = %d, selh = %s, selv = %s\n", w, h, selnameh, selnamev); ok = TRUE; selaDestroy(&sela); /* ----------------- Dilation ----------------- */ fprintf(stderr, "Testing dilation\n"); pixref = pixDilate(NULL, pixs, sel); pixt1 = pixDilateBrickDwa(NULL, pixs, w, h); pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixDestroy(&pixt1); if (w > 1) pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_DILATE, selnameh); else pixt1 = pixClone(pixs); if (h > 1) pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_DILATE, selnamev); else pixt2 = pixClone(pixt1); pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } pixDestroy(&pixt1); pixDestroy(&pixt2); pixt1 = pixAddBorder(pixs, 32, 0); if (w > 1) pixt2 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_DILATE, selnameh); else pixt2 = pixClone(pixt1); if (h > 1) pixt3 = pixFMorphopGen_1(NULL, pixt2, L_MORPH_DILATE, selnamev); else pixt3 = pixClone(pixt2); pixt4 = pixRemoveBorder(pixt3, 32); pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); /* ----------------- Erosion ----------------- */ fprintf(stderr, "Testing erosion\n"); pixref = pixErode(NULL, pixs, sel); pixt1 = pixErodeBrickDwa(NULL, pixs, w, h); pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixDestroy(&pixt1); if (w > 1) pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_ERODE, selnameh); else pixt1 = pixClone(pixs); if (h > 1) pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_ERODE, selnamev); else pixt2 = pixClone(pixt1); pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } pixDestroy(&pixt1); pixDestroy(&pixt2); pixt1 = pixAddBorder(pixs, 32, 0); if (w > 1) pixt2 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_ERODE, selnameh); else pixt2 = pixClone(pixt1); if (h > 1) pixt3 = pixFMorphopGen_1(NULL, pixt2, L_MORPH_ERODE, selnamev); else pixt3 = pixClone(pixt2); pixt4 = pixRemoveBorder(pixt3, 32); pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); /* ----------------- Opening ----------------- */ fprintf(stderr, "Testing opening\n"); pixref = pixOpen(NULL, pixs, sel); pixt1 = pixOpenBrickDwa(NULL, pixs, w, h); pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixDestroy(&pixt1); if (h == 1) pixt2 = pixMorphDwa_1(NULL, pixs, L_MORPH_OPEN, selnameh); else if (w == 1) pixt2 = pixMorphDwa_1(NULL, pixs, L_MORPH_OPEN, selnamev); else { pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_ERODE, selnameh); pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_ERODE, selnamev); pixMorphDwa_1(pixt1, pixt2, L_MORPH_DILATE, selnameh); pixMorphDwa_1(pixt2, pixt1, L_MORPH_DILATE, selnamev); pixDestroy(&pixt1); } pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } pixDestroy(&pixt2); pixt1 = pixAddBorder(pixs, 32, 0); if (h == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_OPEN, selnameh); else if (w == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_OPEN, selnamev); else { pixt2 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_ERODE, selnameh); pixt3 = pixFMorphopGen_1(NULL, pixt2, L_MORPH_ERODE, selnamev); pixFMorphopGen_1(pixt2, pixt3, L_MORPH_DILATE, selnameh); pixFMorphopGen_1(pixt3, pixt2, L_MORPH_DILATE, selnamev); pixDestroy(&pixt2); } pixt4 = pixRemoveBorder(pixt3, 32); pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt3); pixDestroy(&pixt4); /* ----------------- Closing ----------------- */ fprintf(stderr, "Testing closing\n"); pixref = pixClose(NULL, pixs, sel); /* Note: L_MORPH_CLOSE for h==1 or w==1 gives safe closing, * so we can't use it here. */ if (h == 1) { pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_DILATE, selnameh); pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_ERODE, selnameh); } else if (w == 1) { pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_DILATE, selnamev); pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_ERODE, selnamev); } else { pixt1 = pixMorphDwa_1(NULL, pixs, L_MORPH_DILATE, selnameh); pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_DILATE, selnamev); pixMorphDwa_1(pixt1, pixt2, L_MORPH_ERODE, selnameh); pixMorphDwa_1(pixt2, pixt1, L_MORPH_ERODE, selnamev); } pixDestroy(&pixt1); pixEqual(pixref, pixt2, &same); if (!same) { fprintf(stderr, "pixref != pixt2 !