Esempio n. 1
0
// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
void probe_state_monitor()
{
  if (sys.probe_state == PROBE_ACTIVE) { 
    if (probe_get_state()) {
      sys.probe_state = PROBE_OFF;
      memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS);
      bit_true(sys.execute, EXEC_FEED_HOLD);
    }
  }
}
Esempio n. 2
0
// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
void probe_state_monitor()
{
  if (sys_probe_state == PROBE_ACTIVE) {
    if (probe_get_state()) {
      sys_probe_state = PROBE_OFF;
      memcpy(sys.probe_position, sys.position, sizeof(sys.position));
      bit_true(sys_rt_exec_state, EXEC_MOTION_CANCEL);
    }
  }
}
Esempio n. 3
0
// Monitors probe pin state and records the system position when detected. Called by the
// stepper ISR per ISR tick.
// NOTE: This function must be extremely efficient as to not bog down the stepper ISR.
void probe_state_monitor()
{
#ifndef PUNCH_ACTIVATED
  if (sys_probe_state == PROBE_ACTIVE) {
    if (probe_get_state()) {
      sys_probe_state = PROBE_OFF;
      memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS);
      bit_true(sys_rt_exec_state, EXEC_MOTION_CANCEL);
    }
  }
#endif
}
Esempio n. 4
0
  void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
    uint8_t is_no_error)
#endif
{ 
  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
  if (sys.state == STATE_CHECK_MODE) { return; }

  // Finish all queued commands and empty planner buffer before starting probe cycle.
  protocol_buffer_synchronize();

  // Initialize probing control variables
  sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.  
  probe_configure_invert_mask(is_probe_away);
  
  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
  // NOTE: This probe initialization error applies to all probing cycles.
  if ( probe_get_state() ) { // Check probe pin state.
    bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL);
    protocol_execute_realtime();
  }
  if (sys.abort) { return; } // Return if system reset has been issued.

  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
  #ifdef USE_LINE_NUMBERS
    mc_line(target, feed_rate, invert_feed_rate, line_number);
  #else
    mc_line(target, feed_rate, invert_feed_rate);
  #endif
  
  // Activate the probing state monitor in the stepper module.
  sys_probe_state = PROBE_ACTIVE;

  // Perform probing cycle. Wait here until probe is triggered or motion completes.
  bit_true_atomic(sys_rt_exec_state, EXEC_CYCLE_START);
  do {
    protocol_execute_realtime(); 
    if (sys.abort) { return; } // Check for system abort
  } while (sys.state != STATE_IDLE);
  
  // Probing cycle complete!
  
  // Set state variables and error out, if the probe failed and cycle with error is enabled.
  if (sys_probe_state == PROBE_ACTIVE) {
    if (is_no_error) { memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS); }
    else { bit_true_atomic(sys_rt_exec_alarm, EXEC_ALARM_PROBE_FAIL); }
  } else { 
    sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
  }
  sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
  protocol_execute_realtime();   // Check and execute run-time commands
  if (sys.abort) { return; } // Check for system abort

  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
  st_reset(); // Reest step segment buffer.
  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
  plan_sync_position(); // Sync planner position to current machine position.

  // TODO: Update the g-code parser code to not require this target calculation but uses a gc_sync_position() call.
  // NOTE: The target[] variable updated here will be sent back and synced with the g-code parser.
  system_convert_array_steps_to_mpos(target, sys.position);

  #ifdef MESSAGE_PROBE_COORDINATES
    // All done! Output the probe position as message.
    report_probe_parameters();
  #endif
}
Esempio n. 5
0
// Perform tool length probe cycle. Requires probe switch.
// NOTE: Upon probe failure, the program will be stopped and placed into ALARM state.
uint8_t mc_probe_cycle(float *target, plan_line_data_t *pl_data, uint8_t parser_flags)
{
  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
  if (sys.state == STATE_CHECK_MODE) { return(GC_PROBE_CHECK_MODE); }

  // Finish all queued commands and empty planner buffer before starting probe cycle.
  protocol_buffer_synchronize();
  if (sys.abort) { return(GC_PROBE_ABORT); } // Return if system reset has been issued.

  // Initialize probing control variables
  uint8_t is_probe_away = bit_istrue(parser_flags,GC_PARSER_PROBE_IS_AWAY);
  uint8_t is_no_error = bit_istrue(parser_flags,GC_PARSER_PROBE_IS_NO_ERROR);
  sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.
  probe_configure_invert_mask(is_probe_away);

  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
  // NOTE: This probe initialization error applies to all probing cycles.
  if ( probe_get_state() ) { // Check probe pin state.
    system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_INITIAL);
    protocol_execute_realtime();
    probe_configure_invert_mask(false); // Re-initialize invert mask before returning.
    return(GC_PROBE_FAIL_INIT); // Nothing else to do but bail.
  }

  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
  mc_line(target, pl_data);

  // Activate the probing state monitor in the stepper module.
  sys_probe_state = PROBE_ACTIVE;

  // Perform probing cycle. Wait here until probe is triggered or motion completes.
  system_set_exec_state_flag(EXEC_CYCLE_START);
  do {
    protocol_execute_realtime();
    if (sys.abort) { return(GC_PROBE_ABORT); } // Check for system abort
  } while (sys.state != STATE_IDLE);

  // Probing cycle complete!

