Esempio n. 1
0
/* Main()*/
int main(int argc, const char **argv)
{
  // Create a client object and connect to the server; the server must
  // be running on "localhost" at port 6665
  client = playerc_client_create(NULL, "gort", 9876);
  if (playerc_client_connect(client) != 0)
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }

  // Create a bumper proxy (device id "bumper:0" and subscribe
   // in read mode
  bumper = playerc_bumper_create(client, 0);
  if(playerc_bumper_subscribe(bumper,PLAYERC_OPEN_MODE)!= 0)
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }

  // Create a position2d proxy (device id "position2d:0") and susbscribe
  // in read/write mode
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0)
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }
  // Enable the robots motors
  playerc_position2d_enable(position2d, 1);
  playerc_client_read(client);
  
  // Point 1 to Point 2
  Move(client, MOVE1, ANGLE1);
  Turn(client, TURN1);

  // Point 2 to Point 3
  Move(client, MOVE2, ANGLE2);
  Turn(client, TURN2);

  // Point 3 to Point 4
  Move(client, MOVE3, ANGLE3);
  Turn(client, TURN3);

  // Point 4 to Point 5
  Move(client, MOVE4, ANGLE4);

  // Shutdown and tidy up
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Esempio n. 2
0
int main(int argc, char *argv[]) {
  playerc_client_t *robot;
  playerc_position2d_t *pp;
  playerc_simulation_t *sp;

  /* Create a client and connect it to the server. */
  robot = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(robot)) return -1;

  /* Create and subscribe to a simulation proxy. */
  sp = playerc_simulation_create(robot, 0);
  if (playerc_simulation_subscribe(sp, PLAYER_OPEN_MODE)) return -1;

  pp = playerc_position2d_create(robot, 0);
  if (playerc_position2d_subscribe(pp, PLAYER_OPEN_MODE)) return -1;

  /* read from the proxies */
  playerc_client_read(robot);

    // get and re-set the color
    float green[]= {0.67, 0.88, 0.43, 1};
    float puckcolor[4];
  	playerc_client_read(robot);

	playerc_simulation_get_property(sp,(char *)"puck1",(char*)"color",puckcolor,4*sizeof(float));
	printf("Puck1 is color = (%.2f,%.2f,%.2f,%.2f)\n",
			puckcolor[0], puckcolor[1], puckcolor[2], puckcolor[3]);

	playerc_simulation_get_property(sp,(char *)"puck2",(char*)"color",puckcolor,4*sizeof(float));
	printf("Puck2 is color = (%.2f,%.2f,%.2f,%.2f)\n",
			puckcolor[0], puckcolor[1], puckcolor[2], puckcolor[3]);

	playerc_simulation_get_property(sp,(char *)"puck3",(char*)"color",puckcolor,4*sizeof(float));
	printf("Puck3 is color = (%.2f,%.2f,%.2f,%.2f)\n",
			puckcolor[0], puckcolor[1], puckcolor[2], puckcolor[3]);

    printf("setting puck1 to green\n");

	playerc_simulation_set_property(sp,(char *)"puck1",(char*)"color",green,4*sizeof(float));

	playerc_simulation_get_property(sp,(char *)"puck1",(char*)"color",puckcolor,4*sizeof(float));
	printf("Puck3 is color = (%.2f,%.2f,%.2f,%.2f)\n",
			puckcolor[0], puckcolor[1], puckcolor[2], puckcolor[3]);

  /* Shutdown */
  playerc_simulation_unsubscribe(sp);
  playerc_position2d_unsubscribe(pp);
  playerc_simulation_destroy(sp);
  playerc_position2d_destroy(pp);
  playerc_client_disconnect(robot);
  playerc_client_destroy(robot);

  return 0;
}
Esempio n. 3
0
int main(int argc, const char **argv)
{
    double dist, speed;
    playerc_client_t *client;
    playerc_position2d_t *position2d;

    // Create a client object and connect to the server; the server must
    // be running on "localhost" at port 6665
    client = playerc_client_create(NULL, "gort", 9876);
    if (playerc_client_connect(client) != 0)
    {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    // Create a position2d proxy (device id "position2d:0") and susbscribe
    // in read/write mode
    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0)
    {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    // Enable the robots motors
    playerc_position2d_enable(position2d, 1);

    // Start the robot moving
    dist = 0;
    speed = 1;
    playerc_position2d_set_cmd_vel(position2d, speed, 0, 0, 1);
    while( dist <= 3.048 ) {
        // Read data from the server and display current robot position
        playerc_client_read(client);
        printf("position : %f %f %f\n", position2d->px, position2d->py, position2d->pa);
        dist = position2d->px;
        if(dist > 2.6 && speed > .01) {
            playerc_position2d_set_cmd_vel(position2d, (speed /= 2), 0, 0, 1);
        }
    }

    //stop the robot
    playerc_position2d_set_cmd_vel(position2d, 0, 0, 0, 1);