\n"); ok = FALSE; } pixDestroy(&pixt2); /* Note: by adding only 32 pixels of border, we get * the normal closing operation, even when calling * with L_MORPH_CLOSE, because it requires 32 pixels * of border to be safe. */ pixt1 = pixAddBorder(pixs, 32, 0); if (h == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_CLOSE, selnameh); else if (w == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_CLOSE, selnamev); else { pixt2 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_DILATE, selnameh); pixt3 = pixFMorphopGen_1(NULL, pixt2, L_MORPH_DILATE, selnamev); pixFMorphopGen_1(pixt2, pixt3, L_MORPH_ERODE, selnameh); pixFMorphopGen_1(pixt3, pixt2, L_MORPH_ERODE, selnamev); pixDestroy(&pixt2); } pixt4 = pixRemoveBorder(pixt3, 32); pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt3); pixDestroy(&pixt4); /* ------------- Safe Closing ----------------- */ fprintf(stderr, "Testing safe closing\n"); pixref = pixCloseSafe(NULL, pixs, sel); pixt0 = pixCloseSafeBrick(NULL, pixs, w, h); pixEqual(pixref, pixt0, &same); if (!same) { fprintf(stderr, "pixref != pixt0 !\n"); ok = FALSE; } pixDestroy(&pixt0); pixt1 = pixCloseBrickDwa(NULL, pixs, w, h); pixEqual(pixref, pixt1, &same); if (!same) { fprintf(stderr, "pixref != pixt1 !\n"); ok = FALSE; } pixDestroy(&pixt1); bordercolor = getMorphBorderPixelColor(L_MORPH_ERODE, 1); if (bordercolor == 0) /* asymmetric b.c. */ extraborder = 32; else /* symmetric b.c. */ extraborder = 0; /* Note: for safe closing we need 64 border pixels. * However, when we implement a separable Sel * with pixMorphDwa_*(), we must do dilation and * erosion explicitly, and these functions only * add/remove a 32-pixel border. Thus, for that * case we must add an additional 32-pixel border * before doing the operations. That is the reason * why the implementation in morphdwa.c adds the * 64 bit border and then uses the lower-level * pixFMorphopGen_*() functions. */ if (h == 1) pixt3 = pixMorphDwa_1(NULL, pixs, L_MORPH_CLOSE, selnameh); else if (w == 1) pixt3 = pixMorphDwa_1(NULL, pixs, L_MORPH_CLOSE, selnamev); else { pixt0 = pixAddBorder(pixs, extraborder, 0); pixt1 = pixMorphDwa_1(NULL, pixt0, L_MORPH_DILATE, selnameh); pixt2 = pixMorphDwa_1(NULL, pixt1, L_MORPH_DILATE, selnamev); pixMorphDwa_1(pixt1, pixt2, L_MORPH_ERODE, selnameh); pixMorphDwa_1(pixt2, pixt1, L_MORPH_ERODE, selnamev); pixt3 = pixRemoveBorder(pixt2, extraborder); pixDestroy(&pixt0); pixDestroy(&pixt1); pixDestroy(&pixt2); } pixEqual(pixref, pixt3, &same); if (!same) { fprintf(stderr, "pixref != pixt3 !\n"); ok = FALSE; } pixDestroy(&pixt3); pixt1 = pixAddBorder(pixs, 32 + extraborder, 0); if (h == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_CLOSE, selnameh); else if (w == 1) pixt3 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_CLOSE, selnamev); else { pixt2 = pixFMorphopGen_1(NULL, pixt1, L_MORPH_DILATE, selnameh); pixt3 = pixFMorphopGen_1(NULL, pixt2, L_MORPH_DILATE, selnamev); pixFMorphopGen_1(pixt2, pixt3, L_MORPH_ERODE, selnameh); pixFMorphopGen_1(pixt3, pixt2, L_MORPH_ERODE, selnamev); pixDestroy(&pixt2); } pixt4 = pixRemoveBorder(pixt3, 32 + extraborder); pixEqual(pixref, pixt4, &same); if (!same) { fprintf(stderr, "pixref != pixt4 !\n"); ok = FALSE; } pixDestroy(&pixref); pixDestroy(&pixt1); pixDestroy(&pixt3); pixDestroy(&pixt4); if (ok) fprintf(stderr, "All morph tests OK!\n"); selDestroy(&sel); lept_free(selnameh); lept_free(selnamev); } pixDestroy(&pixs); return 0; }
