Esempio n. 1
0
Lisp_Object difference2(Lisp_Object a, Lisp_Object b)
{
    Lisp_Object nil;
    switch ((int)b & TAG_BITS)
    {
case TAG_FIXNUM:
        if (is_fixnum(a))
        {
            int32_t r = int_of_fixnum(a) - int_of_fixnum(b);
            int32_t t = r & fix_mask;
            if (t == 0 || t == fix_mask) return fixnum_of_int(r);
            else return make_one_word_bignum(r);
        }
        else if (b != ~0x7ffffffe) return plus2(a, 2*TAG_FIXNUM-b);
        else
        {   push(a);
            b = make_one_word_bignum(-int_of_fixnum(b));
            break;
        }
case TAG_NUMBERS:
        push(a);
        if (type_of_header(numhdr(b)) == TYPE_BIGNUM) b = negateb(b);
        else b = negate(b);
        break;
case TAG_BOXFLOAT:
default:
        push(a);
        b = negate(b);
        break;
    }
    pop(a);
    errexit();
    return plus2(a, b);
}
Esempio n. 2
0
static Lisp_Object pluscc(Lisp_Object a, Lisp_Object b)
/*
 * Add complex values.
 */
{
    Lisp_Object c, nil;
    push2(a, b);
    c = plus2(imag_part(a), imag_part(b));
    pop2(b, a);
    errexit();
    a = plus2(real_part(a), real_part(b));
    errexit();
    return make_complex(a, c);
}
Esempio n. 3
0
static Lisp_Object mod_by_rem(Lisp_Object a, Lisp_Object b)
{
    Lisp_Object nil;
    CSLbool sb = minusp(b);
    errexit();
    a = Cremainder(a, b);   /* Repeats dispatch on argument type. Sorry */
    errexit();
    if (sb)
    {   if (plusp(a))
        {   errexit();
            a = plus2(a, b);
        }
    }
    else if (minusp(a))
    {   errexit();
        a = plus2(a, b);
    }
    return a;
}
Esempio n. 4
0
Lisp_Object sub1(Lisp_Object p)
/*
 * Decrement a number.  Short cut when the number is a fixnum, otherwise
 * just hand over to the general addition code.
 */
{
    if (is_fixnum(p))
    {   if (p == ~0x7ffffffe)     /* The ONLY possible overflow case here  */
            return make_one_word_bignum(int_of_fixnum(p) - 1);
        else return (Lisp_Object)(p - 0x10);
    }
    else return plus2(p, fixnum_of_int(-1));
}
Esempio n. 5
0
Lisp_Object add1(Lisp_Object p)
/*
 * Increment a number.  Short cut when the number is a fixnum, otherwise
 * just hand over to the general addition code.
 */
{
    if (is_fixnum(p))
    {   if (p == 0x7ffffff1)     /* The ONLY possible overflow case here  */
            return make_one_word_bignum(0x08000000);
        else return (Lisp_Object)(p + 0x10);
    }
    else return plus2(p, fixnum_of_int(1));
}
Esempio n. 6
0
static Lisp_Object plusic(Lisp_Object a, Lisp_Object b)
/*
 * real of any sort plus complex.
 */
{
    Lisp_Object nil;
    push(b);
    a = plus2(a, real_part(b));
    pop(b);
    errexit();
/*
 * make_complex() takes responsibility for mapping #C(n 0) onto n
 */
    return make_complex(a, imag_part(b));
}
Esempio n. 7
0
static Lisp_Object plusir(Lisp_Object a, Lisp_Object b)
/*
 * fixnum and ratio, but also valid for bignum and ratio.
 * Note that if the inputs were in lowest terms there is no need for
 * and GCD calculations here.
 */
{
    Lisp_Object nil;
    push(b);
    a = times2(a, denominator(b));
    nil = C_nil;
    if (!exception_pending()) a = plus2(a, numerator(stack[0]));
    pop(b);
    errexit();
    return make_ratio(a, denominator(b));
}
Esempio n. 8
0
File: nat.c Progetto: avsm/Ivor
VAL eval(VAL x) {
    if (x->ty != FUN) return x;
    else {
	function* f = (function*)(x -> info);
	switch(f->ftag) {
	    EVALCASE(FPLUS2,2,plus2(FARG(0),FARG(1)));
	    EVALCASE(ADDER1,3,adder1(FARG(0),FARG(1),FARG(2)));
	    EVALCASE(ADDER,2,adder(FARG(0),FARG(1)));
            EVALCASE(FTAG_EVM_plus,2,_EVM_plus(FARG(0),FARG(1)));
            EVALCASE(FTAG_EVMSC_1_plus,4,_EVMSC_1_plus(FARG(0),FARG(1),FARG(2),FARG(3)));
            EVALCASE(FTAG_EVMSC_0_plus,3,_EVMSC_0_plus(FARG(0),FARG(1),FARG(2)));
            EVALCASE(FTAG_EVM_natElim,4,_EVM_natElim(FARG(0),FARG(1),FARG(2),FARG(3)));
	    EVALDEFAULT;
	}
    }
    return x;
}
Esempio n. 9
0
void display(void)
{
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glLoadIdentity();
	gluLookAt(r*cos(c*du), h, r*sin(c*du), 0, 0, 0, 0, 3, 0); //head position;eye direction(0.0,0.0,0.0),original point;(0.0,1.0,0.0),head above direction¡£
	