    // Shutdown and tidy up
    playerc_position2d_unsubscribe(position2d);
    playerc_position2d_destroy(position2d);
    playerc_client_disconnect(client);
    playerc_client_destroy(client);

    return 0;
}
Esempio n. 4
0
int main(int argc, const char **argv)
{
  int i;
  playerc_client_t *client;
  playerc_position2d_t *position2d;

  // Create a client object and connect to the server; the server must
  // be running on "localhost" at port 6665
  client = playerc_client_create(NULL, "localhost", 6665);
  if (playerc_client_connect(client) != 0)
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }

  // Create a position2d proxy (device id "position2d:0") and susbscribe
  // in read/write mode
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0)
  {
    fprintf(stderr, "error: %s\n", playerc_error_str());
    return -1;
  }

  // Enable the robots motors
  playerc_position2d_enable(position2d, 1);

  // Start the robot turning slowing
  playerc_position2d_set_cmd_vel(position2d, 0, 0, 0.1, 1);

  for (i = 0; i < 200; i++)
  {
    // Read data from the server and display current robot position
    playerc_client_read(client);
    printf("position : %f %f %f\n",
           position2d->px, position2d->py, position2d->pa);
  } 

  // Shutdown and tidy up
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Esempio n. 5
0
int
main(int argc, const char **argv)
{
  int i;
  playerc_client_t *client;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

  // Make the robot spin!
  if (0 != playerc_position2d_set_cmd_vel(position2d, 0.25, 0, DTOR(40.0), 1))
    return -1;

  for (i = 0; i < 200; i++)
  {
    // Wait for new data from server
    playerc_client_read(client);

    // Print current robot pose
    printf("position2d : %f %f %f\n",
           position2d->px, position2d->py, position2d->pa);
  }

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Esempio n. 6
0
int
main(int argc, char **argv)
{
  // Initialize movement parameters  (default to a square)
  int n = 4;
  int l = 65;
  int v = 50;
  int a = 90;

  // Parse command-line arguements
  int option_index = 0;
  static struct option long_options[] = {
    {"line",     0, 0, 0 },
    {"triangle", 0, 0, 1 },
    {"square",   0, 0, 2 },
    {"pentagon", 0, 0, 3 },
    {"hexagon",  0, 0, 4 },
    {0,          0, 0, 0 }
  };

  int shape_set = false;
  int angle_set = false;
  int num_set = false;
  int reverse_direction = false;
  int smooth_acceleration = false;
  int c;
  while ((c = getopt_long(argc, argv, "l:v:n:a:rs",
              long_options, &option_index)) != -1)
    switch (c) {
      case 0: // line
        n = 2; a = 180; shape_set = true; break;
      case 1: // triangle
        n = 3; a = 120; shape_set = true; break;
      case 2: // square
        n = 4; a = 90; shape_set = true; break;
      case 3: // pentagon
        n = 5; a = 72; shape_set = true; break;
      case 4: // hexagon
        n = 6; a = 60; shape_set = true; break;
      case 'l': // 0 to 200 cm (default 65)
        l = atoi(optarg); break;
      case 'v': // 0 to 50 cm/sec (default 50)
        v = atoi(optarg); break;
      case 'n': // 0 to 10 (default 4)
        n = atoi(optarg); num_set = true; break;
      case 'a': // 0 to 180 degrees (default 90)
        a = atoi(optarg); angle_set = true; break;
      case 'r':
        reverse_direction = true; break;
      case 's':
        smooth_acceleration = true; break;
      case '?':
        if (optopt == 'v' || optopt == 'a' || optopt == 'l' || optopt == 'n')
          fprintf (stderr, "Option -%c requires an argument.\n", optopt);
        else if (isprint (optopt))
          fprintf (stderr, "Unknown option `-%c'.\n", optopt);
        else
          fprintf (stderr, "Unknown option character `\\x%x'.\n", optopt);
        return 1;
      default:
        printf("Bad arguments.\n\nUsage: dead_reckoning -n <number of sides> "
               "-l <length of each side> -v <velocity (cm/sec)> "
               "-a <turning angle (degrees)>");
        exit(1);
    }
  int i = 0;
  for (i = optind; i < argc; i++)
    printf ("Non-option argument %s\n", argv[i]);

  if(!shape_set && (!num_set || !angle_set)) {
    printf("\nYou need to specify a shape (by name, or with the arguments "
           "'n' and 'a').\n\nUsage: dead_reckoning --<shape> "
           "[-l <side length>] [-v <velocity>] [-r] [-s]\n\n"
           "Alternative usage: dead_reckoning -n <number of sides> "
           "-a <angle of each corner in degrees> "
           "[-l <length of each side>] [-v <velocity>]\n\n"
           "Valid shapes are: line, triangle, square, pentagon, hexagon\n"
           "Side length is in cm. Valid range is [10,200]. Default value is 65.\n"
           "Velocity is in cm/sec. Valid range is [10,50]. Default value is 50.\n"
           "The -r option reverses the turn direction (clockwise by default)\n"
           "The -s option enables smooth acceleration and deceleration\n\n"
           "e.g. dead_reckoning --hexagon\n"
           "e.g. dead_reckoning --hexagon -l 100\n"
           "e.g. dead_reckoning --hexagon -l 100 -v 40\n"
           "e.g. dead_reckoning -n 6 -a 60 -l 100 -v 40\n\n");
    exit(1);
  }