main(int argc, char **argv) { char bufname[256]; l_int32 i, j, w, h, d, x, y, wpls; l_uint32 *datas, *lines; l_float32 *vc; l_float32 *mat1, *mat2, *mat3, *mat1i, *mat2i, *mat3i, *matdinv; l_float32 matd[9], matdi[9]; BOXA *boxa, *boxa2; PIX *pix, *pixs, *pixb, *pixg, *pixc, *pixcs; PIX *pixd, *pixt1, *pixt2, *pixt3; PIXA *pixa; PTA *ptas, *ptad; static char mainName[] = "affine_reg"; if (argc != 1) exit(ERROR_INT(" Syntax: affine_reg", mainName, 1)); if ((pixs = pixRead("feyn.tif")) == NULL) exit(ERROR_INT("pixs not made", mainName, 1)); #if ALL /* Test invertability of sequential. */ pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0); MakePtas(i, &ptas, &ptad); pixt1 = pixAffineSequential(pixb, ptad, ptas, 0, 0); pixSaveTiled(pixt1, pixa, 3, 1, 20, 8); pixt2 = pixAffineSequential(pixt1, ptas, ptad, 0, 0); pixSaveTiled(pixt2, pixa, 3, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixs); pixSaveTiled(pixd, pixa, 3, 0, 20, 0); sprintf(bufname, "/tmp/junkseq%d.png", i); pixWrite(bufname, pixd, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine1.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 100); pixDestroy(&pixt1); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of sampling */ pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0); MakePtas(i, &ptas, &ptad); pixt1 = pixAffineSampledPta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 3, 1, 20, 8); pixt2 = pixAffineSampledPta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 3, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixs); pixSaveTiled(pixd, pixa, 3, 0, 20, 0); if (i == 0) pixWrite("/tmp/junksamp.png", pixt1, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine2.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 300); pixDestroy(&pixt1); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of interpolation on grayscale */ pixa = pixaCreate(0); pixg = pixScaleToGray3(pixs); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixg, ADDED_BORDER_PIXELS / 3, 255); MakePtas(i, &ptas, &ptad); pixt1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); pixt2 = pixAffinePta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 1, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS / 3); pixXor(pixd, pixd, pixg); pixSaveTiled(pixd, pixa, 1, 0, 20, 0); if (i == 0) pixWrite("/tmp/junkinterp.png", pixt1, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine3.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 500); pixDestroy(&pixt1); pixaDestroy(&pixa); pixDestroy(&pixg); #endif #if ALL /* Test invertability of interpolation on color */ pixa = pixaCreate(0); pixc = pixRead("test24.jpg"); pixcs = pixScale(pixc, 0.3, 0.3); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixcs, ADDED_BORDER_PIXELS / 4, 0xffffff00); MakePtas(i, &ptas, &ptad); pixt1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 1, 1, 20, 32); pixt2 = pixAffinePta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 1, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS / 4); pixXor(pixd, pixd, pixcs); pixSaveTiled(pixd, pixa, 1, 0, 20, 0); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine4.