Esempio n. 1
0
void ofxSick::draw(int gridDivisions, float gridSize) const {
	ofPushMatrix();
	ofPushStyle();
	
	ofPushMatrix();
	ofRotate(invert ? -angleOffset : angleOffset);
	ofNoFill();
	ofSetColor(ofColor::blue);
	ofLine(0, 0, gridSize, 0); // forward
	ofSetColor(ofColor::magenta);
	ofLine(ofVec2f(0, 0), ofVec2f(gridSize, 0).rotate(startAngle)); // left bound
	ofLine(ofVec2f(0, 0), ofVec2f(gridSize, 0).rotate(stopAngle)); // right bound
	for(int i = 0; i < gridDivisions; i++) {
		float radius = ofMap(i, -1, gridDivisions - 1, 0, gridSize);
		ofSetColor(64);
		ofCircle(0, 0, radius);
		ofVec2f textPosition = ofVec2f(radius, 0).rotate(45);
		ofSetColor(255);
		ofDrawBitmapString(ofToString(radius, 2) + "mm", textPosition);
	}
	ofPopMatrix();
	
	ofSetColor(255);
	pointCloud(pointsFirst).draw();
	ofSetColor(ofColor::red);
	pointCloud(pointsSecond).draw();
	ofPopStyle();
	ofPopMatrix();
}
Esempio n. 2
0
/*!
 * \brief OiGraphix::drawPointCloud
 * \param p
 */
void OiGraphix::drawPointCloud(PointCloud *p){
    OiGraphixPointCloud pointCloud(p->points);

    pointCloud.draw(p->xyz.getAt(0), p->xyz.getAt(1), p->xyz.getAt(2));

    drawResiduals();
}
Esempio n. 3
0
void callBack(const sensor_msgs::PointCloud2::ConstPtr msg)
{
	boost::posix_time::ptime now = boost::posix_time::microsec_clock::local_time();

	std::string filename = "Capture/v2_" +  boost::lexical_cast<std::string,boost::posix_time::ptime>( now ) +  ".pcd";

	boost::algorithm::erase_all(filename,":");

	std::cout << filename << std::endl;

	boost::shared_ptr<pcl::PointCloud<Point> > pointCloud(new pcl::PointCloud<Point>);

	pcl::io::savePCDFileBinary<Point>(filename,*pointCloud);

	ROS_INFO("Height: [%i]",msg->height);
	ROS_INFO("Width: [%i]",msg->width);

}
void ElevationMapping::pointCloudCallback(
    const sensor_msgs::PointCloud2& rawPointCloud)
{
  stopMapUpdateTimer();

  boost::recursive_mutex::scoped_lock scopedLock(map_.getRawDataMutex());

  // Convert the sensor_msgs/PointCloud2 data to pcl/PointCloud.
  // TODO Double check with http://wiki.ros.org/hydro/Migration
  pcl::PCLPointCloud2 pcl_pc;
  pcl_conversions::toPCL(rawPointCloud, pcl_pc);
  PointCloud<PointXYZRGB>::Ptr pointCloud(new PointCloud<PointXYZRGB>);
  pcl::fromPCLPointCloud2(pcl_pc, *pointCloud);
  Time time;
  time.fromNSec(1000 * pointCloud->header.stamp);

  ROS_DEBUG("ElevationMap received a point cloud (%i points) for elevation mapping.", static_cast<int>(pointCloud->size()));

  // Update map location.
  updateMapLocation();

  // Update map from motion prediction.
  if (!updatePrediction(time)) {
    ROS_ERROR("Updating process noise failed.");
    resetMapUpdateTimer();
    return;
  }

  // Get robot pose covariance matrix at timestamp of point cloud.
  boost::shared_ptr<geometry_msgs::PoseWithCovarianceStamped const> poseMessage = robotPoseCache_.getElemBeforeTime(time);
  if (!poseMessage)
  {
    ROS_ERROR("Could not get pose information from robot for time %f. Buffer empty?", time.toSec());
    return;
  }

  Eigen::Matrix<double, 6, 6> robotPoseCovariance = Eigen::Map<const Eigen::MatrixXd>(poseMessage->pose.covariance.data(), 6, 6);

  // Process point cloud.
  PointCloud<PointXYZRGB>::Ptr pointCloudProcessed(new PointCloud<PointXYZRGB>);
  Eigen::VectorXf measurementVariances;
  if (!sensorProcessor_->process(pointCloud, robotPoseCovariance, pointCloudProcessed,
                                 measurementVariances)) {
    ROS_ERROR("Point cloud could not be processed.");
    resetMapUpdateTimer();
    return;
  }

  // Add point cloud to elevation map.
  if (!map_.add(pointCloudProcessed, measurementVariances)) {
    ROS_ERROR("Adding point cloud to elevation map failed.");
    resetMapUpdateTimer();
    return;
  }

