static void tls_exec_server(const char *user, int startfd, const char *privkey, const char *cert, int debuglevel) { SSL_CTX *sslctx; SSL *ssl; int sockfd, tcpfd, ret; pjdlog_debug_set(debuglevel); pjdlog_prefix_set("[TLS sandbox] (server) "); #ifdef HAVE_SETPROCTITLE setproctitle("[TLS sandbox] (server) "); #endif sockfd = startfd; tcpfd = startfd + 1; SSL_load_error_strings(); SSL_library_init(); sslctx = SSL_CTX_new(TLSv1_server_method()); if (sslctx == NULL) pjdlog_exitx(EX_TEMPFAIL, "SSL_CTX_new() failed."); SSL_CTX_set_options(sslctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3); ssl = SSL_new(sslctx); if (ssl == NULL) pjdlog_exitx(EX_TEMPFAIL, "SSL_new() failed."); if (SSL_use_RSAPrivateKey_file(ssl, privkey, SSL_FILETYPE_PEM) != 1) { ssl_log_errors(); pjdlog_exitx(EX_CONFIG, "SSL_use_RSAPrivateKey_file(%s) failed.", privkey); } if (SSL_use_certificate_file(ssl, cert, SSL_FILETYPE_PEM) != 1) { ssl_log_errors(); pjdlog_exitx(EX_CONFIG, "SSL_use_certificate_file(%s) failed.", cert); } if (sandbox(user, true, "proto_tls server") != 0) pjdlog_exitx(EX_CONFIG, "Unable to sandbox TLS server."); pjdlog_debug(1, "Privileges successfully dropped."); nonblock(sockfd); nonblock(tcpfd); if (SSL_set_fd(ssl, tcpfd) != 1) pjdlog_exitx(EX_TEMPFAIL, "SSL_set_fd() failed."); ret = SSL_accept(ssl); ssl_check_error(ssl, ret); tls_loop(sockfd, ssl); }
void hastd_secondary(struct hast_resource *res, struct nv *nvin) { sigset_t mask; pthread_t td; pid_t pid; int error, mode, debuglevel; /* * Create communication channel between parent and child. */ if (proto_client(NULL, "socketpair://", &res->hr_ctrl) < 0) { KEEP_ERRNO((void)pidfile_remove(pfh)); pjdlog_exit(EX_OSERR, "Unable to create control sockets between parent and child"); } /* * Create communication channel between child and parent. */ if (proto_client(NULL, "socketpair://", &res->hr_event) < 0) { KEEP_ERRNO((void)pidfile_remove(pfh)); pjdlog_exit(EX_OSERR, "Unable to create event sockets between child and parent"); } pid = fork(); if (pid < 0) { KEEP_ERRNO((void)pidfile_remove(pfh)); pjdlog_exit(EX_OSERR, "Unable to fork"); } if (pid > 0) { /* This is parent. */ proto_close(res->hr_remotein); res->hr_remotein = NULL; proto_close(res->hr_remoteout); res->hr_remoteout = NULL; /* Declare that we are receiver. */ proto_recv(res->hr_event, NULL, 0); /* Declare that we are sender. */ proto_send(res->hr_ctrl, NULL, 0); res->hr_workerpid = pid; return; } gres = res; mode = pjdlog_mode_get(); debuglevel = pjdlog_debug_get(); /* Declare that we are sender. */ proto_send(res->hr_event, NULL, 0); /* Declare that we are receiver. */ proto_recv(res->hr_ctrl, NULL, 0); descriptors_cleanup(res); descriptors_assert(res, mode); pjdlog_init(mode); pjdlog_debug_set(debuglevel); pjdlog_prefix_set("[%s] (%s) ", res->hr_name, role2str(res->hr_role)); setproctitle("%s (%s)", res->hr_name, role2str(res->hr_role)); PJDLOG_VERIFY(sigemptyset(&mask) == 0); PJDLOG_VERIFY(sigprocmask(SIG_SETMASK, &mask, NULL) == 