static void polar( void ) //polar contour plot example. { int i, j; PLcGrid2 cgrid2; PLFLT **z; PLFLT px[PERIMETERPTS], py[PERIMETERPTS]; PLFLT t, r, theta; PLFLT lev[10]; plenv( -1., 1., -1., 1., 0, -2 ); plcol0( 1 ); //Perimeter for ( i = 0; i < PERIMETERPTS; i++ ) { t = ( 2. * M_PI / ( PERIMETERPTS - 1 ) ) * (double) i; px[i] = cos( t ); py[i] = sin( t ); } plline( PERIMETERPTS, px, py ); //create data to be contoured. plAlloc2dGrid( &cgrid2.xg, RPTS, THETAPTS ); plAlloc2dGrid( &cgrid2.yg, RPTS, THETAPTS ); plAlloc2dGrid( &z, RPTS, THETAPTS ); cgrid2.nx = RPTS; cgrid2.ny = THETAPTS; for ( i = 0; i < RPTS; i++ ) { r = i / (double) ( RPTS - 1 ); for ( j = 0; j < THETAPTS; j++ ) { theta = ( 2. * M_PI / (double) ( THETAPTS - 1 ) ) * (double) j; cgrid2.xg[i][j] = r * cos( theta ); cgrid2.yg[i][j] = r * sin( theta ); z[i][j] = r; } } for ( i = 0; i < 10; i++ ) { lev[i] = 0.05 + 0.10 * (double) i; } plcol0( 2 ); plcont( (const PLFLT * const *) z, RPTS, THETAPTS, 1, RPTS, 1, THETAPTS, lev, 10, pltr2, (void *) &cgrid2 ); plcol0( 1 ); pllab( "", "", "Polar Contour Plot" ); plFree2dGrid( z, RPTS, THETAPTS ); plFree2dGrid( cgrid2.xg, RPTS, THETAPTS ); plFree2dGrid( cgrid2.yg, RPTS, THETAPTS ); }
void PLSHADES7(PLFLT *z, PLINT *nx, PLINT *ny, char *defined, PLFLT *xmin, PLFLT *xmax, PLFLT *ymin, PLFLT *ymax, PLFLT *clevel, PLINT *nlevel, PLINT *fill_width, PLINT *cont_color, PLINT *cont_width, PLFLT *ftr, PLINT *lx) { PLINT rect = 1; PLFLT ** a; int i,j; /* Create a vectored a array from transpose of the fortran z array. */ plAlloc2dGrid(&a, *nx, *ny); for (i = 0; i < *nx; i++) { for (j = 0; j < *ny; j++) { a[i][j] = z[i +j * *lx]; } } c_plshades( a, *nx, *ny, NULL, *xmin, *xmax, *ymin, *ymax, clevel, *nlevel, *fill_width, *cont_color, *cont_width, c_plfill, rect, pltr, (void *) ftr); /* Clean up memory allocated for a */ plFree2dGrid(a, *nx, *ny); }
void PLSHADE07(PLFLT *z, PLINT *nx, PLINT *ny, char *defined, PLFLT *xmin, PLFLT *xmax, PLFLT *ymin, PLFLT *ymax, PLFLT *shade_min, PLFLT *shade_max, PLINT *sh_cmap, PLFLT *sh_color, PLINT *sh_width, PLINT *min_color, PLINT *min_width, PLINT *max_color, PLINT *max_width, PLINT *lx) { PLINT rect = 1; PLFLT ** a; int i,j; /* Create a vectored a array from transpose of the fortran z array. */ plAlloc2dGrid(&a, *nx, *ny); for (i = 0; i < *nx; i++) { for (j = 0; j < *ny; j++) { a[i][j] = z[i +j * *lx]; } } c_plshade( a, *nx, *ny, NULL, *xmin, *xmax, *ymin, *ymax, *shade_min, *shade_max, *sh_cmap, *sh_color, *sh_width, *min_color, *min_width, *max_color, *max_width, c_plfill, rect, NULL, NULL); /* Clean up memory allocated for a */ plFree2dGrid(a, *nx, *ny); }
void PLSHADE27(PLFLT *z, PLINT *nx, PLINT *ny, char *defined, PLFLT *xmin, PLFLT *xmax, PLFLT *ymin, PLFLT *ymax, PLFLT *shade_min, PLFLT *shade_max, PLINT *sh_cmap, PLFLT *sh_color, PLINT *sh_width, PLINT *min_color, PLINT *min_width, PLINT *max_color, PLINT *max_width, PLFLT *xg2, PLFLT *yg2, PLINT *lx) { PLINT rect = 0; PLFLT **a; int i,j; PLcGrid2 cgrid2; /* Create a vectored a array from transpose of the fortran z array. */ plAlloc2dGrid(&a, *nx, *ny); plAlloc2dGrid(&cgrid2.xg, *nx, *ny); plAlloc2dGrid(&cgrid2.yg, *nx, *ny); cgrid2.nx = *nx; cgrid2.ny = *ny; for (i = 0; i < *nx; i++) { for (j = 0; j < *ny; j++) { a[i][j] = z[i +j * *lx]; cgrid2.xg[i][j] = xg2[i +j * *lx]; cgrid2.yg[i][j] = yg2[i +j * *lx]; } } c_plshade( a, *nx, *ny, NULL, *xmin, *xmax, *ymin, *ymax, *shade_min, *shade_max, *sh_cmap, *sh_color, *sh_width, *min_color, *min_width, *max_color, *max_width, c_plfill, rect, pltr2, (void *) &cgrid2); /* Clean up memory allocated for a */ plFree2dGrid(a, *nx, *ny); plFree2dGrid(cgrid2.xg, *nx, *ny); plFree2dGrid(cgrid2.yg, *nx, *ny); }
void plot5(void) { int i, j; PLFLT xx, yy; PLFLT **z, **w; static PLINT mark = 1500, space = 1500; /* Set up function arrays */ plAlloc2dGrid(&z, XPTS, YPTS); plAlloc2dGrid(&w, XPTS, YPTS); for (i = 0; i < XPTS; i++) { xx = (double) (i - (XPTS / 2)) / (double) (XPTS / 2); for (j = 0; j < YPTS; j++) { yy = (double) (j - (YPTS / 2)) / (double) (YPTS / 2) - 1.0; z[i][j] = xx * xx - yy * yy; w[i][j] = 2 * xx * yy; } } plenv(-1.0, 1.0, -1.0, 1.0, 0, 0); plcol0(2); plcont(z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL); plstyl(1, &mark, &space); plcol0(3); plcont(w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL); plcol0(1); pllab("X Coordinate", "Y Coordinate", "Streamlines of flow"); plflush(); /* Clean up */ plFree2dGrid(z, XPTS, YPTS); plFree2dGrid(w, XPTS, YPTS); }
