Esempio n. 1
0
//------------------------------------------------------------------------
void phobos::system::agg::curve3_div::bezier(double x1, double y1, 
												double x2, double y2, 
												double x3, double y3)
{
	m_points.add(point_d(x1, y1));
	recursive_bezier(x1, y1, x2, y2, x3, y3, 0);
	m_points.add(point_d(x3, y3));
}
Esempio n. 2
0
//------------------------------------------------------------------------
void curve3_div::bezier(double x1, double y1,
                        double x2, double y2,
                        double x3, double y3)
{
    m_points.add(point_d(x1, y1));
    recursive_bezier(x1, y1, x2, y2, x3, y3, 0);
    m_points.add(point_d(x3, y3));
}
Esempio n. 3
0
//------------------------------------------------------------------------
void curve4_div::bezier(double x1, double y1,
                        double x2, double y2,
                        double x3, double y3,
                        double x4, double y4)
{
    m_points.add(point_d(x1, y1));
    recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0);
    m_points.add(point_d(x4, y4));
}
Esempio n. 4
0
 //------------------------------------------------------------------------
 void vcgen_bspline::add_vertex(double x, double y, unsigned cmd)
 {
     m_status = initial;
     if(is_move_to(cmd))
     {
         m_src_vertices.modify_last(point_d(x, y));
     }
     else
     {
         if(is_vertex(cmd))
         {
             m_src_vertices.add(point_d(x, y));
         }
         else
         {
             m_closed = get_close_flag(cmd);
         }
     }
 }
Esempio n. 5
0
//------------------------------------------------------------------------
void curve4_div::recursive_bezier(double x1, double y1,
                                  double x2, double y2,
                                  double x3, double y3,
                                  double x4, double y4,
                                  unsigned level)
{
    if(level > curve_recursion_limit)
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    double x12   = (x1 + x2) / 2;
    double y12   = (y1 + y2) / 2;
    double x23   = (x2 + x3) / 2;
    double y23   = (y2 + y3) / 2;
    double x34   = (x3 + x4) / 2;
    double y34   = (y3 + y4) / 2;
    double x123  = (x12 + x23) / 2;
    double y123  = (y12 + y23) / 2;
    double x234  = (x23 + x34) / 2;
    double y234  = (y23 + y34) / 2;
    double x1234 = (x123 + x234) / 2;
    double y1234 = (y123 + y234) / 2;


    // Try to approximate the full cubic curve by a single straight line
    //------------------
    double dx = x4-x1;
    double dy = y4-y1;

    double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
    double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
    double da1, da2, k;

    switch((int(d2 > curve_collinearity_epsilon) << 1) +
           int(d3 > curve_collinearity_epsilon))
    {
    case 0:
        // All collinear OR p1==p4
        //----------------------
        k = dx*dx + dy*dy;
        if(k == 0)
        {
            d2 = calc_sq_distance(x1, y1, x2, y2);
            d3 = calc_sq_distance(x4, y4, x3, y3);
        }
        else
        {
            k   = 1 / k;
            da1 = x2 - x1;
            da2 = y2 - y1;
            d2  = k * (da1*dx + da2*dy);
            da1 = x3 - x1;
            da2 = y3 - y1;
            d3  = k * (da1*dx + da2*dy);
            if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
            {
                // Simple collinear case, 1---2---3---4
                // We can leave just two endpoints
                return;
            }
            if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1);
            else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4);
            else             d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy);

            if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1);
            else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4);
            else             d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy);
        }
        if(d2 > d3)
        {
            if(d2 < m_distance_tolerance_square)
            {
                m_points.add(point_d(x2, y2));
                return;
            }
        }
        else
        {
            if(d3 < m_distance_tolerance_square)
            {
                m_points.add(point_d(x3, y3));
                return;
            }
        }
        break;

    case 1:
        // p1,p2,p4 are collinear, p3 is significant
        //----------------------
        if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
            if(da1 >= pi) da1 = 2*pi - da1;

            if(da1 < m_angle_tolerance)
            {
                m_points.add(point_d(x2, y2));
                m_points.add(point_d(x3, y3));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x3, y3));
                    return;
                }
            }
        }
        break;