	//cylinder a(1, 15, 0, 90, 0, 0, 5, 0); //r,h,xangle yangle zangle, module position(xx yy zz)
	//sphere b(3, 100, 100, 0, 0, 0, 0, 2.5, 0); //r,xangle yangle zangle, module position(xx yy zz)
	//cube c(5, 10, 0, 0, 1, 1, 1); //length xangle yangle zangle, module position(xx yy zz)
	//rectangularpyramid d(4, 0, 0, 0, 0, 2, 0); //length xangle yangle zangle, module position(xx yy zz)
	//triangularpyramid f(2, 0, 0, 0, 8, 8, 8);//length xangle yangle zangle, module position(xx yy zz)						
	//f.draw();
	sphere sp(3, 100, 100, 0, 0, -2, 0, 8, 0);
	cylinder cy(3, 5, 0, 90, 0, -3, 9, -10);
	cube cu(3, 0, 0, 0, 0, 8, 10);
	triangularpyramid tr(2, 0, 0, 0, 0, -6, 8);
	rectangularpyramid rec(2, 0, 0, 0, 0, -6, -8);

	cylinder k1(0.3, 2, 90, 0, 0, 0, 0, 0);
	cylinder k2(0.3, 2, -90, 0, 0, 0, 0, 0);
	cylinder k3(0.3, 2, -45, 0, 0, 0, 0, 0);
	cylinder k4(0.3, 2.5, 45, 0, 0, 0, 0, 0);

	cylinder u1(0.3, 2, 90, 0, 0, 0, 0, 3);
	cylinder u2(0.3, 1.5, -90, 0, 0, 0, 0, 3);
	cylinder u3(0.3, 2, 0, 0, 0, 0, -1.8, 3);
	cylinder u4(0.3, 2, 90, 0, 0, 0, 0, 5);
	cylinder u5(0.3, 1.5, -90, 0, 0, 0, 0, 5);  

	cylinder g1(0.3, 2, -90, 0, 0, 0, -0.5, 6.4);
	cylinder g2(0.3, 1.5, -90, 0, 0, 0, -0.5, 6.4);
	cylinder g3(0.3, 2, 0, 0, 0, 0, -0.3, 6.4);
	cylinder g4(0.3, 2, 0, 0, 0, 0, 1.3, 6.4);
	cylinder g5(0.3, 2, 90, 0, 0, 0, 0, 8.4);
	cylinder g6(0.3, 1.5, -90, 0, 0, 0, 0, 8.4);
	cylinder g7(0.3, 2, 0, 0, 0, 0, -1.8, 6.4);

	cylinder e1(0.3, 1.8, -90, 0, 0, 0, -0.2, 10);
	cylinder e2(0.3, 1.8, 90, 0, 0, 0, -0.2, 10);
	cylinder e3(0.3, 2, 0, 0, 0, 0, -0.3, 10);
	cylinder e4(0.3, 2, 0, 0, 0, 0, 1.3, 10);
	cylinder e5(0.3, 2, 0, 0, 0, 0, -1.8, 10);

