Esempio n. 1
0
void mapping_set_mod(ppnum_t pn)
{
    pmap_set_modify(pn);
}
Esempio n. 2
0
/*
 * Handle a single exception.
 */
void
itsa(struct trap_frame *trapframe, struct cpu_info *ci, struct proc *p,
    int type)
{
	int i;
	unsigned ucode = 0;
	vm_prot_t ftype;
	extern vaddr_t onfault_table[];
	int onfault;
	int typ = 0;
	union sigval sv;
	struct pcb *pcb;

	switch (type) {
	case T_TLB_MOD:
		/* check for kernel address */
		if (trapframe->badvaddr < 0) {
			pt_entry_t *pte, entry;
			paddr_t pa;
			vm_page_t pg;

			pte = kvtopte(trapframe->badvaddr);
			entry = *pte;
#ifdef DIAGNOSTIC
			if (!(entry & PG_V) || (entry & PG_M))
				panic("trap: ktlbmod: invalid pte");
#endif
			if (pmap_is_page_ro(pmap_kernel(),
			    trunc_page(trapframe->badvaddr), entry)) {
				/* write to read only page in the kernel */
				ftype = VM_PROT_WRITE;
				pcb = &p->p_addr->u_pcb;
				goto kernel_fault;
			}
			entry |= PG_M;
			*pte = entry;
			KERNEL_LOCK();
			pmap_update_kernel_page(trapframe->badvaddr & ~PGOFSET,
			    entry);
			pa = pfn_to_pad(entry);
			pg = PHYS_TO_VM_PAGE(pa);
			if (pg == NULL)
				panic("trap: ktlbmod: unmanaged page");
			pmap_set_modify(pg);
			KERNEL_UNLOCK();
			return;
		}
		/* FALLTHROUGH */

	case T_TLB_MOD+T_USER:
	    {
		pt_entry_t *pte, entry;
		paddr_t pa;
		vm_page_t pg;
		pmap_t pmap = p->p_vmspace->vm_map.pmap;

		if (!(pte = pmap_segmap(pmap, trapframe->badvaddr)))
			panic("trap: utlbmod: invalid segmap");
		pte += uvtopte(trapframe->badvaddr);
		entry = *pte;
#ifdef DIAGNOSTIC
		if (!(entry & PG_V) || (entry & PG_M))
			panic("trap: utlbmod: invalid pte");
#endif
		if (pmap_is_page_ro(pmap,
		    trunc_page(trapframe->badvaddr), entry)) {
			/* write to read only page */
			ftype = VM_PROT_WRITE;
			pcb = &p->p_addr->u_pcb;
			goto fault_common_no_miss;
		}
		entry |= PG_M;
		*pte = entry;
		KERNEL_LOCK();
		pmap_update_user_page(pmap, (trapframe->badvaddr & ~PGOFSET), 
		    entry);
		pa = pfn_to_pad(entry);
		pg = PHYS_TO_VM_PAGE(pa);
		if (pg == NULL)
			panic("trap: utlbmod: unmanaged page");
		pmap_set_modify(pg);
		KERNEL_UNLOCK();
		return;
	    }

	case T_TLB_LD_MISS:
	case T_TLB_ST_MISS:
		ftype = (type == T_TLB_ST_MISS) ? VM_PROT_WRITE : VM_PROT_READ;
		pcb = &p->p_addr->u_pcb;
		/* check for kernel address */
		if (trapframe->badvaddr < 0) {
			vaddr_t va;
			int rv;

	kernel_fault:
			va = trunc_page((vaddr_t)trapframe->badvaddr);
			onfault = pcb->pcb_onfault;
			pcb->pcb_onfault = 0;
			KERNEL_LOCK();
			rv = uvm_fault(kernel_map, trunc_page(va), 0, ftype);
			KERNEL_UNLOCK();
			pcb->pcb_onfault = onfault;
			if (rv == 0)
				return;
			if (onfault != 0) {
				pcb->pcb_onfault = 0;
				trapframe->pc = onfault_table[onfault];
				return;
			}
			goto err;
		}
		/*
		 * It is an error for the kernel to access user space except
		 * through the copyin/copyout routines.
		 */
		if (pcb->pcb_onfault != 0) {
			/*
			 * We want to resolve the TLB fault before invoking
			 * pcb_onfault if necessary.
			 */
			goto fault_common;
		} else {
			goto err;
		}

	case T_TLB_LD_MISS+T_USER:
		ftype = VM_PROT_READ;
		pcb = &p->p_addr->u_pcb;
		goto fault_common;

	case T_TLB_ST_MISS+T_USER:
		ftype = VM_PROT_WRITE;
		pcb = &p->p_addr->u_pcb;
fault_common:

#ifdef CPU_R4000
		if (r4000_errata != 0) {
			if (eop_tlb_miss_handler(trapframe, ci, p) != 0)
				return;
		}
#endif

fault_common_no_miss:

#ifdef CPU_R4000
		if (r4000_errata != 0) {
			eop_cleanup(trapframe, p);
		}
#endif

	    {
		vaddr_t va;
		struct vmspace *vm;
		vm_map_t map;
		int rv;

		vm = p->p_vmspace;
		map = &vm->vm_map;
		va = trunc_page((vaddr_t)trapframe->badvaddr);

		onfault = pcb->pcb_onfault;
		pcb->pcb_onfault = 0;
		KERNEL_LOCK();

		rv = uvm_fault(map, va, 0, ftype);
		pcb->pcb_onfault = onfault;

		/*
		 * If this was a stack access we keep track of the maximum
		 * accessed stack size.  Also, if vm_fault gets a protection
		 * failure it is due to accessing the stack region outside
		 * the current limit and we need to reflect that as an access
		 * error.
		 */
		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (rv == 0)
				uvm_grow(p, va);
			else if (rv == EACCES)
				rv = EFAULT;
		}
		KERNEL_UNLOCK();
		if (rv == 0)
			return;
		if (!USERMODE(trapframe->sr)) {
			if (onfault != 0) {
				pcb->pcb_onfault = 0;
				trapframe->pc =  onfault_table[onfault];
				return;
			}
			goto err;
		}

		ucode = ftype;
		i = SIGSEGV;
		typ = SEGV_MAPERR;
		break;
	    }

	case T_ADDR_ERR_LD+T_USER:	/* misaligned or kseg access */
	case T_ADDR_ERR_ST+T_USER:	/* misaligned or kseg access */
		ucode = 0;		/* XXX should be VM_PROT_something */
		i = SIGBUS;
		typ = BUS_ADRALN;
		break;
	case T_BUS_ERR_IFETCH+T_USER:	/* BERR asserted to cpu */
	case T_BUS_ERR_LD_ST+T_USER:	/* BERR asserted to cpu */
		ucode = 0;		/* XXX should be VM_PROT_something */
		i = SIGBUS;
		typ = BUS_OBJERR;
		break;

	case T_SYSCALL+T_USER:
	    {
		struct trap_frame *locr0 = p->p_md.md_regs;
		struct sysent *callp;
		unsigned int code;
		register_t tpc;
		int numsys, error;
		struct args {
			register_t i[8];
		} args;
		register_t rval[2];

		atomic_add_int(&uvmexp.syscalls, 1);

		/* compute next PC after syscall instruction */
		tpc = trapframe->pc; /* Remember if restart */
		if (trapframe->cause & CR_BR_DELAY)
			locr0->pc = MipsEmulateBranch(locr0,
			    trapframe->pc, 0, 0);
		else
			locr0->pc += 4;
		callp = p->p_p->ps_emul->e_sysent;
		numsys = p->p_p->ps_emul->e_nsysent;
		code = locr0->v0;
		switch (code) {
		case SYS_syscall:
		case SYS___syscall:
			/*
			 * Code is first argument, followed by actual args.
			 * __syscall provides the code as a quad to maintain
			 * proper alignment of 64-bit arguments on 32-bit
			 * platforms, which doesn't change anything here.
			 */
			code = locr0->a0;
			if (code >= numsys)
				callp += p->p_p->ps_emul->e_nosys; /* (illegal) */
			else
				callp += code;
			i = callp->sy_argsize / sizeof(register_t);
			args.i[0] = locr0->a1;
			args.i[1] = locr0->a2;
			args.i[2] = locr0->a3;
			if (i > 3) {
				args.i[3] = locr0->a4;
				args.i[4] = locr0->a5;
				args.i[5] = locr0->a6;
				args.i[6] = locr0->a7;
				if (i > 7)
					if ((error = copyin((void *)locr0->sp,
					    &args.i[7], sizeof(register_t))))
						goto bad;
			}
			break;
		default:
			if (code >= numsys)
				callp += p->p_p->ps_emul->e_nosys; /* (illegal) */
			else
				callp += code;

