Esempio n. 1
0
/**** Radial Control ****/
struct ImBuf *BKE_brush_gen_radial_control_imbuf(Brush *br, bool secondary)
{
	ImBuf *im = MEM_callocN(sizeof(ImBuf), "radial control texture");
	unsigned int *texcache;
	int side = 128;
	int half = side / 2;
	int i, j;

	curvemapping_initialize(br->curve);
	texcache = BKE_brush_gen_texture_cache(br, half, secondary);
	im->rect_float = MEM_callocN(sizeof(float) * side * side, "radial control rect");
	im->x = im->y = side;

	for (i = 0; i < side; ++i) {
		for (j = 0; j < side; ++j) {
			float magn = sqrtf(pow2f(i - half) + pow2f(j - half));
			im->rect_float[i * side + j] = BKE_brush_curve_strength_clamped(br, magn, half);
		}
	}

	/* Modulate curve with texture */
	if (texcache) {
		for (i = 0; i < side; ++i) {
			for (j = 0; j < side; ++j) {
				const int col = texcache[i * side + j];
				im->rect_float[i * side + j] *= (((char *)&col)[0] + ((char *)&col)[1] + ((char *)&col)[2]) / 3.0f / 255.0f;
			}
		}

		MEM_freeN(texcache);
	}

	return im;
}
MINLINE float pow7f(float x)
{
	return pow2f(pow3f(x)) * x;
}
Esempio n. 3
0
static void
test_float (void)
{
  /* Check that the value of FLT_MIN_EXP is well parenthesized.  */
  ASSERT ((FLT_MIN_EXP % 101111) == (FLT_MIN_EXP) % 101111);

  /* Check that the value of DBL_MIN_10_EXP is well parenthesized.  */
  ASSERT ((FLT_MIN_10_EXP % 101111) == (FLT_MIN_10_EXP) % 101111);

  /* Check that 'float' is as specified in IEEE 754.  */
  ASSERT (FLT_MANT_DIG == 24);
  ASSERT (FLT_MIN_EXP == -125);
  ASSERT (FLT_MAX_EXP == 128);

  /* Check the value of FLT_MIN_10_EXP.  */
  ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103));

  /* Check the value of FLT_DIG.  */
  ASSERT (FLT_DIG == (int) ((FLT_MANT_DIG - 1) * 0.30103));

  /* Check the value of FLT_MIN_10_EXP.  */
  ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103));

  /* Check the value of FLT_MAX_10_EXP.  */
  ASSERT (FLT_MAX_10_EXP == (int) (FLT_MAX_EXP * 0.30103));

  /* Check the value of FLT_MAX.  */
  {
    volatile float m = FLT_MAX;
    int n;

    ASSERT (m + m > m);
    for (n = 0; n <= 2 * FLT_MANT_DIG; n++)
      {
        volatile float pow2_n = pow2f (n); /* 2^n */
        volatile float x = m + (m / pow2_n);
        if (x > m)
          ASSERT (x + x == x);
        else
          ASSERT (!(x + x == x));
      }
  }

  /* Check the value of FLT_MIN.  */
  {
    volatile float m = FLT_MIN;
    volatile float x = pow2f (FLT_MIN_EXP - 1);
    ASSERT (m == x);
  }

  /* Check the value of FLT_EPSILON.  */
  {
    volatile float e = FLT_EPSILON;
    volatile float me;
    int n;

    me = 1.0f + e;
    ASSERT (me > 1.0f);
    ASSERT (me - 1.0f == e);
    for (n = 0; n <= 2 * FLT_MANT_DIG; n++)
      {
        volatile float half_n = pow2f (- n); /* 2^-n */
        volatile float x = me - half_n;
        if (x < me)
          ASSERT (x <= 1.0f);
      }
  }
}
MINLINE float pow4f(float x)
{
	return pow2f(pow2f(x));
}