int main( int argc, const char *argv[] ) { int i, j; PLFLT xx, yy, argx, argy, distort; static PLINT mark = 1500, space = 1500; PLFLT **z, **w; PLFLT xg1[XPTS], yg1[YPTS]; PLcGrid cgrid1; PLcGrid2 cgrid2; // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Initialize plplot plinit(); // Set up function arrays plAlloc2dGrid( &z, XPTS, YPTS ); plAlloc2dGrid( &w, XPTS, YPTS ); for ( i = 0; i < XPTS; i++ ) { xx = (double) ( i - ( XPTS / 2 ) ) / (double) ( XPTS / 2 ); for ( j = 0; j < YPTS; j++ ) { yy = (double) ( j - ( YPTS / 2 ) ) / (double) ( YPTS / 2 ) - 1.0; z[i][j] = xx * xx - yy * yy; w[i][j] = 2 * xx * yy; } } // Set up grids cgrid1.xg = xg1; cgrid1.yg = yg1; cgrid1.nx = XPTS; cgrid1.ny = YPTS; plAlloc2dGrid( &cgrid2.xg, XPTS, YPTS ); plAlloc2dGrid( &cgrid2.yg, XPTS, YPTS ); cgrid2.nx = XPTS; cgrid2.ny = YPTS; for ( i = 0; i < XPTS; i++ ) { for ( j = 0; j < YPTS; j++ ) { mypltr( (PLFLT) i, (PLFLT) j, &xx, &yy, NULL ); argx = xx * M_PI / 2; argy = yy * M_PI / 2; distort = 0.4; cgrid1.xg[i] = xx + distort * cos( argx ); cgrid1.yg[j] = yy - distort * cos( argy ); cgrid2.xg[i][j] = xx + distort * cos( argx ) * cos( argy ); cgrid2.yg[i][j] = yy - distort * cos( argx ) * cos( argy ); } } // Plot using identity transform // // plenv(-1.0, 1.0, -1.0, 1.0, 0, 0); // plcol0(2); // plcont(z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL); // plstyl(1, &mark, &space); // plcol0(3); // plcont(w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL); // plstyl(0, &mark, &space); // plcol0(1); // pllab("X Coordinate", "Y Coordinate", "Streamlines of flow"); // pl_setcontlabelformat( 4, 3 ); pl_setcontlabelparam( 0.006, 0.3, 0.1, 1 ); plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 ); plcol0( 2 ); plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL ); plstyl( 1, &mark, &space ); plcol0( 3 ); plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, mypltr, NULL ); plstyl( 0, &mark, &space ); plcol0( 1 ); pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" ); pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 ); // Plot using 1d coordinate transform plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 ); plcol0( 2 ); plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, pltr1, (void *) &cgrid1 ); plstyl( 1, &mark, &space ); plcol0( 3 ); plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, pltr1, (void *) &cgrid1 ); plstyl( 0, &mark, &space ); plcol0( 1 ); pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" ); // // pl_setcontlabelparam(0.006, 0.3, 0.1, 1); // plenv(-1.0, 1.0, -1.0, 1.0, 0, 0); // plcol0(2); // plcont((const PLFLT **) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, // pltr1, (void *) &cgrid1); // // plstyl(1, &mark, &space); // plcol0(3); // plcont((const PLFLT **) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, // pltr1, (void *) &cgrid1); // plstyl(0, &mark, &space); // plcol0(1); // pllab("X Coordinate", "Y Coordinate", "Streamlines of flow"); // pl_setcontlabelparam(0.006, 0.3, 0.1, 0); // // Plot using 2d coordinate transform plenv( -1.0, 1.0, -1.0, 1.0, 0, 0 ); plcol0( 2 ); plcont( (const PLFLT * const *) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, pltr2, (void *) &cgrid2 ); plstyl( 1, &mark, &space ); plcol0( 3 ); plcont( (const PLFLT * const *) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, pltr2, (void *) &cgrid2 ); plstyl( 0, &mark, &space ); plcol0( 1 ); pllab( "X Coordinate", "Y Coordinate", "Streamlines of flow" ); // // pl_setcontlabelparam(0.006, 0.3, 0.1, 1); // plenv(-1.0, 1.0, -1.0, 1.0, 0, 0); // plcol0(2); // plcont((const PLFLT **) z, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, // pltr2, (void *) &cgrid2); // // plstyl(1, &mark, &space); // plcol0(3); // plcont((const PLFLT **) w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, 11, // pltr2, (void *) &cgrid2); // plstyl(0, &mark, &space); // plcol0(1); // pllab("X Coordinate", "Y Coordinate", "Streamlines of flow"); // pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 ); polar(); // // pl_setcontlabelparam(0.006, 0.3, 0.1, 1); // polar(); // pl_setcontlabelparam( 0.006, 0.3, 0.1, 0 ); potential(); // // pl_setcontlabelparam(0.006, 0.3, 0.1, 1); // potential(); // // Clean up plFree2dGrid( z, XPTS, YPTS ); plFree2dGrid( w, XPTS, YPTS ); plFree2dGrid( cgrid2.xg, XPTS, YPTS ); plFree2dGrid( cgrid2.yg, XPTS, YPTS ); plend(); exit( 0 ); }
