Esempio n. 1
0
int main(int argc, char *argv[])
{
	InstInfo curInst;
	InstInfo *instPtr = &curInst;
	int instnum = 0;
	int maxpc;
	FILE *program;
	if (argc != 2)
	{
		printf("Usage: sim filename\n");
		exit(0);
	}
	
	if(DEBUG){
		printf("Reading file: ");
		printf(argv[1]);
		printf("\n");
	}

	
	maxpc = load(argv[1]);
	printLoad(maxpc);
	
	while (pc < maxpc)
	{
		fetch(instPtr);
		decode(instPtr);
		execute(instPtr);
		memory(instPtr);
		writeback(instPtr);
		print(instPtr,instnum++);
	}
	exit(0);
}
Esempio n. 2
0
/**
 * \brief Main..
 */
int main(int argc, char **argv, char **envp) {
    int i, last;
    Load load_data;
    char **load_names = NULL;
    int load_filesize = 0;
    char *load_buffer = NULL;
    int config_filesize = 0;
    char *config_buffer = NULL;
    char *config_file = NULL;
    char *log_file = NULL;
    int num_loads = 0;
    struct timeval StartTime, CurrentTime;

    int **errorFlags;
    int err = ERR_CLEAN;
    int pflag = 0;
    Plan *CommPlan;
    int iflag;
    unsigned int nap;

    comm_setup(&argc, &argv);
    MyRank = comm_getrank();

    last = 0;

    num_loads = initialize(argc, argv, &log_file, &config_file, &load_names);

    /* Initialize ROOT's global variables using input files. */
    if(MyRank == ROOT) {
        config_filesize = initConfigOptions(config_file, &config_buffer);         /* parse configuration file. */
        if((config_filesize <= 0) || (config_buffer == NULL) ) {
            EmitLog(MyRank, SCHEDULER_THREAD, "Aborting run - A config file could not be opened/read.", -1, PRINT_ALWAYS);
            config_filesize = 0;
            if(config_buffer != NULL) {
                free(config_buffer);
            }
        }
        comm_broadcast_int(&config_filesize);
    } else {
        comm_broadcast_int(&config_filesize);
        config_buffer = getFileBuffer(config_filesize);
    }

    if(config_filesize == 0) {
        comm_finalize();
        exit(1);
    }

    err = broadcast_buffer(config_buffer, config_filesize);

    err += parseConfig(config_buffer, config_filesize);
    free(config_buffer);

    if(MyRank == ROOT) {
        if(PRINT_RARELY <= verbose_flag) {          /* Print status info. */
            printf("num_loads                = %d\n", num_loads);
            printf("num_workers              = %d\n", num_workers);
            printf("thermal_panic            = %d\n", thermal_panic);
            printf("thermal_relaxation_time  = %d\n", thermal_relaxation_time);
            printf("monitor_frequency        = %d\n", monitor_frequency);
            printf("monitor_output_frequency = %d\n", monitor_output_frequency);
            printf("temperature_path         = %s\n", temperature_path);
            for(i = 0; i < num_loads; i++) {
                printf("load_names[%d]           = %s\n", i, load_names[i]);
            }
            printf("log_file                 = %s\n", log_file);
        }
    }

    // num_loads = bcastConfig(num_loads); // Broadcast global variables from ROOT to all others.
    if(num_loads <= 0) {                    // If there are no loads to run, exit the program.
        comm_finalize();
        exit(0);
    }

    /* Initialize the communication load if it is to be run */
    if(comm_flag != 0) {
        data pass;
        pass.isize = 1;
        pass.i = &comm_flag;
        CommPlan = makeCommPlan(&pass);
    } else {
        CommPlan = 0;
    }
    if(CommPlan != 0) {
        iflag = (CommPlan->fptr_initplan)(CommPlan);
    }

    /* Initialize the array of ThreadHandle structures for the workers. */
    WorkerHandle = (ThreadHandle *)malloc(num_workers * sizeof(ThreadHandle));
    if(WorkerHandle == NULL) {
        EmitLog(MyRank, SCHEDULER_THREAD, "Aborting run - Insufficient memory for the WorkerHandle struct", -1, PRINT_ALWAYS);
        comm_finalize();
        exit(1);
    }

    errorFlags = initErrorFlags();
    initWorkerFlags();

    if(DO_PERF) {
        performance_init();
    }     //DO_PERF

    if(MyRank == ROOT) {
        EmitLog(MyRank, SCHEDULER_THREAD, "Initialization complete. Beginning run.", -1, PRINT_ALWAYS);
    }