  // Initialize player
  i = 0;
  playerc_client_t *client;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

  // Read initial position
  playerc_client_read(client);
  double start_x = position2d->px;
  double start_y = position2d->py;
  double start_a = position2d->pa;

  // Convert parameters to motor control arguments
  double max_vel = 0.01 * v;
  int move_time = l * 28000;
  move_time *= 50.0 / (double)v;
  double max_turn_speed = 1.57;     // 90 degrees per second
  int turn_time = (int)(((double)a/90.0) * 560000);
  int d = -1;
  if (reverse_direction) d = 1;

  // Move the robot (e.g. square)
  double accel_rate = 0.01;         // 2 meters per sec^2
  double turn_accel_rate = 0.0314;  // 360 degrees per sec^2
  int cycle_time = 5000;            // 5 miliseconds
  for (i = 0; i < n; ++i) {
    // FORWARD
    int acceleration_time = 0;
    double vel = 0;
    int t = 0;
    if (smooth_acceleration) {
      // accelerate (up to max speed in 0.25 seconds)
      acceleration_time = (max_vel / accel_rate) * cycle_time;
      for (; vel < max_vel && t < move_time / 2;
          t += cycle_time, vel += accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, vel, 0, 0, 1)) return -1;
    }
    //max forward speed
    if (playerc_position2d_set_cmd_vel(position2d, max_vel, 0, 0, 1)) return -1;
    usleep(move_time - acceleration_time);  // not 2x acceleration time in order to make
                                            // up for ground not covered durring acceleration
                                            // (at an average of half of full speed)
    if (smooth_acceleration) {
      // decelerate
      for (; vel >= 0; vel -= accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, vel, 0, 0, 1)) return -1;
    }    
    
    // TURN
    double turn_speed = 0;
    if (smooth_acceleration) {
      // accelerate (up to max speed in 0.25 seconds)
      acceleration_time = (max_turn_speed / turn_accel_rate) * cycle_time;
      for (t = 0; turn_speed < max_turn_speed && t < move_time / 2;
          t += cycle_time, turn_speed += turn_accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * turn_speed, 1)) return -1;
    }
    // max turn speed
    if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * max_turn_speed, 1)) return -1;
    usleep(turn_time - acceleration_time);
    if (smooth_acceleration) {
      // decelerate
      for (; turn_speed >= 0; turn_speed -= turn_accel_rate, usleep(cycle_time))
        if (playerc_position2d_set_cmd_vel(position2d, 0, 0, d * turn_speed, 1)) return -1;
    }
  }
  // Stop
  if (playerc_position2d_set_cmd_vel(position2d, 0, 0, 0, 1)) return -1;
  
  // Read final position, get error
  playerc_client_read(client);
  double error_x = position2d->px - start_x;
  double error_y = position2d->py - start_y;
  double error_a = position2d->pa - start_a;

  // Report odometry error
  printf("\n\nMovement error according to onboard odometry:\n"
         "\tX pos: %f cm\n\tY pos: %f cm\n\tAngle: %f degrees\n",
         error_x * 100, error_y * 100, error_a * -57.325);

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Esempio n. 7
0
int main(int argc, const char **argv)
{
    //Variaveis
    int degrees,PosRelX,PosRelY;
    float radians,Dlaser,ODM_ang, ang;
    int width = 500, height = 500; //Coloque o tamanho do mapa aqui (em pixel)
    int centroX = (width / 2);
    int centroY = (height / 2);
    playerc_client_t *client;
    playerc_laser_t *laser;
    playerc_position2d_t *position2d;
    CvPoint pt,pt1,pt2;
    CvScalar cinzaE,preto,cinzaC;
    char window_name[] = "Mapa";

    IplImage* image = cvCreateImage( cvSize(width,height), 8, 3 );
    cvNamedWindow(window_name, 1 );
    preto = CV_RGB(0, 0, 0);        //Para indicar obstaculos
    cinzaE = CV_RGB(92, 92, 92);    //Para indicar o desconhecido
    cinzaC = CV_RGB(150, 150, 150); //Para indicar espacos livres
printf ("debug: 11 - INICIO\n");
    client = playerc_client_create(NULL, "localhost", 6665);
printf ("debug: 12\n");
    if (playerc_client_connect(client) != 0)
    return -1;
printf ("debug: 13\n");
    laser = playerc_laser_create(client, 0);
printf ("debug: 21\n");
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
    return -1;
printf ("debug: 22\n");