			i = callp->sy_narg;
			args.i[0] = locr0->a0;
			args.i[1] = locr0->a1;
			args.i[2] = locr0->a2;
			args.i[3] = locr0->a3;
			if (i > 4) {
				args.i[4] = locr0->a4;
				args.i[5] = locr0->a5;
				args.i[6] = locr0->a6;
				args.i[7] = locr0->a7;
			}
		}

		rval[0] = 0;
		rval[1] = locr0->v1;

#if defined(DDB) || defined(DEBUG)
		trapdebug[TRAPSIZE * ci->ci_cpuid + (trppos[ci->ci_cpuid] == 0 ?
		    TRAPSIZE : trppos[ci->ci_cpuid]) - 1].code = code;
#endif

		error = mi_syscall(p, code, callp, args.i, rval);

		switch (error) {
		case 0:
			locr0->v0 = rval[0];
			locr0->v1 = rval[1];
			locr0->a3 = 0;
			break;

		case ERESTART:
			locr0->pc = tpc;
			break;

		case EJUSTRETURN:
			break;	/* nothing to do */

		default:
		bad:
			locr0->v0 = error;
			locr0->a3 = 1;
		}

		mi_syscall_return(p, code, error, rval);

		return;
	    }

	case T_BREAK:
#ifdef DDB
		kdb_trap(type, trapframe);
#endif
		/* Reenable interrupts if necessary */
		if (trapframe->sr & SR_INT_ENAB) {
			enableintr();
		}
		return;

	case T_BREAK+T_USER:
	    {
		caddr_t va;
		u_int32_t instr;
		struct trap_frame *locr0 = p->p_md.md_regs;

		/* compute address of break instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;

		/* read break instruction */
		copyin(va, &instr, sizeof(int32_t));

		switch ((instr & BREAK_VAL_MASK) >> BREAK_VAL_SHIFT) {
		case 6:	/* gcc range error */
			i = SIGFPE;
			typ = FPE_FLTSUB;
			/* skip instruction */
			if (trapframe->cause & CR_BR_DELAY)
				locr0->pc = MipsEmulateBranch(locr0,
				    trapframe->pc, 0, 0);
			else
				locr0->pc += 4;
			break;
		case 7:	/* gcc3 divide by zero */
			i = SIGFPE;
			typ = FPE_INTDIV;
			/* skip instruction */
			if (trapframe->cause & CR_BR_DELAY)
				locr0->pc = MipsEmulateBranch(locr0,
				    trapframe->pc, 0, 0);
			else
				locr0->pc += 4;
			break;
#ifdef PTRACE
		case BREAK_SSTEP_VAL:
			if (p->p_md.md_ss_addr == (long)va) {
#ifdef DEBUG
				printf("trap: %s (%d): breakpoint at %p "
				    "(insn %08x)\n",
				    p->p_comm, p->p_pid,
				    (void *)p->p_md.md_ss_addr,
				    p->p_md.md_ss_instr);
#endif

				/* Restore original instruction and clear BP */
				process_sstep(p, 0);
				typ = TRAP_BRKPT;
			} else {
				typ = TRAP_TRACE;
			}
			i = SIGTRAP;
			break;
#endif
#ifdef FPUEMUL
		case BREAK_FPUEMUL_VAL:
			/*
			 * If this is a genuine FP emulation break,
			 * resume execution to our branch destination.
			 */
			if ((p->p_md.md_flags & MDP_FPUSED) != 0 &&
			    p->p_md.md_fppgva + 4 == (vaddr_t)va) {
				struct vm_map *map = &p->p_vmspace->vm_map;

				p->p_md.md_flags &= ~MDP_FPUSED;
				locr0->pc = p->p_md.md_fpbranchva;