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 500); pixDestroy(&pixt1); pixaDestroy(&pixa); pixDestroy(&pixc); pixDestroy(&pixcs); #endif #if ALL /* Comparison between sequential and sampling */ MakePtas(3, &ptas, &ptad); pixa = pixaCreate(0); /* Use sequential transforms */ pixt1 = pixAffineSequential(pixs, ptas, ptad, ADDED_BORDER_PIXELS, ADDED_BORDER_PIXELS); pixSaveTiled(pixt1, pixa, 2, 0, 20, 8); /* Use sampled transform */ pixt2 = pixAffineSampledPta(pixs, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 2, 0, 20, 8); /* Compare the results */ pixXor(pixt2, pixt2, pixt1); pixSaveTiled(pixt2, pixa, 2, 0, 20, 8); pixd = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine5.png", pixd, IFF_PNG); pixDisplay(pixd, 100, 700); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif #if ALL /* Get timings and test with large distortion */ MakePtas(4, &ptas, &ptad); pixa = pixaCreate(0); pixg = pixScaleToGray3(pixs); startTimer(); pixt1 = pixAffineSequential(pixg, ptas, ptad, 0, 0); fprintf(stderr, " Time for pixAffineSequentialPta(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); startTimer(); pixt2 = pixAffineSampledPta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixAffineSampledPta(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt2, pixa, 1, 0, 20, 8); startTimer(); pixt3 = pixAffinePta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixAffinePta(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt3, pixa, 1, 0, 20, 8); pixXor(pixt1, pixt1, pixt2); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); pixXor(pixt2, pixt2, pixt3); pixSaveTiled(pixt2, pixa, 1, 0, 20, 8); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixd = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine6.png", pixd, IFF_PNG); pixDisplay(pixd, 100, 900); pixDestroy(&pixd); pixDestroy(&pixg); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif pixDestroy(&pixs); #if 1 /* Set up pix and boxa */ pixa = pixaCreate(0); pix = pixRead("lucasta.1.300.tif"); pixTranslate(pix, pix, 70, 0, L_BRING_IN_WHITE); pixt1 = pixCloseBrick(NULL, pix, 14, 5); pixOpenBrick(pixt1, pixt1, 1, 2); boxa = pixConnComp(pixt1, NULL, 8); pixs = pixConvertTo32(pix); pixGetDimensions(pixs, &w, &h, NULL); pixc = pixCopy(NULL, pixs); RenderHashedBoxa(pixc, boxa, 113); pixSaveTiled(pixc, pixa, 2, 1, 30, 32); pixDestroy(&pix); pixDestroy(&pixc); pixDestroy(&pixt1); /* Set up an affine transform in matd, and apply it to boxa */ mat1 = createMatrix2dTranslate(SHIFTX, SHIFTY); mat2 = createMatrix2dScale(SCALEX, SCALEY); mat3 = createMatrix2dRotate(w / 2, h / 2, ROTATION); l_productMat3(mat3, mat2, mat1, matd, 3); boxa2 = boxaAffineTransform(boxa, matd); /* Set up the inverse transform in matdi */ mat1i = createMatrix2dTranslate(-SHIFTX, -SHIFTY); mat2i = createMatrix2dScale(1.0/ SCALEX, 1.0 / SCALEY); mat3i = createMatrix2dRotate(w / 2, h / 2, -ROTATION); l_productMat3(mat1i, mat2i, mat3i, matdi, 3); /* Invert the original affine transform in matdinv */ affineInvertXform(matd, &matdinv); fprintf(stderr, "Affine transform, applied to boxa\n"); for (i = 0; i < 9; i++) { if (i && (i % 3 == 0)) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matd[i]); } fprintf(stderr, "\nInverse transform, made by composing inverse parts"); for (i = 0; i < 9; i++) { if (i % 3 == 0) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matdi[i]); } fprintf(stderr, "\nInverse transform, made by inverting the affine xform"); for (i = 0; i < 6; i++) { if (i % 3 == 0) fprintf(stderr, "\n"); fprintf(stderr, " %7.3f ", matdinv[i]); } fprintf(stderr, "\n"); /* Apply the inverted affine transform pixs */ pixd = pixAffine(pixs, matdinv, L_BRING_IN_WHITE); RenderHashedBoxa(pixd, boxa2, 513); pixSaveTiled(pixd, pixa, 2, 0, 30, 32); pixDestroy(&pixd); pixd = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkaffine7.png", pixd, IFF_PNG); pixDisplay(pixd, 100, 900); pixDestroy(&pixd); pixDestroy(&pixs); pixaDestroy(&pixa); boxaDestroy(&boxa); boxaDestroy(&boxa2); FREE(mat1); FREE(mat2); FREE(mat3); FREE(mat1i); FREE(mat2i); FREE(mat3i); #endif return 0; }