    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        printf ("err1\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
    
printf ("debug: 23\n");
    if (playerc_client_datamode (client, PLAYERC_DATAMODE_PULL) != 0) {
        printf ("err2\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
printf ("debug: 24\n");
    if (playerc_client_set_replace_rule (client, -1, -1, PLAYER_MSGTYPE_DATA, -1, 1) != 0) {
        printf ("err3\n");
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }
    

    playerc_position2d_enable(position2d, 1);  // Liga os motores
printf ("debug: 25\n");    
    playerc_position2d_set_odom(position2d, 0, 0, 0);  // Zera o odômetro

    cvSet(image, cinzaE,0); //Preencha a imagem com fundo cinza escuro
    pt.x = centroX;  // Zera a coordenada X
    pt.y = centroY;  // Zera a coordenada Y

/*
    if( 0 != playerc_position2d_set_cmd_vel(position2d, 0, 0, DTOR(40.0), 1))
        return -1;
  */  
    
    while(1) {
printf ("debug: 26\n");
        playerc_client_read(client);
printf ("debug: 27\n");
        //cvSaveImage("mapa1.jpg",image,0);
printf ("debug: 28\n");        
        //playerc_client_read(client);
printf ("debug: 29\n");
        for (degrees = 2; degrees <= 360; degrees+=2) {
printf ("debug: 30\n");              
            Dlaser = laser->scan[degrees][0];
printf ("debug: 31\n");              
            if (Dlaser < 8) {
                radians = graus2rad (degrees/2);      //Converte o angulo do laser em graus para radianos
printf ("debug: 32\n");                              
                ODM_ang = position2d->pa;             //Obtem o angulo relativo do robo
                ang = ((1.5*PI)+radians+ODM_ang);     //Converte o angulo relativo em global
printf ("debug: 33\n");
                PosRelX = arredonda(position2d->px);  //Posicao X relativa do robo
                PosRelY = arredonda(position2d->py);  //Posicao Y relativa do robo
printf ("debug: 34\n");
                pt1.y = (centroY-PosRelY);            //Coordenada y global do robo
                pt1.x = (centroX+PosRelX);            //Coordenada x global do robo

                //converte coordenadas polares para retangulares (global)
printf ("debug: 35\n");
                pt.y = (int)(pt1.y-(sin(ang)*Dlaser*10));
                pt.x = (int)(pt1.x+(cos(ang)*Dlaser*10));

printf ("debug: 36\n");
                //Desenha a area livre
                cvLine(image, pt1,pt,cinzaC, 1,4,0);

printf ("debug: 37\n");
                //Marca o objeto no mapa
                cvLine(image, pt,pt,preto, 1,4,0);
printf ("debug: 38\n");
                //Mostra o resultado do mapeamento na tela
                //cvShowImage(window_name, image );
printf ("debug: 39\n");
                //cvWaitKey(10);
printf ("debug: 40\n");
            }
        }
    }

    //Desconecta o player
printf ("debug: 41\n");
    playerc_laser_unsubscribe(laser);
printf ("debug: 42\n");
    playerc_laser_destroy(laser);
printf ("debug: 43\n");
    playerc_client_disconnect(client);
printf ("debug: 44\n");
    playerc_client_destroy(client);
printf ("debug: 45\n");

    //Destroi a janela OpenCV
    cvReleaseImage(&image);
printf ("debug: 46\n");
    cvDestroyWindow(window_name);
printf ("debug: 47\n");
    return 0;
}
Esempio n. 8
0
int main(int argc, const char **argv) {
    int i;
    int porta = 6665;
    double x, y;
    char livre;
    char end_ip[20];

    // OpenCV Variables  
    char wndname[30] = "Drawing Demo";
    int line_type = CV_AA; // change it to 8 to see non-antialiased graphics
    CvPoint pt1, pt2;
    IplImage* image;
    int width = MAX_X, height = MAX_Y; // 200 x 100 pixels 

    // Player-Stage Variables
    playerc_client_t *client;
    playerc_position2d_t *position2d;
    playerc_laser_t *laser;

    // Create a window
    image = cvCreateImage(cvSize(width, height), 8, 3);
    cvNamedWindow(wndname, 1);
    cvZero(image);
    pt1.x = 100;
    pt1.y = MAX_Y;
    pt2.x = 100;
    pt2.y = MAX_Y - 80;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    pt2.x = 20;
    pt2.y = MAX_Y;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    pt2.x = 180;
    pt2.y = MAX_Y;
    cvLine(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    cvShowImage(wndname, image);
    cvWaitKey(1000);

    cvZero(image);
    pt1.x = 20;
    pt1.y = MAX_Y;
    pt2.x = 160;
    pt2.y = MAX_Y - 80;
    cvRectangle(image, pt1, pt2, CV_RGB(255, 255, 255), 2, line_type, 0);
    cvShowImage(wndname, image);
    cvWaitKey(1000);

    strcpy(end_ip, "localhost");

    if (argc >= 2) /* Get Port */
        porta = atoi(argv[1]);
    if (argc >= 3) /* Get IP Address */
        strcpy(end_ip, argv[2]);

    printf("Porta: %d\n", porta);
    printf("IP: %s\n", end_ip);

    client = playerc_client_create(NULL, end_ip, porta);
    if (playerc_client_connect(client) != 0)
        return -1;