    case 2:
        // p1,p3,p4 are collinear, p2 is significant
        //----------------------
        if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
            if(da1 >= pi) da1 = 2*pi - da1;

            if(da1 < m_angle_tolerance)
            {
                m_points.add(point_d(x2, y2));
                m_points.add(point_d(x3, y3));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x2, y2));
                    return;
                }
            }
        }
        break;

    case 3:
        // Regular case
        //-----------------
        if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            k   = atan2(y3 - y2, x3 - x2);
            da1 = fabs(k - atan2(y2 - y1, x2 - x1));
            da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
            if(da1 >= pi) da1 = 2*pi - da1;
            if(da2 >= pi) da2 = 2*pi - da2;

            if(da1 + da2 < m_angle_tolerance)
            {
                // Finally we can stop the recursion
                //----------------------
                m_points.add(point_d(x23, y23));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x2, y2));
                    return;
                }

                if(da2 > m_cusp_limit)
                {
                    m_points.add(point_d(x3, y3));
                    return;
                }
            }
        }
        break;
    }

    // Continue subdivision
    //----------------------
    recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1);
    recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1);
}
Esempio n. 6
0
//------------------------------------------------------------------------
void curve3_div::recursive_bezier(double x1, double y1,
                                  double x2, double y2,
                                  double x3, double y3,
                                  unsigned level)
{
    if(level > curve_recursion_limit)
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    double x12   = (x1 + x2) / 2;
    double y12   = (y1 + y2) / 2;
    double x23   = (x2 + x3) / 2;
    double y23   = (y2 + y3) / 2;
    double x123  = (x12 + x23) / 2;
    double y123  = (y12 + y23) / 2;

    double dx = x3-x1;
    double dy = y3-y1;
    double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx));
    double da;

    if(d > curve_collinearity_epsilon)
    {
        // Regular case
        //-----------------
        if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x123, y123));
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
            if(da >= pi) da = 2*pi - da;

            if(da < m_angle_tolerance)
            {
                // Finally we can stop the recursion
                //----------------------
                m_points.add(point_d(x123, y123));
                return;
            }
        }
    }
    else
    {
        // Collinear case
        //------------------
        da = dx*dx + dy*dy;
        if(da == 0)
        {
            d = calc_sq_distance(x1, y1, x2, y2);
        }
        else
        {
            d = ((x2 - x1)*dx + (y2 - y1)*dy) / da;
            if(d > 0 && d < 1)
            {
                // Simple collinear case, 1---2---3
                // We can leave just two endpoints
                return;
            }
            if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1);
            else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3);
            else            d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy);
        }
        if(d < m_distance_tolerance_square)
        {
            m_points.add(point_d(x2, y2));
            return;
        }
    }

    // Continue subdivision
    //----------------------
    recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1);
    recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1);
}
Esempio n. 7
0
    //------------------------------------------------------------------------
    void curve4_div::recursive_bezier(double x1, double y1, 
                                      double x2, double y2, 
                                      double x3, double y3, 
                                      double x4, double y4,
                                      unsigned level)
    {
        if(level > curve_recursion_limit) 
        {
            return;
        }

        // Calculate all the mid-points of the line segments
        //----------------------
        double x12   = (x1 + x2) / 2;
        double y12   = (y1 + y2) / 2;
        double x23   = (x2 + x3) / 2;
        double y23   = (y2 + y3) / 2;
        double x34   = (x3 + x4) / 2;
        double y34   = (y3 + y4) / 2;
        double x123  = (x12 + x23) / 2;
        double y123  = (y12 + y23) / 2;
        double x234  = (x23 + x34) / 2;
        double y234  = (y23 + y34) / 2;
        double x1234 = (x123 + x234) / 2;
        double y1234 = (y123 + y234) / 2;