main(int argc, char **argv) { l_int32 i, n, rsize, fact1, fact2, extra; l_int32 size, lastsize; l_int32 dwasize[256]; l_int32 ropsize[256]; PIX *pixs, *pixt0, *pixt1, *pixt2, *pixt3, *pixt4, *pixt5, *pixt6; static char mainName[] = "binmorph5_reg"; pixs = pixRead("feyn.tif"); #if TEST_SYMMETRIC /* This works properly if there's an added border */ resetMorphBoundaryCondition(SYMMETRIC_MORPH_BC); #if 1 pixt1 = pixAddBorder(pixs, 64, 0); pixTransferAllData(pixs, &pixt1, 0, 0); #endif #endif /* TEST_SYMMETRIC */ pixt1 = pixCreateTemplateNoInit(pixs); pixt2 = pixCreateTemplateNoInit(pixs); pixt3 = pixCreateTemplateNoInit(pixs); pixt4 = pixCreateTemplateNoInit(pixs); pixt5 = pixCreateTemplateNoInit(pixs); pixt6 = pixCreateTemplateNoInit(pixs); /* ---------------------------------------------------------------- * * Faster test; testing fewer sizes * * ---------------------------------------------------------------- */ #if FASTER_TEST /* Compute the actual sizes used for each input size 'i' */ for (i = 0; i < 256; i++) { dwasize[i] = 0; ropsize[i] = 0; } for (i = 65; i < 256; i++) { selectComposableSizes(i, &fact1, &fact2); rsize = fact1 * fact2; ropsize[i] = rsize; getExtendedCompositeParameters(i, &n, &extra, &dwasize[i]); } /* Use only values where the resulting sizes are equal */ for (i = 65; i < 240; i++) { n = 1 + (l_int32)((i - 63) / 62); extra = i - 63 - (n - 1) * 62 + 1; if (extra == 2) continue; /* don't use this one (e.g., i == 126) */ if (ropsize[i] == dwasize[i]) DoComparisonDwa1(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, i); } #endif /* FASTER_TEST */ /* ---------------------------------------------------------------- * * Slower test; testing maximum number of sizes * * ---------------------------------------------------------------- */ #if SLOWER_TEST lastsize = 0; for (i = 65; i < 199; i++) { getExtendedCompositeParameters(i, &n, &extra, &size); if (size == lastsize) continue; if (size == 126 || size == 188) continue; /* deliberately off by one */ lastsize = size; DoComparisonDwa2(pixs, pixt1, pixt2, pixt3, pixt4, pixt5, pixt6, size); } #endif /* SLOWER_TEST */ pixDestroy(&pixs); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixt3); pixDestroy(&pixt4); pixDestroy(&pixt5); pixDestroy(&pixt6); return 0; }
/*! * pixaDisplayTiledInRows() * * Input: pixa * outdepth (output depth: 1, 8 or 32 bpp) * maxwidth (of output image) * scalefactor (applied to every pix; use 1.0 for no scaling) * background (0 for white, 1 for black; this is the color * of the spacing between the images) * spacing (between images, and on outside) * border (width of black border added to each image; * use 0 for no border) * Return: pixd (of tiled images), or null on error * * Notes: * (1) This saves a pixa to a single image file of width not to * exceed maxwidth, with background color either white or black, * and with each row tiled such that the top of each pix is * aligned and separated by 'spacing' from the next one. * A black border can be added to each pix. * (2) All pix are converted to outdepth; existing colormaps are removed. * (3) This does a reasonably spacewise-efficient job of laying * out the individual pix images into a tiled composite. */ PIX * pixaDisplayTiledInRows(PIXA *pixa, l_int32 outdepth, l_int32 maxwidth, l_float32 scalefactor, l_int32 background, l_int32 spacing, l_int32 border) { l_int32 h; /* cumulative height over all the rows */ l_int32 w; /* cumulative height in the current row */ l_int32 bordval, wtry, wt, ht; l_int32 irow; /* index of current pix in current row */ l_int32 wmaxrow; /* width of the largest row */ l_int32 maxh; /* max height in row */ l_int32 