/** * G26: Mesh Validation Pattern generation. * * Used to interactively edit UBL's Mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. */ void unified_bed_leveling::G26() { SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); float tmp, start_angle, end_angle; int i, xi, yi; mesh_index_pair location; // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (axis_unhomed_error() || parse_G26_parameters()) return; if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); stepper.synchronize(); set_current_to_destination(); } if (turn_on_heaters()) goto LEAVE; current_position[E_AXIS] = 0.0; sync_plan_position_e(); if (g26_prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); // Move nozzle to the specified height for the first layer set_destination_to_current(); destination[Z_AXIS] = g26_layer_height; move_to(destination, 0.0); move_to(destination, g26_ooze_amount); has_control_of_lcd_panel = true; //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); /** * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten * the CPU load and make the arc drawing faster and more smooth */ float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; for (i = 0; i <= 360 / 30; i++) { cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); } do { location = g26_continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { const float circle_x = mesh_index_to_xpos(location.x_index), circle_y = mesh_index_to_ypos(location.y_index); // If this mesh location is outside the printable_radius, skip it. if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue; xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; if (g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL(); } start_angle = 0.0; // assume it is going to be a full circle end_angle = 360.0; if (xi == 0) { // Check for bottom edge start_angle = -90.0; end_angle = 90.0; if (yi == 0) // it is an edge, check for the two left corners start_angle = 0.0; else if (yi == GRID_MAX_POINTS_Y - 1) end_angle = 0.0; } else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge start_angle = 90.0; end_angle = 270.0; if (yi == 0) // it is an edge, check for the two right corners end_angle = 180.0; else if (yi == GRID_MAX_POINTS_Y - 1) start_angle = 180.0; } else if (yi == 0) { start_angle = 0.0; // only do the top side of the cirlce end_angle = 180.0; } else if (yi == GRID_MAX_POINTS_Y - 1) { start_angle = 180.0; // only do the bottom side of the cirlce end_angle = 360.0; } for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { #if ENABLED(NEWPANEL) if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation #endif int tmp_div_30 = tmp / 30.0; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry y = circle_y + sin_table[tmp_div_30], xe = circle_x + cos_table[tmp_div_30 + 1], ye = circle_y + sin_table[tmp_div_30 + 1]; #if IS_KINEMATIC // Check to make sure this segment is entirely on the bed, skip if not. if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue; #else // not, we need to skip x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif //if (g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); // cptr = (char*) "01234567890ABCDEF????????"; // ccc = cptr[tmp_div_30]; // seg_num[1] = ccc; // strcat(seg_msg, seg_num); // debug_current_and_destination(seg_msg); //} print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height); } if (look_for_lines_to_connect()) goto LEAVE; } } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); LEAVE: lcd_setstatusPGM(PSTR("Leaving G26"), -1); retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination(PSTR("ready to do Z-Raise.")); move_to(destination, 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); destination[X_AXIS] = g26_x_pos; // Move back to the starting position destination[Y_AXIS] = g26_y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination, 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!g26_keep_heaters_on) { #if HAS_TEMP_BED thermalManager.setTargetBed(0); #endif thermalManager.setTargetHotend(0, 0); } }
/** * G26: Mesh Validation Pattern generation. * * Used to interactively edit the mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. * * Parameters: * * B Bed Temperature * C Continue from the Closest mesh point * D Disable leveling before starting * F Filament diameter * H Hotend Temperature * K Keep heaters on when completed * L Layer Height * O Ooze extrusion length * P Prime length * Q Retraction multiplier * R Repetitions (number of grid points) * S Nozzle Size (diameter) in mm * T Tool index to change to, if included * U Random deviation (50 if no value given) * X X position * Y Y position */ void GcodeSuite::G26() { SERIAL_ECHOLNPGM("G26 starting..."); // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (axis_unhomed_error()) return; // Change the tool first, if specified if (parser.seenval('T')) tool_change(parser.value_int()); g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; g26_retraction_multiplier = RETRACTION_MULTIPLIER; g26_layer_height = MESH_TEST_LAYER_HEIGHT; g26_prime_length = PRIME_LENGTH; g26_bed_temp = MESH_TEST_BED_TEMP; g26_hotend_temp = MESH_TEST_HOTEND_TEMP; g26_prime_flag = 0; float g26_nozzle = MESH_TEST_NOZZLE_SIZE, g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA, g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT); bool g26_continue_with_closest = parser.boolval('C'), g26_keep_heaters_on = parser.boolval('K'); if (parser.seenval('B')) { g26_bed_temp = parser.value_celsius(); if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) { SERIAL_ECHOLNPGM("?Specified bed temperature not plausible (40-140C)."); return; } } if (parser.seenval('L')) { g26_layer_height = parser.value_linear_units(); if (!WITHIN(g26_layer_height, 0.0, 2.0)) { SERIAL_ECHOLNPGM("?Specified layer height not plausible."); return; } } if (parser.seen('Q')) { if (parser.has_value()) { g26_retraction_multiplier = parser.value_float(); if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible."); return; } } else { SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified."); return; } } if (parser.seenval('S')) { g26_nozzle = parser.value_float(); if (!WITHIN(g26_nozzle, 0.1, 