static void potential( void ) //shielded potential contour plot example. { int i, j; PLcGrid2 cgrid2; PLFLT rmax, xmin, xmax, x0, ymin, ymax, y0, zmin, zmax; PLFLT peps, xpmin, xpmax, ypmin, ypmax; PLFLT eps, q1, d1, q1i, d1i, q2, d2, q2i, d2i; PLFLT div1, div1i, div2, div2i; PLFLT **z; PLINT nlevelneg, nlevelpos; PLFLT dz, clevel2, clevelneg[PNLEVEL], clevelpos[PNLEVEL]; PLINT ncollin, ncolbox, ncollab; PLFLT px[PPERIMETERPTS], py[PPERIMETERPTS]; PLFLT t, r, theta; //create data to be contoured. plAlloc2dGrid( &cgrid2.xg, PRPTS, PTHETAPTS ); plAlloc2dGrid( &cgrid2.yg, PRPTS, PTHETAPTS ); plAlloc2dGrid( &z, PRPTS, PTHETAPTS ); cgrid2.nx = PRPTS; cgrid2.ny = PTHETAPTS; for ( i = 0; i < PRPTS; i++ ) { r = 0.5 + (double) i; for ( j = 0; j < PTHETAPTS; j++ ) { theta = ( 2. * M_PI / (double) ( PTHETAPTS - 1 ) ) * ( 0.5 + (double) j ); cgrid2.xg[i][j] = r * cos( theta ); cgrid2.yg[i][j] = r * sin( theta ); } } rmax = r; f2mnmx( cgrid2.xg, PRPTS, PTHETAPTS, &xmin, &xmax ); f2mnmx( cgrid2.yg, PRPTS, PTHETAPTS, &ymin, &ymax ); x0 = ( xmin + xmax ) / 2.; y0 = ( ymin + ymax ) / 2.; // Expanded limits peps = 0.05; xpmin = xmin - fabs( xmin ) * peps; xpmax = xmax + fabs( xmax ) * peps; ypmin = ymin - fabs( ymin ) * peps; ypmax = ymax + fabs( ymax ) * peps; // Potential inside a conducting cylinder (or sphere) by method of images. // Charge 1 is placed at (d1, d1), with image charge at (d2, d2). // Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2). // Also put in smoothing term at small distances. // eps = 2.; q1 = 1.; d1 = rmax / 4.; q1i = -q1 * rmax / d1; d1i = pow( rmax, 2. ) / d1; q2 = -1.; d2 = rmax / 4.; q2i = -q2 * rmax / d2; d2i = pow( rmax, 2. ) / d2; for ( i = 0; i < PRPTS; i++ ) { for ( j = 0; j < PTHETAPTS; j++ ) { div1 = sqrt( pow( cgrid2.xg[i][j] - d1, 2. ) + pow( cgrid2.yg[i][j] - d1, 2. ) + pow( eps, 2. ) ); div1i = sqrt( pow( cgrid2.xg[i][j] - d1i, 2. ) + pow( cgrid2.yg[i][j] - d1i, 2. ) + pow( eps, 2. ) ); div2 = sqrt( pow( cgrid2.xg[i][j] - d2, 2. ) + pow( cgrid2.yg[i][j] + d2, 2. ) + pow( eps, 2. ) ); div2i = sqrt( pow( cgrid2.xg[i][j] - d2i, 2. ) + pow( cgrid2.yg[i][j] + d2i, 2. ) + pow( eps, 2. ) ); z[i][j] = q1 / div1 + q1i / div1i + q2 / div2 + q2i / div2i; } } f2mnmx( z, PRPTS, PTHETAPTS, &zmin, &zmax ); // printf("%.15g %.15g %.15g %.15g %.15g %.15g %.15g %.15g \n", // q1, d1, q1i, d1i, q2, d2, q2i, d2i); // printf("%.15g %.15g %.15g %.15g %.15g %.15g \n", // xmin, xmax, ymin, ymax, zmin, zmax); // Positive and negative contour levels. dz = ( zmax - zmin ) / (double) PNLEVEL; nlevelneg = 0; nlevelpos = 0; for ( i = 0; i < PNLEVEL; i++ ) { clevel2 = zmin + ( (double) i + 0.5 ) * dz; if ( clevel2 <= 0. ) clevelneg[nlevelneg++] = clevel2; else clevelpos[nlevelpos++] = clevel2; } // Colours! ncollin = 11; ncolbox = 1; ncollab = 2; // Finally start plotting this page! pladv( 0 ); plcol0( ncolbox ); plvpas( 0.1, 0.9, 0.1, 0.9, 1.0 ); plwind( xpmin, xpmax, ypmin, ypmax ); plbox( "", 0., 0, "", 0., 0 ); plcol0( ncollin ); if ( nlevelneg > 0 ) { // Negative contours pllsty( 2 ); plcont( (const PLFLT * const *) z, PRPTS, PTHETAPTS, 1, PRPTS, 1, PTHETAPTS, clevelneg, nlevelneg, pltr2, (void *) &cgrid2 ); } if ( nlevelpos > 0 ) { // Positive contours pllsty( 1 ); plcont( (const PLFLT * const *) z, PRPTS, PTHETAPTS, 1, PRPTS, 1, PTHETAPTS, clevelpos, nlevelpos, pltr2, (void *) &cgrid2 ); } // Draw outer boundary for ( i = 0; i < PPERIMETERPTS; i++ ) { t = ( 2. * M_PI / ( PPERIMETERPTS - 1 ) ) * (double) i; px[i] = x0 + rmax * cos( t ); py[i] = y0 + rmax * sin( t ); } plcol0( ncolbox ); plline( PPERIMETERPTS, px, py ); plcol0( ncollab ); pllab( "", "", "Shielded potential of charges in a conducting sphere" ); plFree2dGrid( z, PRPTS, PTHETAPTS ); plFree2dGrid( cgrid2.xg, PRPTS, PTHETAPTS ); plFree2dGrid( cgrid2.yg, PRPTS, PTHETAPTS ); }
void WINAPI win_plAlloc2dGrid(PLFLT ***f, PLINT nx, PLINT ny) { plAlloc2dGrid(f, nx, ny); }
int main( int argc, const char *argv[] ) { int i, j, k; PLFLT *x, *y, **z, *z_row_major, *z_col_major; PLFLT dx = 2. / (PLFLT) ( XPTS - 1 ); PLFLT dy = 2. / (PLFLT) ( YPTS - 1 ); PLfGrid2 grid_c, grid_row_major, grid_col_major; PLFLT xx, yy, r; PLINT ifshade; PLFLT zmin, zmax, step; PLFLT clevel[LEVELS]; PLINT nlevel = LEVELS; PLINT indexxmin = 0; PLINT indexxmax = XPTS; PLINT *indexymin; PLINT *indexymax; PLFLT **zlimited; // parameters of ellipse (in x, y index coordinates) that limits the data. // x0, y0 correspond to the exact floating point centre of the index // range. PLFLT x0 = 0.5 * (PLFLT) ( XPTS - 1 ); PLFLT a = 0.9 * x0; PLFLT y0 = 0.5 * (PLFLT) ( YPTS - 1 ); PLFLT b = 0.7 * y0; PLFLT square_root; // Parse and