				/*
				 * Prevent access to the relocation page.
				 * XXX needs to be fixed to work with rthreads
				 */
				uvm_fault_unwire(map, p->p_md.md_fppgva,
				    p->p_md.md_fppgva + PAGE_SIZE);
				(void)uvm_map_protect(map, p->p_md.md_fppgva,
				    p->p_md.md_fppgva + PAGE_SIZE,
				    UVM_PROT_NONE, FALSE);
				return;
			}
			/* FALLTHROUGH */
#endif
		default:
			typ = TRAP_TRACE;
			i = SIGTRAP;
			break;
		}
		break;
	    }

	case T_IWATCH+T_USER:
	case T_DWATCH+T_USER:
	    {
		caddr_t va;
		/* compute address of trapped instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;
		printf("watch exception @ %p\n", va);
#ifdef RM7K_PERFCNTR
		if (rm7k_watchintr(trapframe)) {
			/* Return to user, don't add any more overhead */
			return;
		}
#endif
		i = SIGTRAP;
		typ = TRAP_BRKPT;
		break;
	    }

	case T_TRAP+T_USER:
	    {
		caddr_t va;
		u_int32_t instr;
		struct trap_frame *locr0 = p->p_md.md_regs;

		/* compute address of trap instruction */
		va = (caddr_t)trapframe->pc;
		if (trapframe->cause & CR_BR_DELAY)
			va += 4;
		/* read break instruction */
		copyin(va, &instr, sizeof(int32_t));

		if (trapframe->cause & CR_BR_DELAY)
			locr0->pc = MipsEmulateBranch(locr0,
			    trapframe->pc, 0, 0);
		else
			locr0->pc += 4;
#ifdef RM7K_PERFCNTR
		if (instr == 0x040c0000) { /* Performance cntr trap */
			int result;

			result = rm7k_perfcntr(trapframe->a0, trapframe->a1,
						trapframe->a2, trapframe->a3);
			locr0->v0 = -result;
			/* Return to user, don't add any more overhead */
			return;
		} else
#endif
		/*
		 * GCC 4 uses teq with code 7 to signal divide by
	 	 * zero at runtime. This is one instruction shorter
		 * than the BEQ + BREAK combination used by gcc 3.
		 */
		if ((instr & 0xfc00003f) == 0x00000034 /* teq */ &&
		    (instr & 0x001fffc0) == ((ZERO << 16) | (7 << 6))) {
			i = SIGFPE;
			typ = FPE_INTDIV;
		} else {
			i = SIGEMT;	/* Stuff it with something for now */
			typ = 0;
		}
		break;
	    }

	case T_RES_INST+T_USER:
		i = SIGILL;
		typ = ILL_ILLOPC;
		break;

	case T_COP_UNUSABLE+T_USER:
		/*
		 * Note MIPS IV COP1X instructions issued with FPU
		 * disabled correctly report coprocessor 1 as the
		 * unusable coprocessor number.
		 */
		if ((trapframe->cause & CR_COP_ERR) != CR_COP1_ERR) {
			i = SIGILL;	/* only FPU instructions allowed */
			typ = ILL_ILLOPC;
			break;
		}
#ifdef FPUEMUL
		MipsFPTrap(trapframe);
#else
		enable_fpu(p);
#endif
		return;

	case T_FPE:
		printf("FPU Trap: PC %lx CR %lx SR %lx\n",
			trapframe->pc, trapframe->cause, trapframe->sr);
		goto err;

	case T_FPE+T_USER:
		MipsFPTrap(trapframe);
		return;

	case T_OVFLOW+T_USER:
		i = SIGFPE;
		typ = FPE_FLTOVF;
		break;

	case T_ADDR_ERR_LD:	/* misaligned access */
	case T_ADDR_ERR_ST:	/* misaligned access */
	case T_BUS_ERR_LD_ST:	/* BERR asserted to cpu */
		pcb = &p->p_addr->u_pcb;
		if ((onfault = pcb->pcb_onfault) != 0) {
			pcb->pcb_onfault = 0;
			trapframe->pc = onfault_table[onfault];
			return;
		}
		goto err;

	default:
	err:
		disableintr();
#if !defined(DDB) && defined(DEBUG)
		trapDump("trap", printf);
#endif
		printf("\nTrap cause = %d Frame %p\n", type, trapframe);
		printf("Trap PC %p RA %p fault %p\n",
		    (void *)trapframe->pc, (void *)trapframe->ra,
		    (void *)trapframe->badvaddr);
#ifdef DDB
		stacktrace(!USERMODE(trapframe->sr) ? trapframe : p->p_md.md_regs);
		kdb_trap(type, trapframe);
#endif
		panic("trap");
	}