	cylinder r1(0.3, 1.8, -90, 0, 0, 0, -0.2, 13.5);
	cylinder r2(0.3, 1.8, 90, 0, 0, 0, -0.2, 13.5);
	cylinder r3(0.3, 2, 0, 0, 0, 0, -0.3, 13.5);
	cylinder r4(0.3, 1.2, 0, 0, 0, 0, 1.3, 13.5);
	cylinder r5(0.3, 1.7, 60, 0, 0, 0, 1.3, 14.5);
	cylinder r6(0.3, 2.5, 45, 0, 0, 0, 0, 13.5);


	cylinder c1(0.3, 2, 90, 0, 0, 0, 0, -15);
	cylinder c2(0.3, 2, -90, 0, 0, 0, 0, -15); 
	cylinder c3(0.3, 3, 0, 0, 0, 0, -1.8, -15);
	cylinder c4(0.3, 3, 0, 0, 0, 0, 1.8, -15);

	cylinder plus1(0.3,3.5, 0, 0, 0, 0, 0, -11);
	cylinder plus2(0.3, 4, 90, 0, 0, 0, 2, -9.2);
	cylinder plus3(0.3, 3.5, 0, 0, 0, 0, 0, -6);
	cylinder plus4(0.3, 4, 90, 0, 0, 0, 2, -4.2);
	cy.draw();
	sp.draw();
	cu.draw();
	tr.draw();
	rec.draw();

	k1.draw();
	k2.draw();
	k3.draw();
	k4.draw();

	u1.draw();
	u2.draw();
	u3.draw();
	u4.draw();
	u5.draw();
	
	g1.draw();
	g2.draw();
	g3.draw();
	g4.draw();
	g5.draw();
	g6.draw();
	g7.draw();

	e1.draw();
	e2.draw();
	e3.draw();
	e4.draw();
	e5.draw();

	r1.draw();
	r2.draw();
	r3.draw();
	r4.draw();
	r5.draw();
	r6.draw();

	c1.draw();
	c2.draw();
	c3.draw();
	c4.draw();
	
	plus1.draw();
	plus2.draw();
	plus3.draw();
	plus4.draw();

	glFlush();
	
}
Esempio n. 10
0
double CalcIntegralOfFullTrg(SurfacePoints p, PointsXYZ &m, double time, SourceOfNoise &source_of_noise, CoordXYZ &control_point, int &err)
{
    int i,j,n=4;
    double rho=0;
    CoordXYZ strg[3],h1,h2;
    CoordXYZ xtrg[3];

    if(p.size()!=3) { cout << " ERROR 8_1 " << p.size() << "!=3\n"; exit(0);}

    for (int i = 0; i < 3; i++)
        xtrg[i] = GetCoordSurf(p[i],m);

//    cout << " CalcIntegralOfFullTrg started " << endl;

    CoordXYZ pyr_points[4];
    for (int i = 0; i < kbase; i++)
        pyr_points[i].resize(3);

    // сформируем пирамиду
    int k=0;

    for (int i = 0; i < 3; i++)
    {
        add_to_ip(ip,k,p[i].a_index);
        add_to_ip(ip,k,p[i].b_index);
    }

    if(k!=4)
    {
        cout << "ERROR 6 : In base tetrahtdron only " << k << " nodes <4.";
        err=2;
        return 0;
    }

    //   cout << ip[0] << " " << ip[1] << " " << ip[2] << " " << ip[3] << " " << endl;
    for (int i = 0; i < 4; i++)
       pyr_points[i]=m[ip[i]];

    BasePoints bp(pyr_points,ip,err);

    if(err)
        return err;

    for (int i = 0; i < 3; i++)
        strg[i].resize(3);