    StartMonitorThread();
    StartWorkerThreads();

    sleep(thermal_relaxation_time);     /* idle for a baseline */
    reduceTemps();
    sleep(thermal_relaxation_time);

    /*********************************************************************************
    * The following code will subscribe plans and their sizes to worker threads.
    * This is a temporary load distribution being that it comes from a single load.
    * In the future we would like to have several loads lined up to distribute to the
    * worker threads in a simlar fashion. This will allow us to run the benchmark
    * for different time durations depending on the total load schedule.
    *********************************************************************************/
    nap = monitor_output_frequency / 4;
    if(nap < 1) {
        nap = 1;
    }
    for(i = 0; i < num_loads; i++) {
        if(MyRank == ROOT) {                                    // Pull load data from a load file.
            assert(load_names);
            load_filesize = initLoadOptions(load_names[i], &load_buffer);
            if((load_filesize <= 0) || (load_buffer == NULL) ) {
                // /* Redundant */fprintf(stderr, "This load file could not be opened/read... trying next (if available).\n");
                EmitLog(MyRank, SCHEDULER_THREAD, "This load file could not be opened/read... trying next (if available).", -1, PRINT_ALWAYS);
                load_filesize = 0;
                if(load_buffer != NULL) {
                    free(load_buffer);
                }
            }
            comm_broadcast_int(&load_filesize);
            if(load_filesize == 0) {
                continue;
            }
        } else {
            comm_broadcast_int(&load_filesize);
            if(load_filesize == 0) {
                continue;
            }
            load_buffer = getFileBuffer(load_filesize);
        }
        err = broadcast_buffer(load_buffer, load_filesize);
        err += parseLoad(load_buffer, &load_data);
        free(load_buffer);
        // err = bcastLoad(&load_data);             // Broadcast the load structure to all nodes (processes).
        err = WorkerSched(&load_data);                                  // Assign the load to worker threads and check for errors
        if(MyRank == ROOT) {
            printLoad(&load_data);                                      // Print the load data to the terminal.
        }
        if(err != ERR_CLEAN) {
            errorFlags[SYSTEM + 1][err]++;
        }
#define SB_CONTINUE      0x0
#define SB_LAST_TRIP     0x1
#define SB_DO_REDUCTIONS 0x2
        if(MyRank == ROOT) {                                            // ROOT notes when we start this load
            gettimeofday(&StartTime, NULL);
            last = StartTime.tv_sec;
        }
        do {            // DELAY WHILE LOAD RUNS: loop while the load executes until ROOT's clock says stop.  Sleep if CommPlan isn't valid.
            if((comm_flag != 0) && (CommPlan) && (CommPlan->fptr_execplan) && (CommPlan->vptr)) {
                iflag = (CommPlan->fptr_execplan)(CommPlan);                             // run an iteration of the comm plan if enabled
            } else {
                gettimeofday(&CurrentTime, NULL);
                if(nap + CurrentTime.tv_sec < StartTime.tv_sec + load_data.runtime) {
                    sleep(nap);
                } else {
                    sleep((StartTime.tv_sec + load_data.runtime)-CurrentTime.tv_sec);
                }
            }
            if(MyRank == ROOT) {
                gettimeofday(&CurrentTime, NULL);
                pflag = ((CurrentTime.tv_sec > last + monitor_output_frequency) << 1) | (CurrentTime.tv_sec < StartTime.tv_sec + load_data.runtime);
            }
            comm_broadcast_int(&pflag);
            if(pflag & SB_DO_REDUCTIONS) {
                assert(errorFlags);
                reduceFlags(errorFlags);
                reduceTemps();
                if(MyRank == ROOT) {
                    last = CurrentTime.tv_sec;
                }
            }
        } while(pflag & SB_LAST_TRIP);
        // LOAD COMPLETE
        if(MyRank == ROOT) {
            EmitLog(MyRank, SCHEDULER_THREAD, "Elapsed time for this load:", CurrentTime.tv_sec - StartTime.tv_sec, PRINT_ALWAYS);
        }
        freeLoad(&load_data);
    }
    sleep(thermal_relaxation_time);
    reduceTemps();
    StopWorkerThreads();                        // tell them all to finish