    // Connect to Position
    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    // Enable motor control
    playerc_position2d_enable(position2d, 1);

    // Connect to Laser
    laser = playerc_laser_create(client, 0);
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
        return -1;

    // Read several times the robot data (delay)
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);
    playerc_client_read(client);

    while (1) {
        playerc_client_read(client);

        // scan for free 100 cm in front of robot
        livre = 1;
        cvZero(image);
        for (i = 0; i < 360; i++) {
            if ((laser->scan[i][0]) < 0.5)
                livre = 0;

            //  Debug: if (laser->scan[i][0] <= 0) printf("#");

            if (laser->scan[i][0] < 7.8) {
                x = laser->scan[i][0] * cos(laser->scan[i][1] + 3.1415926 / 2.0);
                y = laser->scan[i][0] * sin(laser->scan[i][1] + 3.1415926 / 2.0);

                pt1.x = (int) (x * 10 + 100);
                pt1.y = (int) (MAX_Y - y * 10);
                cvCircle(image, pt1, 2, CV_RGB(255, 255, 255), 1, line_type, 0);
            }
        }
        cvShowImage(wndname, image);

        // if free moves, otherwise turns
        if (livre)
            playerc_position2d_set_cmd_vel(position2d, 0.2, 0, 0.0, 1);
        else
            playerc_position2d_set_cmd_vel(position2d, 0.0, 0, 0.4, 1);

        cvWaitKey(10);
    }

    playerc_laser_unsubscribe(laser);
    playerc_laser_destroy(laser);
    playerc_client_disconnect(client);
    playerc_client_destroy(client);

    return 0;
}
Esempio n. 9
0
/*double
randomInt(int low, int high)
{
return low + (high - low) * (rand()/(RAND_MAX * 1.0 ));
}
// Main function for the program*/
int
main(int argc, const char **argv)
{
playerc_client_t *client;
playerc_position2d_t *position2d;
int cycle, index=0;
double dist,angle,fidAngle = 0,lineAngle=0, fidDist=0, prevYaw=0,posAngle=0;
// Create a client and connect it to the server.
client = playerc_client_create(NULL, "localhost", 6665);
if (0 != playerc_client_connect(client))
return -1;
// Create and subscribe to a position2d device.
position2d = playerc_position2d_create(client, 0);
if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
return -1;
// Initiating random walk movement
/*if (0 != playerc_position2d_set_cmd_vel(position2d, randomInt(0.1,1)
,randomInt(0.1,1),DTOR(randomInt(-20,20)) ,1))
return -1;
fprintf(stdout, "robot random positions \n");*/
//looping in random positions
int i;
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 0
,0 , 1,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 0
,0 , 1,1))
return -1;
usleep(1000);
}
for (i = 0; i<=10; i++)
{
// Wait for new data from server
playerc_client_read(client);
fprintf(stdout, "X: %3.2f, Y: %3.2f, Yaw: %3.2f \n",
position2d->px, position2d->py, position2d->pa);
// Random walk is continued till finding first marker
if (0 != playerc_position2d_set_cmd_vel(position2d, 3
,0 , 0,1))
return -1;
usleep(1000);
}


while(1)
{if (0 != playerc_position2d_set_cmd_vel(position2d, 0,0 , 0,1))
return -1;
}

playerc_position2d_unsubscribe(position2d);
playerc_position2d_destroy(position2d);
playerc_client_disconnect(client);
playerc_client_destroy(client);
return 0;
}
Esempio n. 10
0
int
main(int argc, const char **argv)
{
  int i;
  playerc_client_t *client;
  player_pose2d_t position2d_vel;
  player_pose2d_t position2d_target;
  playerc_position2d_t *position2d;

  // Create a client and connect it to the server.
  client = playerc_client_create(NULL, "localhost", 6665);
  if (0 != playerc_client_connect(client))
    return -1;

  // Create and subscribe to a position2d device.
  position2d = playerc_position2d_create(client, 0);
  if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
    return -1;

// Make the robot spin!
 if (0 != playerc_position2d_set_cmd_vel(position2d, 0.25, 0, DTOR(40.0), 1))
    return -1;

  for (i = 0; i < 50; i++)
  {
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
  }
/* con el comando playerc_position2d_set_cmd_vel() simplemente se establece una
 * consigna de velocidad la cual es independiente de la posición en la que se
 * encuentra el robot */




      position2d_target.px = 2;
      position2d_target.py = -3;
      position2d_target.pa = 0;
      