#ifdef FPUEMUL
	/*
	 * If a relocated delay slot causes an exception, blame the
	 * original delay slot address - userland is not supposed to
	 * know anything about emulation bowels.
	 */
	if ((p->p_md.md_flags & MDP_FPUSED) != 0 &&
	    trapframe->badvaddr == p->p_md.md_fppgva)
		trapframe->badvaddr = p->p_md.md_fpslotva;
#endif
	p->p_md.md_regs->pc = trapframe->pc;
	p->p_md.md_regs->cause = trapframe->cause;
	p->p_md.md_regs->badvaddr = trapframe->badvaddr;
	sv.sival_ptr = (void *)trapframe->badvaddr;
	KERNEL_LOCK();
	trapsignal(p, i, ucode, typ, sv);
	KERNEL_UNLOCK();
}
Esempio n. 3
0
void
m88110_trap(u_int type, struct trapframe *frame)
{
	struct proc *p;
	struct vm_map *map;
	vaddr_t va, pcb_onfault;
	vm_prot_t ftype;
	int fault_type;
	u_long fault_code;
	vaddr_t fault_addr;
	struct vmspace *vm;
	union sigval sv;
	int result;
#ifdef DDB
        int s;
	u_int psr;
#endif
	int sig = 0;

	uvmexp.traps++;
	if ((p = curproc) == NULL)
		p = &proc0;

	fault_type = SI_NOINFO;
	fault_code = 0;
	fault_addr = frame->tf_exip & XIP_ADDR;

	/*
	 * 88110 errata #16 (4.2) or #3 (5.1.1):
	 * ``bsr, br, bcnd, jsr and jmp instructions with the .n extension
	 *   can cause the enip value to be incremented by 4 incorrectly
	 *   if the instruction in the delay slot is the first word of a
	 *   page which misses in the mmu and results in a hardware
	 *   tablewalk which encounters an exception or an invalid
	 *   descriptor.  The exip value in this case will point to the
	 *   first word of the page, and the D bit will be set.
	 *
	 *   Note: if the instruction is a jsr.n r1, r1 will be overwritten
	 *   with erroneous data.  Therefore, no recovery is possible. Do
	 *   not allow this instruction to occupy the last word of a page.
	 *
	 *   Suggested fix: recover in general by backing up the exip by 4
	 *   and clearing the delay bit before an rte when the lower 3 hex
	 *   digits of the exip are 001.''
	 */
	if ((frame->tf_exip & PAGE_MASK) == 0x00000001 && type == T_INSTFLT) {
		u_int instr;

		/*
		 * Note that we have initialized fault_addr above, so that
		 * signals provide the correct address if necessary.
		 */
		frame->tf_exip = (frame->tf_exip & ~1) - 4;

		/*
		 * Check the instruction at the (backed up) exip.
		 * If it is a jsr.n, abort.
		 */
		if (!USERMODE(frame->tf_epsr)) {
			instr = *(u_int *)fault_addr;
			if (instr == 0xf400cc01)
				panic("mc88110 errata #16, exip %p enip %p",
				    (frame->tf_exip + 4) | 1, frame->tf_enip);
		} else {
			/* copyin here should not fail */
			if (copyin((const void *)frame->tf_exip, &instr,
			    sizeof instr) == 0 &&
			    instr == 0xf400cc01) {
				uprintf("mc88110 errata #16, exip %p enip %p",
				    (frame->tf_exip + 4) | 1, frame->tf_enip);
				sig = SIGILL;
			}
		}
	}

	if (USERMODE(frame->tf_epsr)) {
		type += T_USER;
		p->p_md.md_tf = frame;	/* for ptrace/signals */
	}

	if (sig != 0)
		goto deliver;

	switch (type) {
	default:
lose:
		panictrap(frame->tf_vector, frame);
		break;
		/*NOTREACHED*/