  // Publish elevation map.
  map_.publishRawElevationMap();
  if (isContinouslyFusing_ && map_.hasFusedMapSubscribers()) {
    map_.fuseAll(true);
    map_.publishFusedElevationMap();
  }

  resetMapUpdateTimer();
}
Esempio n. 5
0
void Pipeline::run(const bool save_clouds, const bool show_clouds)
{
	Logger _log("Pipeline");

	/**
	 * Stage 0: Load images from file
	 */
	Images images;
	load_images(folder_path, images);


	/**
	 * Stage 1: Detect features in loaded images
	 */
	CamFrames cam_Frames;
	DescriptorsVec descriptors_vec;
	extract_features(images, cam_Frames, descriptors_vec);

	// Free Image.gray
	for (int i = 0; i < images.size(); i++)
		const_cast<cv::Mat&>(images[i].gray).release();


	/**
	 * Stage 2: Calculate descriptors and find image pairs through matching
	 */
	ImagePairs image_pairs;
	find_matching_pairs(images, cam_Frames, descriptors_vec, image_pairs);


	// Free some memory
	DescriptorsVec().swap(descriptors_vec);



	/**
	 * State 3: Compute pairwise R and t
	 */
	register_camera(image_pairs, cam_Frames);


	/**
	 * Stage 4: Construct associativity matrix and spanning tree
	 */
	Associativity assocMat(cam_Frames.size());
	for (int p = 0; p < image_pairs.size(); p++)
	{
		ImagePair* pair = &image_pairs[p];
		int i = pair->pair_index.first,
		    j = pair->pair_index.second;

		if (pair -> R.empty()) continue;

		assocMat(i, j) = pair;
		assocMat(j, i) = pair;

		assert(assocMat(i, j) == assocMat(j, i));
		assert(assocMat(i, j)->pair_index.first  == i &&
		       assocMat(i, j)->pair_index.second == j);
	}

	Associativity tree;
	const int camera_num = build_spanning_tree(image_pairs, assocMat, tree);


	/**
	 * Stage 5: Compute global Rs and ts
	 */
	CameraPoses gCameraPoses;
	glo_cam_poses(images, gCameraPoses, image_pairs, tree);


	/**
	 * Stage 6: Find and cluster depth points from local camera frame to global camera frame
	 */
	PointClusters pointClusters;
	PointMap pointMap;
	find_clusters(assocMat, gCameraPoses, cam_Frames, pointClusters, pointMap);

	// Free some memory
	ImagePairs().swap(image_pairs);


	/**
	 * Stage 7: get center of mass from clusters
	 */
	PointCloud pointCloud(pointClusters.size());
	find_CoM(pointClusters, pointCloud);

	// Free pointClusters
	for (int i = 0; i < pointClusters.size(); i++)
		PointCluster().swap(pointClusters[i]);
	PointClusters().swap(pointClusters);


	// Save cloud before BA
	Viewer viewer("Before BA");
	auto cloud  = viewer.createPointCloud(images, gCameraPoses, cameraMatrix);
	int  n      = cloud->points.size();
	auto time   = ptime::second_clock::local_time();
	auto tstamp = ptime::to_iso_string(time);
	auto folder = fs::path(folder_path).filename().string();
	auto fname  = (fmt("%s_%s_%d_noBA.pcd") % folder % tstamp % n).str();

	if (save_clouds)
		viewer.saveCloud(cloud, fname);
	if (show_clouds)
		viewer.showCloudPoints(cloud, false);


	/**
	 * State 8: Bundle Adjustment
	 */
	bundle_adjustment(pointMap, cam_Frames, false, gCameraPoses, pointCloud);
	_log.tok();

	/**
	 * Show calculated point cloud
	 */
	Viewer viewer_ba("After BA no Depth");
	cloud = viewer_ba.createPointCloud(images, gCameraPoses, cameraMatrix);
	n     = cloud->points.size();
	fname = (fmt("%s_%s_%d_BA_noD.pcd") % folder % tstamp % n).str();


	if (save_clouds)
		viewer_ba.saveCloud(cloud, fname);
	if (show_clouds)
		viewer_ba.showCloudPoints(cloud,false);

	bundle_adjustment(pointMap, cam_Frames, true, gCameraPoses, pointCloud);

	// Free some memory
	PointMap().swap(pointMap);
	CamFrames().swap(cam_Frames);
	PointCloud().swap(pointCloud);

	/**
	 * Show calculated point cloud
	 */
	Viewer viewer_baD("After BA with Depth");
	cloud = viewer_baD.createPointCloud(images, gCameraPoses, cameraMatrix);
	n     = cloud->points.size();
	fname = (fmt("%s_%s_%d_BA_D.pcd") % folder % tstamp % n).str();

	// Free some memory
	Images().swap(images);
	CameraPoses().swap(gCameraPoses);

	if (save_clouds)
		viewer_baD.saveCloud(cloud, fname);
	if (show_clouds)
		viewer_baD.showCloudPoints(cloud);



}