        // Try to approximate the full cubic curve by a single straight line
        //------------------
        double dx = x4-x1;
        double dy = y4-y1;

        double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
        double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
        double da1, da2;

        switch((int(d2 > curve_collinearity_epsilon) << 1) +
                int(d3 > curve_collinearity_epsilon))
        {
        case 0:
            // All collinear OR p1==p4
            //----------------------
            if(fabs(x1 + x3 - x2 - x2) +
               fabs(y1 + y3 - y2 - y2) +
               fabs(x2 + x4 - x3 - x3) +
               fabs(y2 + y4 - y3 - y3) <= m_distance_tolerance_manhattan)
            {
                m_points.add(point_d(x1234, y1234));
                return;
            }    
            break;

        case 1:
            // p1,p2,p4 are collinear, p3 is considerable
            //----------------------
            if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
            {
                if(m_angle_tolerance < curve_angle_tolerance_epsilon)
                {
                    m_points.add(point_d(x23, y23));
                    return;
                }

                // Angle Condition
                //----------------------
                da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
                if(da1 >= pi) da1 = 2*pi - da1;

                if(da1 < m_angle_tolerance)
                {
                    m_points.add(point_d(x2, y2));
                    m_points.add(point_d(x3, y3));
                    return;
                }

                if(m_cusp_limit != 0.0)
                {
                    if(da1 > m_cusp_limit)
                    {
                        m_points.add(point_d(x3, y3));
                        return;
                    }
                }
            }
            break;

        case 2:
            // p1,p3,p4 are collinear, p2 is considerable
            //----------------------
            if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
            {
                if(m_angle_tolerance < curve_angle_tolerance_epsilon)
                {
                    m_points.add(point_d(x23, y23));
                    return;
                }

                // Angle Condition
                //----------------------
                da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
                if(da1 >= pi) da1 = 2*pi - da1;

                if(da1 < m_angle_tolerance)
                {
                    m_points.add(point_d(x2, y2));
                    m_points.add(point_d(x3, y3));
                    return;
                }

                if(m_cusp_limit != 0.0)
                {
                    if(da1 > m_cusp_limit)
                    {
                        m_points.add(point_d(x2, y2));
                        return;
                    }
                }
            }
            break;

        case 3: 
            // Regular care
            //-----------------
            if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
            {
                // If the curvature doesn't exceed the distance_tolerance value
                // we tend to finish subdivisions.
                //----------------------
                if(m_angle_tolerance < curve_angle_tolerance_epsilon)
                {
                    m_points.add(point_d(x23, y23));
                    return;
                }

                // Angle & Cusp Condition
                //----------------------
                double a23 = atan2(y3 - y2, x3 - x2);
                da1 = fabs(a23 - atan2(y2 - y1, x2 - x1));
                da2 = fabs(atan2(y4 - y3, x4 - x3) - a23);
                if(da1 >= pi) da1 = 2*pi - da1;
                if(da2 >= pi) da2 = 2*pi - da2;

                if(da1 + da2 < m_angle_tolerance)
                {
                    // Finally we can stop the recursion
                    //----------------------
                    m_points.add(point_d(x23, y23));
                    return;
                }

                if(m_cusp_limit != 0.0)
                {
                    if(da1 > m_cusp_limit)
                    {
                        m_points.add(point_d(x2, y2));
                        return;
                    }

                    if(da2 > m_cusp_limit)
                    {
                        m_points.add(point_d(x3, y3));
                        return;
                    }
                }
            }
            break;
        }

        // Continue subdivision
        //----------------------
        recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1); 
        recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1); 
    }
Esempio n. 8
0
    //------------------------------------------------------------------------
    void curve3_div::recursive_bezier(double x1, double y1, 
                                      double x2, double y2, 
                                      double x3, double y3,
                                      unsigned level)
    {
        if(level > curve_recursion_limit) 
        {
            return;
        }

        // Calculate all the mid-points of the line segments
        //----------------------
        double x12   = (x1 + x2) / 2;                
        double y12   = (y1 + y2) / 2;
        double x23   = (x2 + x3) / 2;
        double y23   = (y2 + y3) / 2;
        double x123  = (x12 + x23) / 2;
        double y123  = (y12 + y23) / 2;

        double dx = x3-x1;
        double dy = y3-y1;
        double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx));

        if(d > curve_collinearity_epsilon)
        { 
            // Regular care
            //-----------------
            if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy))
            {
                // If the curvature doesn't exceed the distance_tolerance value
                // we tend to finish subdivisions.
                //----------------------
                if(m_angle_tolerance < curve_angle_tolerance_epsilon)
                {
                    m_points.add(point_d(x123, y123));
                    return;
                }