1.0)) { SERIAL_ECHOLNPGM("?Specified nozzle size not plausible."); return; } } if (parser.seen('P')) { if (!parser.has_value()) { #if HAS_LCD_MENU g26_prime_flag = -1; #else SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD."); return; #endif } else { g26_prime_flag++; g26_prime_length = parser.value_linear_units(); if (!WITHIN(g26_prime_length, 0.0, 25.0)) { SERIAL_ECHOLNPGM("?Specified prime length not plausible."); return; } } } if (parser.seenval('F')) { g26_filament_diameter = parser.value_linear_units(); if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { SERIAL_ECHOLNPGM("?Specified filament size not plausible."); return; } } g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to // scale up or down the length needed to get the // same volume of filament g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size if (parser.seenval('H')) { g26_hotend_temp = parser.value_celsius(); if (!WITHIN(g26_hotend_temp, 165, 280)) { SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible."); return; } } if (parser.seen('U')) { randomSeed(millis()); // This setting will persist for the next G26 random_deviation = parser.has_value() ? parser.value_float() : 50.0; } int16_t g26_repeats; #if HAS_LCD_MENU g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); #else if (!parser.seen('R')) { SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD."); return; } else g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; #endif if (g26_repeats < 1) { SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1."); return; } g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS]; g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS]; if (!position_is_reachable(g26_x_pos, g26_y_pos)) { SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds."); return; } /** * Wait until all parameters are verified before altering the state! */ set_bed_leveling_enabled(!parser.seen('D')); if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); set_current_from_destination(); } if (turn_on_heaters() != G26_OK) goto LEAVE; current_position[E_AXIS] = 0.0; sync_plan_position_e(); if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); // Move nozzle to the specified height for the first layer set_destination_from_current(); destination[Z_AXIS] = g26_layer_height; move_to(destination, 0.0); move_to(destination, g26_ooze_amount); #if HAS_LCD_MENU ui.capture(); #endif //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); #if DISABLED(ARC_SUPPORT) /** * Pre-generate radius offset values at 30 degree intervals to reduce CPU load. */ #define A_INT 30 #define _ANGS (360 / A_INT) #define A_CNT (_ANGS / 2) #define _IND(A) ((A + _ANGS * 8) % _ANGS) #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1)) #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS)) #if A_CNT & 1 #error "A_CNT must be a positive value. Please change A_INT." #endif float trig_table[A_CNT]; for (uint8_t i = 0; i < A_CNT; i++) trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT)); #endif // !ARC_SUPPORT mesh_index_pair location; do { location = g26_continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { const float circle_x = _GET_MESH_X(location.x_index), circle_y = _GET_MESH_Y(location.y_index); // If this mesh location is outside the printable_radius, skip it. if (!position_is_reachable(circle_x, circle_y)) continue; // Determine where to start and end the circle, // which is always drawn counter-clockwise. const uint8_t xi = location.x_index, yi = location.y_index; const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1; #if ENABLED(ARC_SUPPORT) #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2) float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle ex = circle_x + INTERSECTION_CIRCLE_RADIUS, sy = circle_y, ey = circle_y, arc_length = ARC_LENGTH(4); // Figure out where to start and end the arc - we always print counterclockwise if (xi == 0) { // left edge sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x; ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x; sy = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS); ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS; arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); } else if (r) { // right edge sx = b ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x; ex = f ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x; sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS; ey = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS); arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2); } else if (f) { sx = circle_x + INTERSECTION_CIRCLE_RADIUS; ex = circle_x - (INTERSECTION_CIRCLE_RADIUS); sy = ey = circle_y; arc_length = ARC_LENGTH(2); } else if (b) { sx = circle_x - (INTERSECTION_CIRCLE_RADIUS); ex = circle_x + INTERSECTION_CIRCLE_RADIUS; sy = ey = circle_y; arc_length = ARC_LENGTH(2); } const float arc_offset[2] = { circle_x - sx, circle_y - sy }; const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s); const float endpoint[XYZE] = { ex, ey, g26_layer_height, current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier) }; if (dist_start > 2.0) { retract_filament(destination); //todo: parameterize the bump height with a define move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped } move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump recover_filament(destination); const float save_feedrate = feedrate_mm_s; feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0; if (g26_debug_flag) { SERIAL_ECHOPAIR(" plan_arc(ex=", endpoint[X_AXIS]); SERIAL_ECHOPAIR(", ey=", endpoint[Y_AXIS]); SERIAL_ECHOPAIR(", ez=", endpoint[Z_AXIS]); SERIAL_ECHOPAIR(", len=", arc_length); SERIAL_ECHOPAIR(") -> (ex=", current_position[X_AXIS]); SERIAL_ECHOPAIR(", ey=", current_position[Y_AXIS]); SERIAL_ECHOPAIR(", ez=", current_position[Z_AXIS]); SERIAL_CHAR(')'); SERIAL_EOL(); } plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc feedrate_mm_s = save_feedrate; set_destination_from_current(); #if HAS_LCD_MENU if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation #endif #else // !ARC_SUPPORT int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00) if (xi == 0) { // Left edge? Just right half. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left } else if (r) { // Right edge? Just left half. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right } else if (f) { // Front edge? Just back half. start_ind = 0; // 03:00 end_ind = 5; // 09:00 } else if (b) { // Back edge? Just front half. start_ind = 6; // 09:00 end_ind = 11; // 03:00 } for (int8_t ind = start_ind; ind <= end_ind; ind++) { #if HAS_LCD_MENU if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation #endif float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry ry = circle_y + _SIN(ind), xe = circle_x + _COS(ind + 1), ye = circle_y + _SIN(ind + 1); #if IS_KINEMATIC // Check to make sure this segment is entirely on the bed, skip if not. if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue; #else // not, we need to skip rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height); SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } #endif // !ARC_SUPPORT if (look_for_lines_to_connect()) goto LEAVE; } SERIAL_FLUSH(); // Prevent host M105 buffer overrun. } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); LEAVE: ui.set_status_P(PSTR("Leaving G26"), -1); retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination(PSTR("ready to do Z-Raise.")); move_to(destination, 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); destination[X_AXIS] = g26_x_pos; // Move back to the starting position destination[Y_AXIS] = g26_y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination, 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); #if HAS_LCD_MENU ui.release(); // Give back control of the LCD #endif if (!g26_keep_heaters_on) { #if HAS_HEATED_BED thermalManager.setTargetBed(0); #endif thermalManager.setTargetHotend(active_extruder, 0); } }
/** * G26: Mesh Validation Pattern generation. * * Used to interactively edit UBL's Mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. */ void gcode_G26() { SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); float tmp, start_angle, end_angle; int i, xi, yi; mesh_index_pair location; // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return; if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); stepper.synchronize(); set_current_to_destination(); } if (turn_on_heaters()) goto LEAVE; current_position[E_AXIS] = 0.0; sync_plan_position_e(); if (prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); // Move nozzle to the specified height for the first layer set_destination_to_current(); destination[Z_AXIS] = layer_height; move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); ubl.has_control_of_lcd_panel = true; //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); /** * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten * the CPU load and make the arc drawing faster and more smooth */ float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; for (i = 0; i <= 360 / 30; i++) { cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); } do { if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation #if ENABLED(ULTRA_LCD) lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99); lcd_quick_feedback(); #endif while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the idle(); // Encoder Wheel if that is why we are leaving lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("")); } while (ubl_lcd_clicked()) { // Wait until the user is done pressing the idle(); // Encoder Wheel if that is why we are leaving lcd_setstatuspgm(PSTR("Unpress Wheel"), 99); } goto LEAVE; } location = continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]), circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]); // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem #ifdef DELTA if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS."); goto LEAVE; } #endif // TODO: Change this to use `position_is_reachable` if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to print off the bed."); goto LEAVE; } xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL; } start_angle = 0.0; // assume it is going to be a full circle end_angle = 360.0; if (xi == 0) { // Check for bottom edge start_angle = -90.0; end_angle = 90.0; if (yi == 0) // it is an edge, check for the two left corners start_angle = 0.0; else if (yi == GRID_MAX_POINTS_Y - 1) end_angle = 0.0; } else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge start_angle = 90.0; end_angle = 270.0; if (yi == 0) // it is an edge, check for the two right corners end_angle = 180.0; else if (yi == GRID_MAX_POINTS_Y - 1) start_angle = 180.0; } else if (yi == 0) { start_angle = 0.0; // only do the top side of the cirlce end_angle = 180.0; } else if (yi == GRID_MAX_POINTS_Y - 1) { start_angle = 180.0; // only do the bottom side of the cirlce end_angle = 360.0; } for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { int tmp_div_30 = tmp / 30.0; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry y = circle_y + sin_table[tmp_div_30], xe = circle_x + cos_table[tmp_div_30 + 1], ye = circle_y + sin_table[tmp_div_30 + 1]; #ifdef DELTA if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of continue; // the 'circle' is on the bed. If #else // not, we need to skip x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif //if (ubl.g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); // cptr = (char*) "01234567890ABCDEF????????"; // ccc = cptr[tmp_div_30]; // seg_num[1] = ccc; // strcat(seg_msg, seg_num); // debug_current_and_destination(seg_msg); //} print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height); } //debug_current_and_destination(PSTR("Looking for lines to connect.")); look_for_lines_to_connect(); //debug_current_and_destination(PSTR("Done with line connect.")); } //debug_current_and_destination(PSTR("Done with current circle.")); } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination(PSTR("ready to do Z-Raise.")); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); destination[X_AXIS] = x_pos; // Move back to the starting position destination[Y_AXIS] = y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!keep_heaters_on) { #if HAS_TEMP_BED thermalManager.setTargetBed(0); #endif thermalManager.setTargetHotend(0, 0); } }