#ifdef DEBUG
	case T_110_DRM+T_USER:
	case T_110_DRM:
		printf("DMMU read miss: Hardware Table Searches should be enabled!\n");
		goto lose;
	case T_110_DWM+T_USER:
	case T_110_DWM:
		printf("DMMU write miss: Hardware Table Searches should be enabled!\n");
		goto lose;
	case T_110_IAM+T_USER:
	case T_110_IAM:
		printf("IMMU miss: Hardware Table Searches should be enabled!\n");
		goto lose;
#endif

#ifdef DDB
	case T_KDB_TRACE:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_break_trap(T_KDB_TRACE, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
	case T_KDB_BREAK:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame);
		set_psr(psr);
		splx(s);
		return;
	case T_KDB_ENTRY:
		s = splhigh();
		set_psr((psr = get_psr()) & ~PSR_IND);
		ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame);
		set_psr(psr);
		/* skip trap instruction */
		m88110_skip_insn(frame);
		splx(s);
		return;
#endif /* DDB */
	case T_ILLFLT:
		/*
		 * The 88110 seems to trigger an instruction fault in
		 * supervisor mode when running the following sequence:
		 *
		 *	bcnd.n cond, reg, 1f
		 *	arithmetic insn
		 *	...
		 *  	the same exact arithmetic insn
		 *  1:	another arithmetic insn stalled by the previous one
		 *	...
		 *
		 * The exception is reported with exip pointing to the
		 * branch address. I don't know, at this point, if there
		 * is any better workaround than the aggressive one
		 * implemented below; I don't see how this could relate to
		 * any of the 88110 errata (although it might be related to
		 * branch prediction).
		 *
		 * For the record, the exact sequence triggering the
		 * spurious exception is:
		 *
		 *	bcnd.n	eq0, r2,  1f
		 *	 or	r25, r0,  r22
		 *	bsr	somewhere
		 *	or	r25, r0,  r22
		 *  1:	cmp	r13, r25, r20
		 *
		 * within the same cache line.
		 *
		 * Simply ignoring the exception and returning does not
		 * cause the exception to disappear. Clearing the
		 * instruction cache works, but on 88110+88410 systems,
		 * the 88410 needs to be invalidated as well. (note that
		 * the size passed to the flush routines does not matter
		 * since there is no way to flush a subset of the 88110
		 * I$ anyway)
		 */
	    {
		extern void *kernel_text, *etext;

		if (fault_addr >= (vaddr_t)&kernel_text &&
		    fault_addr < (vaddr_t)&etext) {
			cmmu_icache_inv(curcpu()->ci_cpuid,
			    trunc_page(fault_addr), PAGE_SIZE);
			cmmu_cache_wbinv(curcpu()->ci_cpuid,
			    trunc_page(fault_addr), PAGE_SIZE);
			return;
		}
	    }
		goto lose;
	case T_MISALGNFLT:
		printf("kernel misaligned access exception @%p\n",
		    frame->tf_exip);
		goto lose;
	case T_INSTFLT:
		/* kernel mode instruction access fault.
		 * Should never, never happen for a non-paged kernel.
		 */
#ifdef TRAPDEBUG
		printf("Kernel Instruction fault exip %x isr %x ilar %x\n",
		    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		goto lose;

	case T_DATAFLT:
		/* kernel mode data fault */

		/* data fault on the user address? */
		if ((frame->tf_dsr & CMMU_DSR_SU) == 0) {
			KERNEL_LOCK();
			goto m88110_user_fault;
		}

#ifdef TRAPDEBUG
		printf("Kernel Data access fault exip %x dsr %x dlar %x\n",
		    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif

		fault_addr = frame->tf_dlar;
		if (frame->tf_dsr & CMMU_DSR_RW) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
		} else {
			ftype = VM_PROT_READ|VM_PROT_WRITE;
			fault_code = VM_PROT_WRITE;
		}

		va = trunc_page((vaddr_t)fault_addr);