    // Clean up the Communication Plan
    if((comm_flag != 0) && (CommPlan) && (CommPlan->vptr)) {
        if(CommPlan->fptr_perfplan) {
            iflag = (CommPlan->fptr_perfplan)(CommPlan);
        }
        if(CommPlan->fptr_killplan) {
            CommPlan = (CommPlan->fptr_killplan)(CommPlan);
        }
    }

    sleep(thermal_relaxation_time);

    if(DO_PERF) {
        sleep(30);
        perf_table_print(LOCAL, PRINT_OFTEN);
        perf_table_reduce();

        perf_table_maxreduce();
        perf_table_minreduce();

        if(MyRank == ROOT) {
            perf_table_print(GLOBAL, PRINT_ALWAYS);
        }
    } //DO_PERF

    if(MyRank == ROOT) {
        EmitLog(MyRank, SCHEDULER_THREAD, "Run Completed. Exiting.", -1, PRINT_ALWAYS);
    }

    comm_finalize();
    exit(0);
} /* main */
Esempio n. 3
0
int main(int argc, char *argv[])
{
	InstInfo curInst[5];
	InstInfo newInst;
	InstInfo * saved;
	int instnum = 0;
	int maxpc;
	int count=0;
	int cycles;			// total cycles in the pipeline
	int needsFetch = 1;	// fetching flag, 1 to fetch, 0 not to fetch
	int stall = 0;		// stall flag, 1 to stall, 0 not to stall
	int isTaken = 0;
	int i=0;
	int j=0;

	FILE *program;
	if (argc != 2)
	{
		printf("Usage: sim filename\n");
		exit(0);
	}

	maxpc = load(argv[1]);
	cycles = maxpc + 4;//**************************change to + 4 for REAL output

	if(debug)printf("cycles : %d \n" , cycles);

	if(debug)printLoad(maxpc);

	// initialize 5 instructions with 0
	for(i=0; i<5; i++){
		pipelineInsts[i]= &curInst[i];
		pipelineInsts[i]->inst=0;
		if(debug)printf("DEBUG: pipelineInsts[%d]: %d\n", i, pipelineInsts[i]->inst);
	}

	do{
		doStage(needsFetch, &stall, &cycles, &count);	// doStage calls stage functions
		saved = pipelineInsts[4];		// save the unused pointer for reuse
			
		// setting needsFetch flag
		if(count < maxpc)
			needsFetch = 1;
		else
			needsFetch = 0;

		if(debug)printf("DEBUG: stall value: %d\n", stall);

		// if stall is not being set
		if(!stall){
			if(debug)printf("DEBUG: no stall\n");
			if(debug)printf("DEBUG: not stall before, pipelineInst[0] ----> %d, %s\n", pipelineInsts[0]->inst, pipelineInsts[0]->string);
			printP2(pipelineInsts[0], pipelineInsts[1], pipelineInsts[2], pipelineInsts[3], pipelineInsts[4],  count);
	
			 //shift down 4 instructions
			for(i=4; i>0; i--){
				pipelineInsts[i]=pipelineInsts[i-1];
			}
			//printf("DEBUG: no stall, swap....\n");
			//printP2(pipelineInsts[0], pipelineInsts[1], pipelineInsts[2], pipelineInsts[3], pipelineInsts[4],  count);
			//saved->inst = 0;			// reset inst = 0
			pipelineInsts[0] = saved;	// reuse the unused inst pointer
			clearInst(pipelineInsts[0]);
			if(debug)printf("DEBUG: not stall after, pipelineInst[0] ----> %d, %s\n", pipelineInsts[0]->inst, pipelineInsts[0]->string);
		}
		// if stall is being set
		else{

			if(debug)printf("DEBUG: stall before, pipelineInst[0] ----> %d, %s\n", pipelineInsts[0]->inst, pipelineInsts[0]->string);
			if(debug)printf("DEBUG: stalls\n");
			printP2(pipelineInsts[0], pipelineInsts[1], pipelineInsts[2], pipelineInsts[3], pipelineInsts[4],  count);

			pipelineInsts[4] = pipelineInsts[3];	// shift down memory stage
			pipelineInsts[3] = pipelineInsts[2];	// shitf down execute stage
			saved->inst = 0;						// reset the unused inst to be 0
			pipelineInsts[2] = saved;				// stall the execute stage
			clearInst(pipelineInsts[2]);
			stall = 0;								// reset stall flag
			cycles++;
			if(debug)printf("DEBUG: stall after, pipelineInst[0] ----> %d, %s\n", pipelineInsts[0]->inst, pipelineInsts[0]->string);
			//printf("DEBUG: stall, swap....\n");
			//printP2(pipelineInsts[0], pipelineInsts[1], pipelineInsts[2], pipelineInsts[3], pipelineInsts[4],  count);
		}
		count++;					// increment count for cycles
	}while(count < cycles);

	// put in your own variables
	printf("Cycles: %d\n", count);
	printf("Instructions Executed: %d\n", maxpc);
  	exit(0);
}