      // Move to pose  
      playerc_position2d_set_cmd_pose(position2d, position2d_target.px , position2d_target.py, position2d_target.pa , 1);

	printf("position2d : %f %f %f\n",
	position2d->px, position2d->py, position2d->pa);
      // Stop when reach the target
      while  (sqrt(pow(position2d->px - position2d_target.px,2.0) + pow(position2d->py - position2d_target.py,2.0)) > 0.05 )
	{
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
	}
/* Con el comando position2d_set_cmd_pose() se establece una pose de destino.
 * Cuando se utiliza este método la información obtenida de la odometría sí que
 * afecta a la trayectoria seguida y al punto final */


      position2d_target.px = 0;
      position2d_target.py = -3;
      position2d_target.pa = 0;
      position2d_vel.px = 0.6;
      position2d_vel.py = 0;
      position2d_vel.pa = 0;

      // Move to pose  
      playerc_position2d_set_cmd_pose_with_vel(position2d, position2d_target, position2d_vel, 1);

      // Stop when reach the target
      while  (sqrt(pow(position2d->px - position2d_target.px,2.0) + pow(position2d->py - position2d_target.py,2.0)) > 0.05 )
	{
		playerc_client_read(client);

		// Print current robot pose
		printf("position2d : %f %f %f\n",
		position2d->px, position2d->py, position2d->pa);
	}
/* Con el comando playerc_position2d_set_cmd_pose_with_vel se hace lo mismo que
 * con playerc_position2d_set_cmd_pose() pero además se puede indicar una
 * consigna de velocidad */

  // Shutdown
  playerc_position2d_unsubscribe(position2d);
  playerc_position2d_destroy(position2d);
  playerc_client_disconnect(client);
  playerc_client_destroy(client);

  return 0;
}
Esempio n. 11
0
Nav_MotionEstimator::Nav_MotionEstimator(int modeltoUse, string dev)
{

#ifdef USEGAZEBO

	int serverId = 0;
	// start client
	try {
		client = new Client();
		client->ConnectWait(serverId, GZ_CLIENT_ID_USER_FIRST);
		client->Connect(serverId);
	} catch (std::string e) {
		std::cout << "Gazebo error: Unable to connect\n" << e << "\n";
		fflush( stdout);
		throw e;
	}
	// Create and subscribe to a position
	posIface = new PositionIface();
	/// Open the global control stuff
	try	{
		posIface->Open(client, "pioneer2dx_model1::position_iface_0");
	} catch (std::string e) {
		delete posIface;
		std::cerr << "Gazebo error: Unable to connect to an  interface\n" << e
				<< std::endl;
		throw e;
	}
	// start laser
	ScanObj = new lmsScan_t(client, "pioneer2dx_model1::laser::laser_iface_0");
#elif defined PLAYERPLUGGING
#else
	// Create a client and connect it to the server.
	client = playerc_client_create(NULL, "localhost", 6665);
	if (0 != playerc_client_connect(client))
		return;
	// Create and subscribe to a position2d device.
	position2d = playerc_position2d_create(client, 0);
	if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE))
		return;
	playerc_position2d_enable (position2d, true);
	// start laser
	ScanObj = new lmsScan_t(client, 1);
#endif


	// alloc pose and init values
	MeanPose = gsl_matrix_alloc(3, 1);
	CovPose = gsl_matrix_alloc(3, 3);
	gsl_matrix_set_zero(MeanPose);
	gsl_matrix_set_zero(CovPose);

	// alloc matrix to speed up the process
	Nk = gsl_matrix_alloc(2, 2);
	Fx = gsl_matrix_alloc(3, 3); // 3x2
	FxT = gsl_matrix_alloc(3, 3); // 3x3
	Fu = gsl_matrix_alloc(3, 2); // 3x2
	FuT = gsl_matrix_alloc(2, 3); // 2x3
	Qk = gsl_matrix_alloc(3, 3); //Q(k)
	Qk_temp = gsl_matrix_alloc(3, 2);
	Pk_temp = gsl_matrix_alloc(3, 3); // temp
	res3x3 = gsl_matrix_alloc(3, 3); // temp

	// setup model to use
	MODEL_TYPE = modeltoUse;

	// setup a features extractor object
	setBreakPointMethod(ADPTBREAKMETHOD, 3.0);
	setCornerEstimationMethod(CORNERRAMSAC, 0.025);
	setLineEstimationMethod(LINELEASTSQUAREMETHOD);
	setMinDistanceBtwLines(5);
	setMinLinePoints(5);


	// launch control thread
	Nav_start (0);
}
Esempio n. 12
0
int main(int argc, const char **argv)
{
	int r, i, j;
	playerc_client_t *client;
	playerc_position2d_t *position2d;


	//sonar
	playerc_sonar_t *sonar;

	celda celdas[25];
	int actual=0;
	int forward=1;
	int no_solucion=0;
	int flag_celda_final=0;

	// Create a client and connect it to the server.
	client = playerc_client_create(NULL, "localhost", 6665);
	if (playerc_client_connect(client) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}

	// Create and subscribe to a position2d device.
	position2d = playerc_position2d_create(client, 0);
	if (playerc_position2d_subscribe(position2d, PLAYER_OPEN_MODE) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
	// Fixing initial position
	playerc_position2d_set_odom(position2d, 0.0, 0.0, 0.0);