		KERNEL_LOCK();
		vm = p->p_vmspace;
		map = kernel_map;

		if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
			/*
			 * On a segment or a page fault, call uvm_fault() to
			 * resolve the fault.
			 */
			if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
				p->p_addr->u_pcb.pcb_onfault = 0;
			result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			p->p_addr->u_pcb.pcb_onfault = pcb_onfault;
			/*
			 * This could be a fault caused in copyout*()
			 * while accessing kernel space.
			 */
			if (result != 0 && pcb_onfault != 0) {
				frame->tf_exip = pcb_onfault;
				/*
				 * Continue as if the fault had been resolved.
				 */
				result = 0;
			}
			if (result == 0) {
				KERNEL_UNLOCK();
				return;
			}
		}
		KERNEL_UNLOCK();
		goto lose;
	case T_INSTFLT+T_USER:
		/* User mode instruction access fault */
		/* FALLTHROUGH */
	case T_DATAFLT+T_USER:
		KERNEL_LOCK();
m88110_user_fault:
		if (type == T_INSTFLT+T_USER) {
			ftype = VM_PROT_READ;
			fault_code = VM_PROT_READ;
#ifdef TRAPDEBUG
			printf("User Instruction fault exip %x isr %x ilar %x\n",
			    frame->tf_exip, frame->tf_isr, frame->tf_ilar);
#endif
		} else {
			fault_addr = frame->tf_dlar;
			if (frame->tf_dsr & CMMU_DSR_RW) {
				ftype = VM_PROT_READ;
				fault_code = VM_PROT_READ;
			} else {
				ftype = VM_PROT_READ|VM_PROT_WRITE;
				fault_code = VM_PROT_WRITE;
			}
#ifdef TRAPDEBUG
			printf("User Data access fault exip %x dsr %x dlar %x\n",
			    frame->tf_exip, frame->tf_dsr, frame->tf_dlar);
#endif
		}

		va = trunc_page((vaddr_t)fault_addr);

		vm = p->p_vmspace;
		map = &vm->vm_map;
		if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0)
			p->p_addr->u_pcb.pcb_onfault = 0;

		/*
		 * Call uvm_fault() to resolve non-bus error faults
		 * whenever possible.
		 */
		if (type == T_INSTFLT+T_USER) {
			/* instruction faults */
			if (frame->tf_isr &
			    (CMMU_ISR_BE | CMMU_ISR_SP | CMMU_ISR_TBE)) {
				/* bus error, supervisor protection */
				result = EACCES;
			} else
			if (frame->tf_isr & (CMMU_ISR_SI | CMMU_ISR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Instruction fault isr %x\n",
				    frame->tf_isr);
#endif
				KERNEL_UNLOCK();
				goto lose;
			}
		} else {
			/* data faults */
			if (frame->tf_dsr & CMMU_DSR_BE) {
				/* bus error */
				result = EACCES;
			} else
			if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) {
				/* segment or page fault */
				result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
			} else
			if (frame->tf_dsr & (CMMU_DSR_CP | CMMU_DSR_WA)) {
				/* copyback or write allocate error */
				result = EACCES;
			} else
			if (frame->tf_dsr & CMMU_DSR_WE) {
				/* write fault  */
				/* This could be a write protection fault or an
				 * exception to set the used and modified bits
				 * in the pte. Basically, if we got a write
				 * error, then we already have a pte entry that
				 * faulted in from a previous seg fault or page
				 * fault.
				 * Get the pte and check the status of the
				 * modified and valid bits to determine if this
				 * indeed a real write fault.  XXX smurph
				 */
				if (pmap_set_modify(map->pmap, va)) {
#ifdef TRAPDEBUG
					printf("Corrected userland write fault, pmap %p va %p\n",
					    map->pmap, va);
#endif
					result = 0;
				} else {
					/* must be a real wp fault */
#ifdef TRAPDEBUG
					printf("Uncorrected userland write fault, pmap %p va %p\n",
					    map->pmap, va);
#endif
					result = uvm_fault(map, va, VM_FAULT_INVALID, ftype);
				}
			} else {
#ifdef TRAPDEBUG
				printf("Unexpected Data access fault dsr %x\n",
				    frame->tf_dsr);
#endif
				KERNEL_UNLOCK();
				goto lose;
			}
		}
		p->p_addr->u_pcb.pcb_onfault = pcb_onfault;

		if ((caddr_t)va >= vm->vm_maxsaddr) {
			if (result == 0)
				uvm_grow(p, va);
			else if (result == EACCES)
				result = EFAULT;
		}
		KERNEL_UNLOCK();