0); /* Error in setting timeout is not critical, but why should it fail? */ if (proto_timeout(res->hr_remotein, 2 * HAST_KEEPALIVE) < 0) pjdlog_errno(LOG_WARNING, "Unable to set connection timeout"); if (proto_timeout(res->hr_remoteout, res->hr_timeout) < 0) pjdlog_errno(LOG_WARNING, "Unable to set connection timeout"); init_local(res); init_environment(); if (drop_privs(res) != 0) exit(EX_CONFIG); pjdlog_info("Privileges successfully dropped."); /* * Create the control thread before sending any event to the parent, * as we can deadlock when parent sends control request to worker, * but worker has no control thread started yet, so parent waits. * In the meantime worker sends an event to the parent, but parent * is unable to handle the event, because it waits for control * request response. */ error = pthread_create(&td, NULL, ctrl_thread, res); PJDLOG_ASSERT(error == 0); init_remote(res, nvin); event_send(res, EVENT_CONNECT); error = pthread_create(&td, NULL, recv_thread, res); PJDLOG_ASSERT(error == 0); error = pthread_create(&td, NULL, disk_thread, res); PJDLOG_ASSERT(error == 0); (void)send_thread(res); }
static int tls_accept(void *ctx, void **newctxp) { struct tls_ctx *tlsctx = ctx; struct tls_ctx *newtlsctx; struct proto_conn *sock, *tcp; pid_t pid; int error; PJDLOG_ASSERT(tlsctx != NULL); PJDLOG_ASSERT(tlsctx->tls_magic == TLS_CTX_MAGIC); PJDLOG_ASSERT(tlsctx->tls_side == TLS_SIDE_SERVER_LISTEN); if (proto_connect(NULL, "socketpair://", -1, &sock) == -1) return (errno); /* Accept TCP connection. */ if (proto_accept(tlsctx->tls_tcp, &tcp) == -1) { error = errno; proto_close(sock); return (error); } pid = fork(); switch (pid) { case -1: /* Failure. */ error = errno; proto_close(sock); return (error); case 0: /* Child. */ pjdlog_prefix_set("[TLS sandbox] (server) "); #ifdef HAVE_SETPROCTITLE setproctitle("[TLS sandbox] (server) "); #endif /* Close listen socket. */ proto_close(tlsctx->tls_tcp); tls_call_exec_server(sock, tcp); /* NOTREACHED */ PJDLOG_ABORT("Unreachable."); default: /* Parent. */ newtlsctx = calloc(1, sizeof(*tlsctx)); if (newtlsctx == NULL) { error = errno; proto_close(sock); proto_close(tcp); (void)kill(pid, SIGKILL); return (error); } proto_local_address(tcp, newtlsctx->tls_laddr, sizeof(newtlsctx->tls_laddr)); PJDLOG_ASSERT(strncmp(newtlsctx->tls_laddr, "tcp://", 6) == 0); bcopy("tls://", newtlsctx->tls_laddr, 6); *strrchr(newtlsctx->tls_laddr, ':') = '\0'; proto_remote_address(tcp, newtlsctx->tls_raddr, sizeof(newtlsctx->tls_raddr)); PJDLOG_ASSERT(strncmp(newtlsctx->tls_raddr, "tcp://", 6) == 0); bcopy("tls://", newtlsctx->tls_raddr, 6); *strrchr(newtlsctx->tls_raddr, ':') = '\0'; proto_close(tcp); proto_recv(sock, NULL, 0); newtlsctx->tls_sock = sock; newtlsctx->tls_tcp = NULL; newtlsctx->tls_wait_called = true; newtlsctx->tls_side = TLS_SIDE_SERVER_WORK; newtlsctx->tls_magic = TLS_CTX_MAGIC; *newctxp = newtlsctx; return (0); } }