process command line arguments plMergeOpts( options, "x08c options", NULL ); (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Initialize plplot plinit(); // Allocate data structures x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) ); y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) ); plAlloc2dGrid( &z, XPTS, YPTS ); z_row_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) ); z_col_major = (PLFLT *) malloc( XPTS * YPTS * sizeof ( PLFLT ) ); if ( !z_row_major || !z_col_major ) plexit( "Memory allocation error" ); grid_c.f = z; grid_row_major.f = (PLFLT **) z_row_major; grid_col_major.f = (PLFLT **) z_col_major; grid_c.nx = grid_row_major.nx = grid_col_major.nx = XPTS; grid_c.ny = grid_row_major.ny = grid_col_major.ny = YPTS; for ( i = 0; i < XPTS; i++ ) { x[i] = -1. + (PLFLT) i * dx; if ( rosen ) x[i] *= 1.5; } for ( j = 0; j < YPTS; j++ ) { y[j] = -1. + (PLFLT) j * dy; if ( rosen ) y[j] += 0.5; } for ( i = 0; i < XPTS; i++ ) { xx = x[i]; for ( j = 0; j < YPTS; j++ ) { yy = y[j]; if ( rosen ) { z[i][j] = pow( 1. - xx, 2. ) + 100. * pow( yy - pow( xx, 2. ), 2. ); // The log argument might be zero for just the right grid. if ( z[i][j] > 0. ) z[i][j] = log( z[i][j] ); else z[i][j] = -5.; // -MAXFLOAT would mess-up up the scale } else { r = sqrt( xx * xx + yy * yy ); z[i][j] = exp( -r * r ) * cos( 2.0 * M_PI * r ); } z_row_major[i * YPTS + j] = z[i][j]; z_col_major[i + XPTS * j] = z[i][j]; } } // Allocate and calculate y index ranges and corresponding zlimited. plAlloc2dGrid( &zlimited, XPTS, YPTS ); indexymin = (PLINT *) malloc( XPTS * sizeof ( PLINT ) ); indexymax = (PLINT *) malloc( XPTS * sizeof ( PLINT ) ); if ( !indexymin || !indexymax ) plexit( "Memory allocation error" ); //printf("XPTS = %d\n", XPTS); //printf("x0 = %f\n", x0); //printf("a = %f\n", a); //printf("YPTS = %d\n", YPTS); //printf("y0 = %f\n", y0); //printf("b = %f\n", b); // These values should all be ignored because of the i index range. #if 0 for ( i = 0; i < indexxmin; i++ ) { indexymin[i] = 0; indexymax[i] = YPTS; for ( j = indexymin[i]; j < indexymax[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; } #endif for ( i = indexxmin; i < indexxmax; i++ ) { square_root = sqrt( 1. - MIN( 1., pow( ( (PLFLT) i - x0 ) / a, 2. ) ) ); // Add 0.5 to find nearest integer and therefore preserve symmetry // with regard to lower and upper bound of y range. indexymin[i] = MAX( 0, (PLINT) ( 0.5 + y0 - b * square_root ) ); // indexymax calculated with the convention that it is 1 // greater than highest valid index. indexymax[i] = MIN( YPTS, 1 + (PLINT) ( 0.5 + y0 + b * square_root ) ); //printf("i, b*square_root, indexymin[i], YPTS - indexymax[i] = %d, %e, %d, %d\n", i, b*square_root, indexymin[i], YPTS - indexymax[i]); #if 0 // These values should all be ignored because of the j index range. for ( j = 0; j < indexymin[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; #endif for ( j = indexymin[i]; j < indexymax[i]; j++ ) zlimited[i][j] = z[i][j]; #if 0 // These values should all be ignored because of the j index range. for ( j = indexymax[i]; j < YPTS; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; #endif } #if 0 // These values should all be ignored because of the i index range. for ( i = indexxmax; i < XPTS; i++ ) { indexymin[i] = 0; indexymax[i] = YPTS; for ( j = indexymin[i]; j < indexymax[i]; j++ ) // Mark with large value to check this is ignored. zlimited[i][j] = 1.e300; } #endif plMinMax2dGrid( (const PLFLT * const *) z, XPTS, YPTS, &zmax, &zmin ); step = ( zmax - zmin ) / ( nlevel + 1 ); for ( i = 0; i < nlevel; i++ ) clevel[i] = zmin + step + step * i; pllightsource( 1., 1., 1. ); for ( k = 0; k < 2; k++ ) { for ( ifshade = 0; ifshade < 5; ifshade++ ) { pladv( 0 ); plvpor( 0.0, 1.0, 0.0, 0.9 ); plwind( -1.0, 1.0, -0.9, 1.1 ); plcol0( 3 ); plmtex( "t", 1.0, 0.5, 0.5, title[k] ); plcol0( 1 ); if ( rosen ) plw3d( 1.0, 1.0, 1.0, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k] ); else plw3d( 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, zmin, zmax, alt[k], az[k] ); plbox3( "bnstu", "x axis", 0.0, 0, "bnstu", "y axis", 0.0, 0, "bcdmnstuv", "z axis", 0.0, 0 ); plcol0( 2 ); if ( ifshade == 0 ) // diffuse light surface plot { cmap1_init( 1 ); plfsurf3d( x, y, plf2ops_c(), (PLPointer) z, XPTS, YPTS, 0, NULL, 0 ); } else if ( ifshade == 1 ) // magnitude colored plot { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_c(), ( PLPointer ) & grid_c, XPTS, YPTS, MAG_COLOR, NULL, 0 ); } else if ( ifshade == 2 ) // magnitude colored plot with faceted squares { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_row_major(), ( PLPointer ) & grid_row_major, XPTS, YPTS, MAG_COLOR | FACETED, NULL, 0 ); } else if ( ifshade == 3 ) // magnitude colored plot with contours { cmap1_init( 0 ); plfsurf3d( x, y, plf2ops_grid_col_major(), ( PLPointer ) & grid_col_major, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel ); } else // magnitude colored plot with contours and index limits. { cmap1_init( 0 ); plsurf3dl( x, y, (const PLFLT * const *) zlimited, XPTS, YPTS, MAG_COLOR | SURF_CONT | BASE_CONT, clevel, nlevel, indexxmin, indexxmax, indexymin, indexymax ); } } } // Clean up free( (void *) x ); free( (void *) y ); plFree2dGrid( z, XPTS, YPTS ); free( (void *) z_row_major ); free( (void *) z_col_major ); plFree2dGrid( zlimited, XPTS, YPTS ); free( (void *) indexymin ); free( (void *) indexymax ); plend(); exit( 0 ); }
int main( int argc, const char *argv[] ) { PLFLT *x, *y, **z, xmin = 0., xmax = 1.0, xmid = 0.5 * ( xmax + xmin ), xrange = xmax - xmin, ymin = 0., ymax = 1.0, ymid = 0.5 * ( ymax + ymin ), yrange = ymax - ymin, zmin = 0., zmax = 1.0, zmid = 0.5 * ( zmax + zmin ), zrange = zmax - zmin, ysmin = ymin + 0.1 * yrange, ysmax = ymax - 0.1 * yrange, ysrange = ysmax - ysmin, dysrot = ysrange / (PLFLT) ( NROTATION - 1 ), dysshear = ysrange / (PLFLT) ( NSHEAR - 1 ), zsmin = zmin + 0.1 * zrange, zsmax = zmax - 0.1 * zrange, zsrange = zsmax - zsmin, dzsrot = zsrange / (PLFLT) ( NROTATION - 1 ), dzsshear = zsrange / (PLFLT) ( NSHEAR - 1 ), ys, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, omega, sin_omega, cos_omega, domega; int i, j; PLFLT radius, pitch, xpos, ypos, zpos; // p1string must be exactly one character + the null termination // character. char p1string[] = "O"; const char *pstring = "The future of our civilization depends on software freedom."; // Allocate and define the minimal x, y, and z to insure 3D box x = (PLFLT *) calloc( XPTS, sizeof ( PLFLT ) ); y = (PLFLT *) calloc( YPTS, sizeof ( PLFLT ) ); plAlloc2dGrid( &z, XPTS, YPTS ); for ( i = 0; i < XPTS; i++ ) { x[i] = xmin + (double) i * ( xmax - xmin ) / (double) ( XPTS - 1 ); } for ( j = 0; j < YPTS; j++ ) y[j] = ymin + (double) j * ( ymax - ymin ) / (double) ( YPTS - 1 ); for ( i = 0; i < XPTS; i++ ) { for ( j = 0; j < YPTS; j++ ) { z[i][j] = 0.; } } // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); plinit(); // Page 1: Demonstrate inclination and shear capability pattern. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // z = zmin. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.5 * xrange * cos_omega; y_inclination = 0.5 * yrange * sin_omega; z_inclination = 0.; x_shear = -0.5 * xrange * sin_omega; y_shear = 0.5 * yrange * cos_omega; z_shear = 0.; plptex3( xmid, ymid, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // x = xmax. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.; y_inclination = -0.5 * yrange * cos_omega; z_inclination = 0.5 * zrange * sin_omega; x_shear = 0.; y_shear = 0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; plptex3( xmax, ymid, zmid, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // y = ymax. plschr( 0., 1.0 ); for ( i = 0; i < NREVOLUTION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NREVOLUTION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_inclination = 0.5 * xrange * cos_omega; y_inclination = 0.; z_inclination = 0.5 * zrange * sin_omega; x_shear = -0.5 * xrange * sin_omega; y_shear = 0.; z_shear = 0.5 * zrange * cos_omega; plptex3( xmid, ymax, zmid, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.0, " revolution" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 2: Demonstrate rotation of string around its axis. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // y = ymax. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsrot * (PLFLT) i; plptex3( xmid, ymax, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for y = y#dmax#u" ); } // x = xmax. plschr( 0., 1.0 ); x_inclination = 0.; y_inclination = -1.; z_inclination = 0.; y_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_shear = 0.5 * xrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsrot * (PLFLT) i; plptex3( xmax, ymid, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for x = x#dmax#u" ); } // z = zmin. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NROTATION; i++ ) { omega = 2. * M_PI * ( (PLFLT) i / (PLFLT) NROTATION ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * cos_omega; z_shear = 0.5 * zrange * sin_omega; ys = ysmax - dysrot * (PLFLT) i; plptex3( xmid, ys, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "rotation for z = z#dmin#u" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 3: Demonstrate shear of string along its axis. // Work around xcairo and pngcairo (but not pscairo) problems for // shear vector too close to axis of string. (N.B. no workaround // would be domega = 0.) domega = 0.05; pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); // y = ymax. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; y_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); x_shear = 0.5 * xrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsshear * (PLFLT) i; plptex3( xmid, ymax, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for y = y#dmax#u" ); } // x = xmax. plschr( 0., 1.0 ); x_inclination = 0.; y_inclination = -1.; z_inclination = 0.; x_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = -0.5 * yrange * sin_omega; z_shear = 0.5 * zrange * cos_omega; zs = zsmax - dzsshear * (PLFLT) i; plptex3( xmax, ymid, zs, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for x = x#dmax#u" ); } // z = zmin. plschr( 0., 1.0 ); x_inclination = 1.; y_inclination = 0.; z_inclination = 0.; z_shear = 0.; for ( i = 0; i < NSHEAR; i++ ) { omega = domega + 2. * M_PI * ( (PLFLT) i / (PLFLT) NSHEAR ); sin_omega = sin( omega ); cos_omega = cos( omega ); y_shear = 0.5 * yrange * cos_omega; x_shear = 0.5 * xrange * sin_omega; ys = ysmax - dysshear * (PLFLT) i; plptex3( xmid, ys, zmin, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, "shear for z = z#dmin#u" ); } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 4: Demonstrate drawing a string on a 3D path. pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 40., -30. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); plschr( 0., 1.2 ); // domega controls the spacing between the various characters of the // string and also the maximum value of omega for the given number // of characters in *pstring. domega = 2. * M_PI / (double) strlen( pstring ); omega = 0.; // 3D function is a helix of the given radius and pitch radius = 0.5; pitch = 1. / ( 2. * M_PI ); while ( *pstring ) { sin_omega = sin( omega ); cos_omega = cos( omega ); xpos = xmid + radius * sin_omega; ypos = ymid - radius * cos_omega; zpos = zmin + pitch * omega; // In general, the inclination is proportional to the derivative of // the position wrt theta. x_inclination = radius * cos_omega;; y_inclination = radius * sin_omega; z_inclination = pitch; // The shear vector should be perpendicular to the 3D line with Z // component maximized, but for low pitch a good approximation is // a constant vector that is parallel to the Z axis. x_shear = 0.; y_shear = 0.; z_shear = 1.; *p1string = *pstring; plptex3( xpos, ypos, zpos, x_inclination, y_inclination, z_inclination, x_shear, y_shear, z_shear, 0.5, p1string ); pstring++; omega += domega; } // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Page 5: Demonstrate plmtex3 axis labelling capability pladv( 0 ); plvpor( -0.15, 1.15, -0.05, 1.05 ); plwind( -1.2, 1.2, -0.8, 1.5 ); plw3d( 1.0, 1.0, 1.0, xmin, xmax, ymin, ymax, zmin, zmax, 20., 45. ); plcol0( 2 ); plbox3( "b", "", xmax - xmin, 0, "b", "", ymax - ymin, 0, "bcd", "", zmax - zmin, 0 ); plschr( 0., 1.0 ); plmtex3( "xp", 3.0, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "xp", 4.5, 0.5, 0.5, "primary X-axis label" ); plmtex3( "xs", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "xs", -1.0, 0.5, 0.5, "secondary X-axis label" ); plmtex3( "yp", 3.0, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "yp", 4.5, 0.5, 0.5, "primary Y-axis label" ); plmtex3( "ys", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "ys", -1.0, 0.5, 0.5, "secondary Y-axis label" ); plmtex3( "zp", 4.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "zp", 3.0, 0.5, 0.5, "primary Z-axis label" ); plmtex3( "zs", -2.5, 0.5, 0.5, "Arbitrarily displaced" ); plmtex3( "zs", -1.0, 0.5, 0.5, "secondary Z-axis label" ); // Draw minimal 3D grid to finish defining the 3D box. plmesh( x, y, (const PLFLT * const *) z, XPTS, YPTS, DRAW_LINEXY ); // Clean up. free( (void *) x ); free( (void *) y ); plFree2dGrid( z, XPTS, YPTS ); plend(); exit( 0 ); }