                // Angle & Cusp Condition
                //----------------------
                double da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
                if(da >= pi) da = 2*pi - da;

                if(da < m_angle_tolerance)
                {
                    // Finally we can stop the recursion
                    //----------------------
                    m_points.add(point_d(x123, y123));
                    return;                 
                }
            }
        }
        else
        {
            if(fabs(x1 + x3 - x2 - x2) +
               fabs(y1 + y3 - y2 - y2) <= m_distance_tolerance_manhattan)
            {
                m_points.add(point_d(x123, y123));
                return;
            }    
        }

        // Continue subdivision
        //----------------------
        recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1); 
        recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1); 
    }
Esempio n. 9
0
inline void ICP::UpdateAndReject(Pair& init_f){
	
	double sigma=0.0;
	double mean=0.0;
	unsigned int N = data_indices.size() + init_f.size();
	
	Eigen::Vector4d point_s(0.0,0.0,0.0,1.0);
	Eigen::Vector4d point_d(0.0,0.0,0.0,1.0);
	
	std::vector<double> dists(N);
		
	//compute mean
	unsigned int k=0;
	for (unsigned int i=0 ; i < N; i++){
		
		if(i<data_indices.size()){
			point_s(0) = cloud_m->points[ model_indices[i] ].x;	
			point_s(1) = cloud_m->points[ model_indices[i] ].y;
			point_s(2) = cloud_m->points[ model_indices[i] ].z;
		
			point_d(0) = cloud_d->points[ data_indices[i] ].x;	
			point_d(1) = cloud_d->points[ data_indices[i] ].y;
			point_d(2) = cloud_d->points[ data_indices[i] ].z;
		}else{
			point_s(0) = cloud_m->points[ init_f[k].first ].x;	
			point_s(1) = cloud_m->points[ init_f[k].first ].y;
			point_s(2) = cloud_m->points[ init_f[k].first ].z;
		
			point_d(0) = cloud_d->points[ init_f[k].second ].x;	
			point_d(1) = cloud_d->points[ init_f[k].second ].y;
			point_d(2) = cloud_d->points[ init_f[k].second ].z;
			k++;
		}
		
		point_d = T*point_d;				
		
		dists[i]= (point_d - point_s).norm();
		mean = mean + dists[i];
	}
	
	mean = mean/N;
	
	//compute standart diviation
	for (unsigned int i=0; i < N; i++){
		sigma = sigma + (dists[i]-mean)*(dists[i]-mean);
	}
	
	sigma = sigma/N;
	sigma = sqrt(sigma);
	
	
	//How good is the registration
	if (mean<D)						//very good
		Dmax = mean + 3*sigma;
	else if (mean<3*D)				//good
		Dmax = mean + 2*sigma;
	else if (mean<6*D)				//bad
		Dmax = mean + sigma;
	else {							//very bad 
		std::vector<double> dists2 = dists;
		sort (dists2.begin(), dists2.end());
	
		if (dists2.size() % 2 == 0) {
			Dmax = (dists2[dists2.size()/2-1] + dists2[dists2.size()/2]) / 2.0;
		}else {
			Dmax = dists2[dists2.size()/2]; 
		}
	}
	
	//Update the maching
	k=0;
	unsigned int i=0;
	for (i=0 ; i <data_indices.size() ; i++){
		if (dists[i] < Dmax){
			model_indices[k] = model_indices[i];
			data_indices[k] = data_indices[i];
			k++;	
		}
	}
	
	model_indices.resize(k);
	data_indices.resize(k);	
		
	k=0;
	unsigned int j,l;
	for (j=i, l=0; j<N ; j++,l++){
		if (dists[j] < Dmax){
			init_f[k]= init_f[l];
			k++;	
		}
	}

	if(k!=init_f.size()) 
		init_f.resize(k);
	
}