static int tls_connect(const char *srcaddr, const char *dstaddr, int timeout, void **ctxp) { struct tls_ctx *tlsctx; struct proto_conn *sock; pid_t pid; int error; PJDLOG_ASSERT(srcaddr == NULL || srcaddr[0] != '\0'); PJDLOG_ASSERT(dstaddr != NULL); PJDLOG_ASSERT(timeout >= -1); PJDLOG_ASSERT(ctxp != NULL); if (strncmp(dstaddr, "tls://", 6) != 0) return (-1); if (srcaddr != NULL && strncmp(srcaddr, "tls://", 6) != 0) return (-1); if (proto_connect(NULL, "socketpair://", -1, &sock) == -1) return (errno); #if 0 /* * We use rfork() with the following flags to disable SIGCHLD * delivery upon the sandbox process exit. */ pid = rfork(RFFDG | RFPROC | RFTSIGZMB | RFTSIGFLAGS(0)); #else /* * We don't use rfork() to be able to log information about sandbox * process exiting. */ pid = fork(); #endif switch (pid) { case -1: /* Failure. */ error = errno; proto_close(sock); return (error); case 0: /* Child. */ pjdlog_prefix_set("[TLS sandbox] (client) "); #ifdef HAVE_SETPROCTITLE setproctitle("[TLS sandbox] (client) "); #endif tls_call_exec_client(sock, srcaddr, dstaddr, timeout); /* NOTREACHED */ default: /* Parent. */ tlsctx = calloc(1, sizeof(*tlsctx)); if (tlsctx == NULL) { error = errno; proto_close(sock); (void)kill(pid, SIGKILL); return (error); } proto_send(sock, NULL, 0); tlsctx->tls_sock = sock; tlsctx->tls_tcp = NULL; tlsctx->tls_side = TLS_SIDE_CLIENT; tlsctx->tls_wait_called = false; tlsctx->tls_magic = TLS_CTX_MAGIC; if (timeout >= 0) { error = tls_connect_wait(tlsctx, timeout); if (error != 0) { (void)kill(pid, SIGKILL); tls_close(tlsctx); return (error); } } *ctxp = tlsctx; return (0); } }
static void tls_exec_client(const char *user, int startfd, const char *srcaddr, const char *dstaddr, const char *fingerprint, const char *defport, int timeout, int debuglevel) { struct proto_conn *tcp; char *saddr, *daddr; SSL_CTX *sslctx; SSL *ssl; long ret; int sockfd, tcpfd; uint8_t connected; pjdlog_debug_set(debuglevel); pjdlog_prefix_set("[TLS sandbox] (client) "); #ifdef HAVE_SETPROCTITLE setproctitle("[TLS sandbox] (client) "); #endif proto_set("tcp:port", defport); sockfd = startfd; /* Change tls:// to tcp://. */ if (srcaddr == NULL) { saddr = NULL; } else { saddr = strdup(srcaddr); if (saddr == NULL) pjdlog_exitx(EX_TEMPFAIL, "Unable to allocate memory."); bcopy("tcp://", saddr, 6); } daddr = strdup(dstaddr); if (daddr == NULL) pjdlog_exitx(EX_TEMPFAIL, "Unable to allocate memory."); bcopy("tcp://", daddr, 6); /* Establish TCP connection. */ if (proto_connect(saddr, daddr, timeout, &tcp) == -1) exit(EX_TEMPFAIL); SSL_load_error_strings(); SSL_library_init(); /* * TODO: On FreeBSD we could move this below sandbox() once libc and * libcrypto use sysctl kern.arandom to obtain random data * instead of /dev/urandom and friends. */ sslctx = SSL_CTX_new(TLSv1_client_method()); if (sslctx == NULL) pjdlog_exitx(EX_TEMPFAIL, "SSL_CTX_new() failed."); if (sandbox(user, true, "proto_tls client: %s", dstaddr) != 0) pjdlog_exitx(EX_CONFIG, "Unable to sandbox TLS