int main(int argc, char *argv[]) { int i, j, k; PLFLT *x, *y, **z; PLFLT xx, yy; int nlevel = LEVELS; PLFLT clevel[LEVELS]; PLFLT zmin, zmax, step; /* Parse and process command line arguments */ (void) plparseopts(&argc, argv, PL_PARSE_FULL); /* Initialize plplot */ plinit(); x = (PLFLT *) calloc(XPTS, sizeof(PLFLT)); y = (PLFLT *) calloc(YPTS, sizeof(PLFLT)); plAlloc2dGrid(&z, XPTS, YPTS); for (i = 0; i < XPTS; i++) { x[i] = 3. * (double) (i - (XPTS / 2)) / (double) (XPTS / 2); } for (i = 0; i < YPTS; i++) y[i] = 3.* (double) (i - (YPTS / 2)) / (double) (YPTS / 2); for (i = 0; i < XPTS; i++) { xx = x[i]; for (j = 0; j < YPTS; j++) { yy = y[j]; z[i][j] = 3. * (1.-xx)*(1.-xx) * exp(-(xx*xx) - (yy+1.)*(yy+1.)) - 10. * (xx/5. - pow(xx,3.) - pow(yy,5.)) * exp(-xx*xx-yy*yy) - 1./3. * exp(-(xx+1)*(xx+1) - (yy*yy)); if(0) { /* Jungfraujoch/Interlaken */ if (z[i][j] < -1.) z[i][j] = -1.; } } } plMinMax2dGrid(z, XPTS, YPTS, &zmax, &zmin); step = (zmax - zmin)/(nlevel+1); for (i=0; i<nlevel; i++) clevel[i] = zmin + step + step*i; cmap1_init(); for (k = 0; k < 2; k++) { for (i=0; i<4; i++) { pladv(0); plcol0(1); plvpor(0.0, 1.0, 0.0, 0.9); plwind(-1.0, 1.0, -1.0, 1.5); plw3d(1.0, 1.0, 1.2, -3.0, 3.0, -3.0, 3.0, zmin, zmax, alt[k], az[k]); plbox3("bnstu", "x axis", 0.0, 0, "bnstu", "y axis", 0.0, 0, "bcdmnstuv", "z axis", 0.0, 4); plcol0(2); /* wireframe plot */ if (i==0) plmesh(x, y, z, XPTS, YPTS, opt[k]); /* magnitude colored wireframe plot */ else if (i==1) plmesh(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR); /* magnitude colored wireframe plot with sides */ else if (i==2) plot3d(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR, 1); /* magnitude colored wireframe plot with base contour */ else if (i==3) plmeshc(x, y, z, XPTS, YPTS, opt[k] | MAG_COLOR | BASE_CONT, clevel, nlevel); plcol0(3); plmtex("t", 1.0, 0.5, 0.5, title[k]); } } /* Clean up */ free((void *) x); free((void *) y); plFree2dGrid(z, XPTS, YPTS); plend(); exit(0); }
int main(int argc, char *argv[]) { PLFLT *x, *y, *z, *clev; PLFLT *xg, *yg, **zg, **szg; PLFLT zmin, zmax, lzm, lzM; long ct; int i, j, k; PLINT alg; char ylab[40], xlab[40]; char *title[] = {"Cubic Spline Approximation", "Delaunay Linear Interpolation", "Natural Neighbors Interpolation", "KNN Inv. Distance Weighted", "3NN Linear Interpolation", "4NN Around Inv. Dist. Weighted"}; PLFLT opt[] = {0., 0., 0., 0., 0., 0.}; xm = ym = -0.2; xM = yM = 0.8; plMergeOpts(options, "x21c options", NULL); plparseopts(&argc, argv, PL_PARSE_FULL); opt[2] = wmin; opt[3] = (PLFLT) knn_order; opt[4] = threshold; /* Initialize plplot */ plinit(); create_data(&x, &y, &z, pts); /* the sampled data */ zmin = z[0]; zmax = z[0]; for (i=1; i<pts; i++) { if (z[i] > zmax) zmax = z[i]; if (z[i] < zmin) zmin = z[i]; } create_grid(&xg, xp, &yg, yp); /* grid the data at */ plAlloc2dGrid(&zg, xp, yp); /* the output grided data */ clev = (PLFLT *) malloc(nl * sizeof(PLFLT)); sprintf(xlab, "Npts=%d gridx=%d gridy=%d", pts, xp, yp); plcol0(1); plenv(xm, xM, ym, yM, 2, 0); plcol0(15); pllab(xlab, "", "The original data"); plcol0(2); plpoin(pts, x, y, 5); pladv(0); plssub(3,2); for (k=0; k<2; k++) { pladv(0); for (alg=1; alg<7; alg++) { ct = clock(); plgriddata(x, y, z, pts, xg, xp, yg, yp, zg, alg, opt[alg-1]); sprintf(xlab, "time=%d ms", (clock() - ct)/1000); sprintf(ylab, "opt=%.3f", opt[alg-1]); /* - CSA can generate NaNs (only interpolates?!). * - DTLI and NNI can generate NaNs for points outside the convex hull * of the data points. * - NNLI can generate NaNs if a sufficiently thick triangle is not found * * PLplot should be NaN/Inf aware, but changing it now is quite a job... * so, instead of not plotting the NaN regions, a weighted average over * the neighbors is done. */ if (alg == GRID_CSA || alg == GRID_DTLI || alg == GRID_NNLI || alg == GRID_NNI) { int ii, jj; PLFLT dist, d; for (i=0; i<xp; i++) { for (j=0; j<yp; j++) { if (isnan(zg[i][j])) { /* average (IDW) over the 8 neighbors */ zg[i][j] = 0.; dist = 0.; for (ii=i-1; ii<=i+1 && ii<xp; ii++) { for (jj=j-1; jj<=j+1 && jj<yp; jj++) { if (ii >= 0 && jj >= 0 && !isnan(zg[ii][jj])) { d = (abs(ii-i) + abs(jj-j)) == 1 ? 1. : 1.4142; zg[i][j] += zg[ii][jj]/(d*d); dist += d; } } } if (dist != 0.) zg[i][j] /= dist; else zg[i][j] = zmin; } } } } plMinMax2dGrid(zg, xp, yp, &lzM, &lzm); plcol0(1); pladv(alg); if (k == 0) { lzm = MIN(lzm, zmin); lzM = MAX(lzM, zmax); for (i=0; i<nl; i++) clev[i] = lzm + (lzM-lzm)/(nl-1)*i; plenv0(xm, xM, ym, yM, 2, 0); plcol0(15); pllab(xlab, ylab, title[alg-1]); plshades(zg, xp, yp, NULL, xm, xM, ym, yM, clev, nl, 1, 0, 1, plfill, 1, NULL, NULL); plcol0(2); } else { for (i=0; i<nl; i++) clev[i] = lzm + (lzM-lzm)/(nl-1)*i; cmap1_init(); plvpor(0.0, 1.0, 0.0, 0.9); plwind(-1.0, 1.0, -1.0, 1.5); /* * For the comparition to be fair, all plots should have the * same z values, but to get the max/min of the data generated * by all algorithms would imply two passes. Keep it simple. * * plw3d(1., 1., 1., xm, xM, ym, yM, zmin, zmax, 30, -60); */ plw3d(1., 1., 1., xm, xM, ym, yM, lzm, lzM, 30, -60); plbox3("bnstu", ylab, 0.0, 0, "bnstu", xlab, 0.0, 0, "bcdmnstuv", "", 0.0, 4); plcol0(15); pllab("", "", title[alg-1]); plot3dc(xg, yg, zg, xp, yp, DRAW_LINEXY | MAG_COLOR | BASE_CONT, clev, nl); } } } plend(); free_data(x, y, z); free_grid(xg, yg); free((void *)clev); plFree2dGrid(zg, xp, yp); }