		/*
		 * This could be a fault caused in copyin*()
		 * while accessing user space.
		 */
		if (result != 0 && pcb_onfault != 0) {
			frame->tf_exip = pcb_onfault;
			/*
			 * Continue as if the fault had been resolved.
			 */
			result = 0;
		}

		if (result != 0) {
			sig = result == EACCES ? SIGBUS : SIGSEGV;
			fault_type = result == EACCES ?
			    BUS_ADRERR : SEGV_MAPERR;
		}
		break;
	case T_MISALGNFLT+T_USER:
		/* Fix any misaligned ld.d or st.d instructions */
		sig = double_reg_fixup(frame);
		fault_type = BUS_ADRALN;
		if (sig == 0) {
			/* skip recovered instruction */
			m88110_skip_insn(frame);
			goto userexit;
		}
		break;
	case T_PRIVINFLT+T_USER:
		fault_type = ILL_PRVREG;
		/* FALLTHROUGH */
	case T_ILLFLT+T_USER:
#ifndef DDB
	case T_KDB_BREAK:
	case T_KDB_ENTRY:
	case T_KDB_TRACE:
#endif
	case T_KDB_BREAK+T_USER:
	case T_KDB_ENTRY+T_USER:
	case T_KDB_TRACE+T_USER:
		sig = SIGILL;
		break;
	case T_BNDFLT+T_USER:
		sig = SIGFPE;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_ZERODIV+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTDIV;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_OVFFLT+T_USER:
		sig = SIGFPE;
		fault_type = FPE_INTOVF;
		/* skip trap instruction */
		m88110_skip_insn(frame);
		break;
	case T_FPEPFLT+T_USER:
		m88110_fpu_exception(frame);
		goto userexit;
	case T_SIGSYS+T_USER:
		sig = SIGSYS;
		break;
	case T_STEPBPT+T_USER:
#ifdef PTRACE
		/*
		 * This trap is used by the kernel to support single-step
		 * debugging (although any user could generate this trap
		 * which should probably be handled differently). When a
		 * process is continued by a debugger with the PT_STEP
		 * function of ptrace (single step), the kernel inserts
		 * one or two breakpoints in the user process so that only
		 * one instruction (or two in the case of a delayed branch)
		 * is executed.  When this breakpoint is hit, we get the
		 * T_STEPBPT trap.
		 */
		{
			u_int instr;
			vaddr_t pc = PC_REGS(&frame->tf_regs);

			/* read break instruction */
			copyin((caddr_t)pc, &instr, sizeof(u_int));

			/* check and see if we got here by accident */
			if ((p->p_md.md_bp0va != pc &&
			     p->p_md.md_bp1va != pc) ||
			    instr != SSBREAKPOINT) {
				sig = SIGTRAP;
				fault_type = TRAP_TRACE;
				break;
			}

			/* restore original instruction and clear breakpoint */
			if (p->p_md.md_bp0va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp0save);
				p->p_md.md_bp0va = 0;
			}
			if (p->p_md.md_bp1va == pc) {
				ss_put_value(p, pc, p->p_md.md_bp1save);
				p->p_md.md_bp1va = 0;
			}

			sig = SIGTRAP;
			fault_type = TRAP_BRKPT;
		}
#else
		sig = SIGTRAP;
		fault_type = TRAP_TRACE;
#endif
		break;
	case T_USERBPT+T_USER:
		/*
		 * This trap is meant to be used by debuggers to implement
		 * breakpoint debugging.  When we get this trap, we just
		 * return a signal which gets caught by the debugger.
		 */
		sig = SIGTRAP;
		fault_type = TRAP_BRKPT;
		break;
	}

	/*
	 * If trap from supervisor mode, just return
	 */
	if (type < T_USER)
		return;

	if (sig) {
deliver:
		sv.sival_ptr = (void *)fault_addr;
		KERNEL_LOCK();
		trapsignal(p, sig, fault_code, fault_type, sv);
		KERNEL_UNLOCK();
	}

userexit:
	userret(p);
}