client."); pjdlog_debug(1, "Privileges successfully dropped."); SSL_CTX_set_options(sslctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3); /* Load CA certs. */ /* TODO */ //SSL_CTX_load_verify_locations(sslctx, cacerts_file, NULL); ssl = SSL_new(sslctx); if (ssl == NULL) pjdlog_exitx(EX_TEMPFAIL, "SSL_new() failed."); tcpfd = proto_descriptor(tcp); block(tcpfd); if (SSL_set_fd(ssl, tcpfd) != 1) pjdlog_exitx(EX_TEMPFAIL, "SSL_set_fd() failed."); ret = SSL_connect(ssl); ssl_check_error(ssl, (int)ret); nonblock(sockfd); nonblock(tcpfd); tls_certificate_verify(ssl, fingerprint); /* * The following byte is send to make proto_connect_wait() to work. */ connected = 1; for (;;) { switch (send(sockfd, &connected, sizeof(connected), 0)) { case -1: if (errno == EINTR || errno == ENOBUFS) continue; if (errno == EAGAIN) { (void)wait_for_fd(sockfd, -1); continue; } pjdlog_exit(EX_TEMPFAIL, "send() failed"); case 0: pjdlog_debug(1, "Connection terminated."); exit(0); case 1: break; } break; } tls_loop(sockfd, ssl); }
int main(int argc, char **argv) { char core[PATH_MAX], encryptedcore[PATH_MAX], keyfile[PATH_MAX]; struct stat sb; const char *crashdir, *dumpnr, *privatekey; int ch, debug; size_t ii; bool usesyslog; pjdlog_init(PJDLOG_MODE_STD); pjdlog_prefix_set("(decryptcore) "); debug = 0; *core = '\0'; crashdir = NULL; dumpnr = NULL; *encryptedcore = '\0'; *keyfile = '\0'; privatekey = NULL; usesyslog = false; while ((ch = getopt(argc, argv, "Lc:d:e:k:n:p:v")) != -1) { switch (ch) { case 'L': usesyslog = true; break; case 'c': strncpy(core, optarg, sizeof(core)); break; case 'd': crashdir = optarg; break; case 'e': strncpy(encryptedcore, optarg, sizeof(encryptedcore)); break; case 'k': strncpy(keyfile, optarg, sizeof(keyfile)); break; case 'n': dumpnr = optarg; break; case 'p': privatekey = optarg; break; case 'v': debug++; break; default: usage(); } } argc -= optind; argv += optind; if (argc != 0) usage(); /* Verify mutually exclusive options. */ if ((crashdir != NULL || dumpnr != NULL) && (*keyfile != '\0' || *encryptedcore != '\0' || *core != '\0')) { usage(); } /* * Set key, encryptedcore and core file names using crashdir and dumpnr. */ if (dumpnr != NULL) { for (ii = 0; ii < strnlen(dumpnr, PATH_MAX); ii++) { if (isdigit((int)dumpnr[ii]) == 0) usage(); } if (crashdir == NULL) crashdir = DECRYPTCORE_CRASHDIR; PJDLOG_VERIFY(snprintf(keyfile, sizeof(keyfile), "%s/key.%s", crashdir, dumpnr) > 0); PJDLOG_VERIFY(snprintf(core, sizeof(core), "%s/vmcore.%s", crashdir, dumpnr) > 0); PJDLOG_VERIFY(snprintf(encryptedcore, sizeof(encryptedcore), "%s/vmcore_encrypted.%s", crashdir, dumpnr) > 0); } if (privatekey == NULL || *keyfile == '\0' || *encryptedcore == '\0' || *core == '\0') { usage(); } if (usesyslog) pjdlog_mode_set(PJDLOG_MODE_SYSLOG); pjdlog_debug_set(debug); if (!decrypt(privatekey, keyfile, encryptedcore, core)) { if (stat(core, &sb) == 0 && unlink(core) != 0) pjdlog_exit(1, "Unable to remove core"); exit(1); } pjdlog_fini(); exit(0); }