void shade(void) { int i, j; PLFLT x, y, argx, argy, distort; PLFLT **z, **w, zmin, zmax; PLFLT xg1[XPTS], yg1[YPTS]; PLcGrid cgrid1; PLcGrid2 cgrid2; PLFLT shade_min, shade_max, sh_color; PLINT sh_cmap = 1, sh_width; PLINT min_color = 1, min_width = 0, max_color = 0, max_width = 0; /* Set up function arrays */ plAlloc2dGrid(&z, XPTS, YPTS); plAlloc2dGrid(&w, XPTS, YPTS); /* Set up data array */ for (i = 0; i < XPTS; i++) { x = (double) (i - (XPTS / 2)) / (double) (XPTS / 2); for (j = 0; j < YPTS; j++) { y = (double) (j - (YPTS / 2)) / (double) (YPTS / 2) - 1.0; z[i][j] = - sin(7.*x) * cos(7.*y) + x*x - y*y; w[i][j] = - cos(7.*x) * sin(7.*y) + 2 * x * y; } } f2mnmx(z, XPTS, YPTS, &zmin, &zmax); for (i = 0; i < NCONTR; i++) clevel[i] = zmin + (zmax - zmin) * (i + 0.5) / (PLFLT) NCONTR; /* Set up coordinate grids */ cgrid1.xg = xg1; cgrid1.yg = yg1; cgrid1.nx = XPTS; cgrid1.ny = YPTS; plAlloc2dGrid(&cgrid2.xg, XPTS, YPTS); plAlloc2dGrid(&cgrid2.yg, XPTS, YPTS); cgrid2.nx = XPTS; cgrid2.ny = YPTS; for (i = 0; i < XPTS; i++) { for (j = 0; j < YPTS; j++) { mypltr((PLFLT) i, (PLFLT) j, &x, &y, NULL); argx = x * PI/2; argy = y * PI/2; distort = 0.4; cgrid1.xg[i] = x + distort * cos(argx); cgrid1.yg[j] = y - distort * cos(argy); cgrid2.xg[i][j] = x + distort * cos(argx) * cos(argy); cgrid2.yg[i][j] = y - distort * cos(argx) * cos(argy); } } /* Plot using identity transform */ pladv(0); plvpor(0.1, 0.9, 0.1, 0.9); plwind(-1.0, 1.0, -1.0, 1.0); for (i = 0; i < NCONTR; i++) { shade_min = zmin + (zmax - zmin) * i / (PLFLT) NCONTR; shade_max = zmin + (zmax - zmin) * (i +1) / (PLFLT) NCONTR; sh_color = i / (PLFLT) (NCONTR-1); sh_width = 2; plpsty(0); plshade(z, XPTS, YPTS, NULL, -1., 1., -1., 1., shade_min, shade_max, sh_cmap, sh_color, sh_width, min_color, min_width, max_color, max_width, plfill, 1, NULL, NULL); } plcol(1); plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0); plcol(2); /* plcont(w, XPTS, YPTS, 1, XPTS, 1, YPTS, clevel, NCONTR, mypltr, NULL); */ pllab("distance", "altitude", "Bogon density"); /* Clean up */ plFree2dGrid(z, XPTS, YPTS); plFree2dGrid(w, XPTS, YPTS); plFree2dGrid(cgrid2.xg, XPTS, YPTS); plFree2dGrid(cgrid2.yg, XPTS, YPTS); }
/* * void plfvect() * * Internal routine to plot a vector array with arbitrary coordinate * and vector transformations */ void plfvect(PLFLT (*plf2eval) (PLINT, PLINT, PLPointer), PLPointer f2eval_data1, PLPointer f2eval_data2, PLINT nx, PLINT ny, PLFLT scale, void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer), PLPointer pltr_data) { PLINT i, j, i1, j1; PLFLT **u, **v, **x, **y; PLFLT lscale, dx, dy, dxmin, dymin, umax, vmax; plAlloc2dGrid(&u, nx, ny); plAlloc2dGrid(&v, nx, ny); plAlloc2dGrid(&x, nx, ny); plAlloc2dGrid(&y, nx, ny); for (j=0; j<ny; j++) { for (i=0 ;i<nx ;i++) { u[i][j] = plf2eval(i,j,f2eval_data1); v[i][j] = plf2eval(i,j,f2eval_data2); pltr((PLFLT) i, (PLFLT) j, &x[i][j], &y[i][j], pltr_data); } } /* Calculate apropriate scaling if necessary */ if (scale <= 0.0 ) { if (nx <= 1 && ny <= 1) { fprintf(stderr,"plfvect: not enough points for autoscaling\n"); return; } dxmin = 10E10; dymin = 10E10; for (j=0; j<ny; j++) { for (i=0 ;i<nx ;i++) { for (j1=j; j1<ny; j1++) { for (i1=0 ;i1<nx ;i1++) { dx = fabs(x[i1][j1]-x[i][j]); dy = fabs(y[i1][j1]-y[i][j]); if (dx > 0) { dxmin = (dx<dxmin)?dx:dxmin; } if (dy > 0) { dymin = (dy<dymin)?dy:dymin; } } } } } umax = u[0][0]; vmax = v[0][0]; for (j=0; j<ny; j++) { for (i=0 ;i<nx ;i++) { umax = (u[i][j]>umax)?u[i][j]:umax; vmax = (v[i][j]>vmax)?v[i][j]:vmax; } } umax = umax/dxmin; vmax = vmax/dymin; lscale = (umax<vmax)?umax:vmax; lscale = 1.5/lscale; if (scale < 0.0) { scale = -scale*lscale; } else { scale = lscale; } } for (j=0; j<ny; j++) { for (i=0 ;i<nx ;i++) { plP_plotvect(x[i][j],y[i][j],u[i][j],v[i][j],scale); } } plFree2dGrid(u, nx, ny); plFree2dGrid(v, nx, ny); plFree2dGrid(x, nx, ny); plFree2dGrid(y, nx, ny); }