i, j, index, n, x, y, nrows, ninrow; NUMA *nainrow; /* number of pix in the row */ NUMA *namaxh; /* height of max pix in the row */ PIX *pix, *pixn, *pixt, *pixd; PIXA *pixan; PROCNAME("pixaDisplayTiledInRows"); if (!pixa) return (PIX *)ERROR_PTR("pixa not defined", procName, NULL); if (outdepth != 1 && outdepth != 8 && outdepth != 32) return (PIX *)ERROR_PTR("outdepth not in {1, 8, 32}", procName, NULL); if (border < 0) border = 0; if (scalefactor <= 0.0) scalefactor = 1.0; if ((n = pixaGetCount(pixa)) == 0) return (PIX *)ERROR_PTR("no components", procName, NULL); /* Normalize depths, scale, remove colormaps; optionally add border */ pixan = pixaCreate(n); bordval = (outdepth == 1) ? 1 : 0; for (i = 0; i < n; i++) { if ((pix = pixaGetPix(pixa, i, L_CLONE)) == NULL) continue; if (outdepth == 1) pixn = pixConvertTo1(pix, 128); else if (outdepth == 8) pixn = pixConvertTo8(pix, FALSE); else /* outdepth == 32 */ pixn = pixConvertTo32(pix); pixDestroy(&pix); if (scalefactor != 1.0) pixt = pixScale(pixn, scalefactor, scalefactor); else pixt = pixClone(pixn); if (border) pixd = pixAddBorder(pixt, border, bordval); else pixd = pixClone(pixt); pixDestroy(&pixn); pixDestroy(&pixt); pixaAddPix(pixan, pixd, L_INSERT); } if (pixaGetCount(pixan) != n) { n = pixaGetCount(pixan); L_WARNING_INT("only got %d components", procName, n); if (n == 0) { pixaDestroy(&pixan); return (PIX *)ERROR_PTR("no components", procName, NULL); } } /* Compute parameters for layout */ nainrow = numaCreate(0); namaxh = numaCreate(0); wmaxrow = 0; w = h = spacing; maxh = 0; /* max height in row */ for (i = 0, irow = 0; i < n; i++, irow++) { pixaGetPixDimensions(pixan, i, &wt, &ht, NULL); wtry = w + wt + spacing; if (wtry > maxwidth) { /* end the current row and start next one */ numaAddNumber(nainrow, irow); numaAddNumber(namaxh, maxh); wmaxrow = L_MAX(wmaxrow, w); h += maxh + spacing; irow = 0; w = wt + 2 * spacing; maxh = ht; } else { w = wtry; maxh = L_MAX(maxh, ht); } } /* Enter the parameters for the last row */ numaAddNumber(nainrow, irow); numaAddNumber(namaxh, maxh); wmaxrow = L_MAX(wmaxrow, w); h += maxh + spacing; if ((pixd = pixCreate(wmaxrow, h, outdepth)) == NULL) { numaDestroy(&nainrow); numaDestroy(&namaxh); pixaDestroy(&pixan); return (PIX *)ERROR_PTR("pixd not made", procName, NULL); } /* Reset the background color if necessary */ if ((background == 1 && outdepth == 1) || (background == 0 && outdepth != 1)) pixSetAll(pixd); /* Blit the images to the dest */ nrows = numaGetCount(nainrow); y = spacing; for (i = 0, index = 0; i < nrows; i++) { /* over rows */ numaGetIValue(nainrow, i, &ninrow); numaGetIValue(namaxh, i, &maxh); x = spacing; for (j = 0; j < ninrow; j++, index++) { /* over pix in row */ pix = pixaGetPix(pixan, index, L_CLONE); pixGetDimensions(pix, &wt, &ht, NULL); pixRasterop(pixd, x, y, wt, ht, PIX_SRC, pix, 0, 0); pixDestroy(&pix); x += wt + spacing; } y += maxh + spacing; } numaDestroy(&nainrow); numaDestroy(&namaxh); pixaDestroy(&pixan); return pixd; }
main(int argc, char **argv) { char bufname[256]; l_int32 i, j, w, h, d, x, y, wpls; l_uint32 *datas, *lines; l_float32 *vc; PIX *pixs, *pixsc, *pixb, *pixg, *pixc, *pixcs, *pixd; PIX *pixt1, *pixt2, *pixt3; PIXA *pixa; PTA *ptas, *ptad; static char mainName[] = "projective_reg"; if (argc != 1) exit(ERROR_INT(" Syntax: projective_reg", mainName, 1)); if ((pixs = pixRead("feyn.tif")) == NULL) exit(ERROR_INT("pixs not made", mainName, 1)); pixsc = pixScale(pixs, 0.5, 0.5); #if ALL /* Test invertability of sampling */ pixa = pixaCreate(0); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixsc, ADDED_BORDER_PIXELS, 0); MakePtas(i, &ptas, &ptad); pixt1 = pixProjectiveSampledPta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); pixt2 = pixProjectiveSampledPta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 1, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixsc); pixSaveTiled(pixd, pixa, 1, 0, 20, 0); if (i == 0) pixWrite("/tmp/junksamp.png", pixt1, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkproj1.