/*
 к этому моменту есть :
    - координаты вершин базовой пирамиды
    - номера вершин базовой пирамиды
    - функция вычисления значения поля в точке r
      при заданных значениях f в узлах пирамиды
*/

    for(i=0;i<n;i++)
    for(j=0;j<n-i;j++)
    {
        strg[0]=
        plus2(
            plus2(xtrg[0],
                    smult2((double)i/(double)n,minus2(xtrg[1],xtrg[0]))),
                        smult2((double)j/(double)n,minus2(xtrg[2],xtrg[0])));
        strg[1]=
        plus2(
            plus2(xtrg[0],
                    smult2((double)(i+1)/(double)n,minus2(xtrg[1],xtrg[0]))),
                        smult2((double)j/(double)n,minus2(xtrg[2],xtrg[0])));
        strg[2]=
        plus2(
            plus2(xtrg[0],
                    smult2((double)i/(double)n,minus2(xtrg[1],xtrg[0]))),
                        smult2((double)(j+1)/(double)n,minus2(xtrg[2],xtrg[0])));

        if(!isbp) rho+=CalcIntegralOfSmallTrg(strg, time, source_of_noise, control_point);
        else      rho+=CalcIntegralOfSmallTrgBp(strg, time, bp, control_point);

        if(j<n-i-1)
        {
            strg[0]=
            plus2(
                plus2(xtrg[0],
                        smult2((double)(i+1)/(double)n,minus2(xtrg[1],xtrg[0]))),
                            smult2((double)(j+1)/(double)n,minus2(xtrg[2],xtrg[0])));
            strg[2]=
            plus2(
                plus2(xtrg[0],
                        smult2((double)(i+1)/(double)n,minus2(xtrg[1],xtrg[0]))),
                            smult2((double)j/(double)n,minus2(xtrg[2],xtrg[0])));
            strg[1]=
            plus2(
                plus2(xtrg[0],
                        smult2((double)i/(double)n,minus2(xtrg[1],xtrg[0]))),
                            smult2((double)(j+1)/(double)n,minus2(xtrg[2],xtrg[0])));

        if(!isbp) rho+=CalcIntegralOfSmallTrg(strg, time, source_of_noise, control_point);
        else      rho+=CalcIntegralOfSmallTrgBp(strg, time, bp, control_point);
        }
    }


    return rho;
}
Esempio n. 11
0
static Lisp_Object plusrr(Lisp_Object a, Lisp_Object b)
/*
 * Adding two ratios involves some effort to keep the result in
 * lowest terms.
 */
{
    Lisp_Object nil = C_nil;
    Lisp_Object na = numerator(a), nb = numerator(b);
    Lisp_Object da = denominator(a), db = denominator(b);
    Lisp_Object w = nil;
    push5(na, nb, da, db, nil);
#define g   stack[0]
#define db  stack[-1]
#define da  stack[-2]
#define nb  stack[-3]
#define na  stack[-4]
    g = gcd(da, db);
    nil = C_nil;
    if (exception_pending()) goto fail;
/*
 * all the calls to quot2() in this procedure are expected - nay required -
 * to give exact integer quotients.
 */
    db = quot2(db, g);
    nil = C_nil;
    if (exception_pending()) goto fail;
    g = quot2(da, g);
    nil = C_nil;
    if (exception_pending()) goto fail;
    na = times2(na, db);
    nil = C_nil;
    if (exception_pending()) goto fail;
    nb = times2(nb, g);
    nil = C_nil;
    if (exception_pending()) goto fail;
    na = plus2(na, nb);
    nil = C_nil;
    if (exception_pending()) goto fail;
    da = times2(da, db);
    nil = C_nil;
    if (exception_pending()) goto fail;
    g = gcd(na, da);
    nil = C_nil;
    if (exception_pending()) goto fail;
    na = quot2(na, g);
    nil = C_nil;
    if (exception_pending()) goto fail;
    da = quot2(da, g);
    nil = C_nil;
    if (exception_pending()) goto fail;
    w = make_ratio(na, da);
/*
 * All the goto statements and the label seem a fair way of expressing
 * the common action that has to be taken if an error or interrupt is
 * detected during any of the intermediate steps here.  Anyone who
 * objects can change it if they really want...
 */
fail:
    popv(5);
    return w;
#undef na
#undef nb
#undef da
#undef db
#undef g
}