	// Create and subscribe to a sonar device
	sonar = playerc_sonar_create(client, 0);
	if (playerc_sonar_subscribe(sonar, PLAYER_OPEN_MODE) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
/* Obtener la geometría de los sensores de ultrasonidos sobre el pioneer 2 */
	if (playerc_sonar_get_geom(sonar) != 0) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}

	// Enable motors 
	playerc_position2d_enable(position2d, 1);

	playerc_client_read(client);

	inspeccionar_celda(sonar,&celdas[actual]);

	//Rutina para asegurarse de que ni nos dejamos un camino atrás,
	//ni estamos ya en la salida:"Ponemos el culo contra la pared"
	
	if(celda_final(&celdas[actual])) {//Si no veo ninguna pared
		girar_dch(client,position2d); // giro para comprobar la espalda
		inspeccionar_celda(sonar,&celdas[actual]);
		if(celdas[actual].pared[D_DCH]) { // había pared detrás
	    		girar_izq(client,position2d); 
			//establecer orientación de referencia aquí
			theta = D_ARRIBA;
			inspeccionar_celda(sonar,&celdas[actual]);
		} else {
			printf("Ya estamos en la salida\n");
			flag_celda_final=1;
		}
	} else {
		// me pongo de espaldas a la pared
		if(celdas[actual].pared[D_DCH]) { //si tengo pared a la dcha
			girar_izq(client,position2d); 
		} else if(celdas[actual].pared[D_IZQ]) { //si tengo pared a la izda
			girar_dch(client,position2d);
		} else if(celdas[actual].pared[D_ARRIBA]) { //si la tengo en fente
			girar_180(client,position2d);
		}
		//establecer orientación de referencia aquí
		theta = D_ARRIBA;
		inspeccionar_celda(sonar,&celdas[actual]);
	}


	while(!(flag_celda_final || no_solucion)) {
		printf("celda: %d [%d,%d]\n",actual, x, y);
		r = mejor_ruta(celdas, actual, &forward);
		if (forward) {
			ir_direccion(client, position2d, r);
			actual++;
			inspeccionar_celda(sonar,&celdas[actual]);
		} else if (actual > 0) {
			ir_direccion(client, position2d, r);
			actual--;
		} else {
			no_solucion=1;
			printf("no hay solucion\n");
		}
		
		if ((flag_celda_final = celda_final(&celdas[actual])) != 0) {
			printf("Fuera del laberinto!!\n\n");
			printf("Camino:\n");
			printf("-------\n");
			for (i=0; i <= actual; i++) {
				for (j = 0; (j < 3) && (celdas[i].pared[j] != RUTA); j++) ;
				printf("(%d,%d) - %s\n", celdas[i].pos[0], celdas[i].pos[1], dirs[j]);
			}
		}
	}


	// Unsuscribe and Destroy
	// position2d
	playerc_position2d_unsubscribe(position2d);
	playerc_position2d_destroy(position2d);
	// sonar
	playerc_sonar_unsubscribe(sonar);
	playerc_sonar_destroy(sonar);



	// client
	playerc_client_disconnect(client);
	playerc_client_destroy(client);

	// End
	return 0;
}
Esempio n. 13
0
int main(int argc, const char **argv)
{
	double  actual_result_trans;
	double  actual_result_angle;
	int finished;
	playerc_client_t *client;
	playerc_position2d_t *position2d;
	playerc_bumper_t * bumper;
	
	// Create a client object and connect to the server
	client = playerc_client_create(NULL, SERVER, PORT);
	if (playerc_client_connect(client) != 0)
	{
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
	printf("Connected...");
	
	// Create a position2d proxy (device id "position2d:0") and susbscribe
	// in read/write mode
	position2d = playerc_position2d_create(client, 0);
	if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE))
	{
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
	printf("Position2D Subscribed...");
	
	//Creates a Bumper Device Proxy
	bumper = playerc_bumper_create(client, 0);
	if(playerc_bumper_subscribe(bumper, PLAYERC_OPEN_MODE)) {
		fprintf(stderr, "error: %s\n", playerc_error_str());
		return -1;
	}
	printf("Bumper Subscribed...");
	
	// Enable the robots motors
	playerc_position2d_enable(position2d, 1);
	printf("Motor Enabled\n");
	

	
#ifdef ABSOLUTE_COORD
	//calls our move function to move to second point
	actual_result_trans = Move(client,position2d,bumper,3.2,0.0);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for third point
	actual_result_angle = Turn(client,position2d,bumper,(PI/2.0));
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves to third point from second point
	actual_result_trans = Move(client,position2d,bumper,3.2,3.04);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for the fourth point
	actual_result_angle = Turn(client,position2d,bumper,2.75741633);
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves to fouth point from third point
	actual_result_trans = Move(client,position2d,bumper,-0.5,4.7);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for point five
	actual_result_angle = Turn(client,position2d,bumper,(PI/2.0));
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves robot from position four to position five
	actual_result_trans = Move(client,position2d,bumper,-0.55,11.6);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
#else
	//calls our move function to move to second point
	actual_result_trans = Move(client,position2d,bumper,3.2,0.0);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for third point
	actual_result_angle = Turn(client,position2d,bumper,(PI/2.0));
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves to third point from second point
	actual_result_trans = Move(client,position2d,bumper,3.04,0.0);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for the fourth point
	actual_result_angle = Turn(client,position2d,bumper,1.18662);
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves to fouth point from third point
	actual_result_trans = Move(client,position2d,bumper,4.02,0.0);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
	