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 300); pixDestroy(&pixt1); pixaDestroy(&pixa); #endif #if ALL /* Test invertability of interpolation on grayscale */ pixa = pixaCreate(0); pixg = pixScaleToGray3(pixs); for (i = 0; i < 3; i++) { pixb = pixAddBorder(pixg, ADDED_BORDER_PIXELS / 2, 255); MakePtas(i, &ptas, &ptad); pixt1 = pixProjectivePta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); pixt2 = pixProjectivePta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 1, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS / 2); pixXor(pixd, pixd, pixg); pixSaveTiled(pixd, pixa, 1, 0, 20, 0); if (i == 0) pixWrite("/tmp/junkinterp.png", pixt1, IFF_PNG); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkproj2.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 500); pixDestroy(&pixt1); pixaDestroy(&pixa); pixDestroy(&pixg); #endif #if ALL /* Test invertability of interpolation on color */ pixa = pixaCreate(0); pixc = pixRead("test24.jpg"); pixcs = pixScale(pixc, 0.3, 0.3); for (i = 0; i < 5; i++) { pixb = pixAddBorder(pixcs, ADDED_BORDER_PIXELS, 0xffffff00); MakePtas(i, &ptas, &ptad); pixt1 = pixProjectivePta(pixb, ptad, ptas, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 1, 1, 20, 32); pixt2 = pixProjectivePta(pixt1, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 1, 0, 20, 0); pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS); pixXor(pixd, pixd, pixcs); pixSaveTiled(pixd, pixa, 1, 0, 20, 0); pixDestroy(&pixb); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); ptaDestroy(&ptas); ptaDestroy(&ptad); } pixt1 = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkproj3.png", pixt1, IFF_PNG); pixDisplay(pixt1, 100, 500); pixDestroy(&pixt1); pixaDestroy(&pixa); pixDestroy(&pixc); pixDestroy(&pixcs); #endif #if ALL /* Comparison between sampling and interpolated */ MakePtas(3, &ptas, &ptad); pixa = pixaCreate(0); /* Use sampled transform */ pixt1 = pixProjectiveSampledPta(pixs, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt1, pixa, 2, 1, 20, 8); /* Use interpolated transforms */ pixt2 = pixProjectivePta(pixs, ptas, ptad, L_BRING_IN_WHITE); pixSaveTiled(pixt2, pixa, 2, 0, 20, 8); /* Compare the results */ pixXor(pixt2, pixt2, pixt1); pixSaveTiled(pixt2, pixa, 2, 0, 20, 8); pixd = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkproj4.png", pixd, IFF_PNG); pixDisplay(pixd, 100, 700); pixDestroy(&pixt1); pixDestroy(&pixt2); pixDestroy(&pixd); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif #if ALL /* Get timings */ MakePtas(4, &ptas, &ptad); pixa = pixaCreate(0); pixg = pixScaleToGray3(pixs); startTimer(); pixt1 = pixProjectiveSampledPta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixProjectiveSampledPta(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt1, pixa, 1, 1, 20, 8); startTimer(); pixt2 = pixProjectivePta(pixg, ptas, ptad, L_BRING_IN_WHITE); fprintf(stderr, " Time for pixProjectivePta(): %6.2f sec\n", stopTimer()); pixSaveTiled(pixt2, pixa, 1, 0, 20, 8); pixXor(pixt1, pixt1, pixt2); pixSaveTiled(pixt1, pixa, 1, 0, 20, 8); pixDestroy(&pixt1); pixDestroy(&pixt2); pixd = pixaDisplay(pixa, 0, 0); pixWrite("/tmp/junkproj5.png", pixd, IFF_PNG); pixDisplay(pixd, 100, 900); pixDestroy(&pixd); pixDestroy(&pixg); pixaDestroy(&pixa); ptaDestroy(&ptas); ptaDestroy(&ptad); #endif pixDestroy(&pixs); pixDestroy(&pixsc); return 0; }