	//rotates robot into position for point five
	actual_result_angle = Turn(client,position2d,bumper,-1.18662);
	printf("Results Returned from TurnL %f\n",actual_result_angle);
	printPos(client,position2d,bumper);
	
	//moves robot from position four to position five
	actual_result_trans = Move(client,position2d,bumper,6.83,0.0);
	printf("Results Returned from Move: %f\n",actual_result_trans);
	printPos(client,position2d,bumper);
#endif
	
	// Shutdown and Unsubscribe Devices
	playerc_position2d_unsubscribe(position2d);
	playerc_position2d_destroy(position2d);
	playerc_bumper_unsubscribe(bumper);
	playerc_bumper_destroy(bumper);
	playerc_client_disconnect(client);
	playerc_client_destroy(client);
	
	return 0;
}
Esempio n. 14
0
int main(int argc, const char **argv)
{
    //Variables
    int degrees,PosRelX,PosRelY;
    float radians,Dlaser,ODM_ang, ang;
    int width = 500, height = 500; //Create the size of the map here (in pixel)
    int centroX = (width / 2);
    int centroY = (height / 2);
    playerc_client_t *client;
    playerc_laser_t *laser;
    playerc_position2d_t *position2d;
    CvPoint pt,pt1,pt2;
    CvScalar cinzaE,preto,cinzaC;
    char window_name[] = "Map";

    IplImage* image = cvCreateImage( cvSize(width,height), 8, 3 );
    cvNamedWindow(window_name, 1 );
    preto = CV_RGB(0, 0, 0);        //for indicating obstacles
    cinzaE = CV_RGB(92, 92, 92);    //To indicate the stranger
    cinzaC = CV_RGB(150, 150, 150); //To indicate free spaces

    client = playerc_client_create(NULL, "localhost", 6665);
    if (playerc_client_connect(client) != 0)
    return -1;

    laser = playerc_laser_create(client, 0);
    if (playerc_laser_subscribe(laser, PLAYERC_OPEN_MODE))
    return -1;

    position2d = playerc_position2d_create(client, 0);
    if (playerc_position2d_subscribe(position2d, PLAYERC_OPEN_MODE) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    if (playerc_client_datamode (client, PLAYERC_DATAMODE_PULL) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    if (playerc_client_set_replace_rule (client, -1, -1, PLAYER_MSGTYPE_DATA, -1, 1) != 0) {
        fprintf(stderr, "error: %s\n", playerc_error_str());
        return -1;
    }

    playerc_position2d_enable(position2d, 1);  // initialise motors
    playerc_position2d_set_odom(position2d, 0, 0, 0);  // Set odometer to zero

    cvSet(image, cinzaE,0); //set the image colour to dark
    pt.x = centroX;  // Zero coordinate for x
    pt.y = centroY;  // Zero coordinate for y


    while(1) {
        playerc_client_read(client);
        cvSaveImage("mapa.jpg",image);
        playerc_client_read(client);

        for (degrees = 2; degrees <= 360; degrees+=2) {
            Dlaser = laser->scan[degrees][0];
            if (Dlaser < 8) {
                radians = graus2rad (degrees/2);      //Convert the angle of the laser to radians
                ODM_ang = position2d->pa;             //Obtain the angle relative to the robot
                ang = ((1.5*PI)+radians+ODM_ang);     //Converte the angle relative to the world
                PosRelX = arredonda(position2d->px);  //Position x relative to robot
                PosRelY = arredonda(position2d->py);  //Position y relative to robot
                pt1.y = (centroY-PosRelY);            //Co-ordinated global y of the robot
                pt1.x = (centroX+PosRelX);            //Co-ordinated global x of the robot

 //t converts polar coordinates for rectangular (global)
                pt.y = (int)(pt1.y-(sin(ang)*Dlaser*10));
                pt.x = (int)(pt1.x+(cos(ang)*Dlaser*10));

                //The free area draws cvline
                cvLine(image, pt1,pt,cinzaC, 1,4,0);

                //marks the object in the map
                cvLine(image, pt,pt,preto, 1,4,0);

                //Shows the result of the map to the screen
                cvShowImage(window_name, image );
                cvWaitKey(10);
            }
        }
    }

    //Disconnect player
    playerc_laser_unsubscribe(laser);
    playerc_laser_destroy(laser);
    playerc_client_disconnect(client);
    playerc_client_destroy(client);

    //Destroy the OpenCV window cvReleaseImage
    cvReleaseImage(&image);
    cvDestroyWindow(window_name);
    return 0;
}