  // Set state variables and error out, if the probe failed and cycle with error is enabled.
  if (sys_probe_state == PROBE_ACTIVE) {
    if (is_no_error) { memcpy(sys_probe_position, sys_position, sizeof(sys_position)); }
    else { system_set_exec_alarm(EXEC_ALARM_PROBE_FAIL_CONTACT); }
  } else {
    sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
  }
  sys_probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
  probe_configure_invert_mask(false); // Re-initialize invert mask.
  protocol_execute_realtime();   // Check and execute run-time commands

  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
  st_reset(); // Reset step segment buffer.
  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
  plan_sync_position(); // Sync planner position to current machine position.

  #ifdef MESSAGE_PROBE_COORDINATES
    // All done! Output the probe position as message.
    report_probe_parameters();
  #endif

  if (sys.probe_succeeded) { return(GC_PROBE_FOUND); } // Successful probe cycle.
  else { return(GC_PROBE_FAIL_END); } // Failed to trigger probe within travel. With or without error.
}
Esempio n. 6
0
  void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate)
#endif
{ 
  // TODO: Need to update this cycle so it obeys a non-auto cycle start.
  if (sys.state == STATE_CHECK_MODE) { return; }

  // Finish all queued commands and empty planner buffer before starting probe cycle.
  protocol_buffer_synchronize();
  uint8_t auto_start_state = sys.auto_start; // Store run state
  
  // After syncing, check if probe is already triggered. If so, halt and issue alarm.
  if (probe_get_state()) { 
    bit_true_atomic(sys.execute, EXEC_CRIT_EVENT);
    protocol_execute_runtime();
  }
  if (sys.abort) { return; } // Return if system reset has been issued.

  // Setup and queue probing motion. Auto cycle-start should not start the cycle.
  #ifdef USE_LINE_NUMBERS
    mc_line(target, feed_rate, invert_feed_rate, line_number);
  #else
    mc_line(target, feed_rate, invert_feed_rate);
  #endif
  
  // Activate the probing monitor in the stepper module.
  sys.probe_state = PROBE_ACTIVE;

  // Perform probing cycle. Wait here until probe is triggered or motion completes.
  bit_true_atomic(sys.execute, EXEC_CYCLE_START);
  do {
    protocol_execute_runtime(); 
    if (sys.abort) { return; } // Check for system abort
  } while ((sys.state != STATE_IDLE) && (sys.state != STATE_QUEUED));

  // Probing motion complete. If the probe has not been triggered, error out.
  if (sys.probe_state == PROBE_ACTIVE) { bit_true_atomic(sys.execute, EXEC_CRIT_EVENT); }
  protocol_execute_runtime();   // Check and execute run-time commands
  if (sys.abort) { return; } // Check for system abort

  // Reset the stepper and planner buffers to remove the remainder of the probe motion.
  st_reset(); // Reest step segment buffer.
  plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
  plan_sync_position(); // Sync planner position to current machine position.
  
  // Pull-off triggered probe to the trigger location since we had to decelerate a little beyond
  // it to stop the machine in a controlled manner. 
  uint8_t idx;
  for(idx=0; idx<N_AXIS; idx++){
    // NOTE: The target[] variable updated here will be sent back and synced with the g-code parser.
    target[idx] = (float)sys.probe_position[idx]/settings.steps_per_deg[idx];
  }
  #ifdef USE_LINE_NUMBERS
    mc_line(target, feed_rate, invert_feed_rate, line_number);
  #else
    mc_line(target, feed_rate, invert_feed_rate);
  #endif

  // Execute pull-off motion and wait until it completes.
  bit_true_atomic(sys.execute, EXEC_CYCLE_START);
  protocol_buffer_synchronize(); 
  if (sys.abort) { return; } // Return if system reset has been issued.

  sys.auto_start = auto_start_state; // Restore run state before returning

  #ifdef MESSAGE_PROBE_COORDINATES
    // All done! Output the probe position as message.
    report_probe_parameters();
  #endif
}
Esempio n. 7
0
 // Prints real-time data. This function grabs a real-time snapshot of the stepper subprogram 
 // and the actual location of the CNC machine. Users may change the following function to their
 // specific needs, but the desired real-time data report must be as short as possible. This is
 // requires as it minimizes the computational overhead and allows grbl to keep running smoothly, 
 // especially during g-code programs with fast, short line segments and high frequency reports (5-20Hz).
void report_realtime_status()
{
  // **Under construction** Bare-bones status report. Provides real-time machine position relative to 
  // the system power on location (0,0,0) and work coordinate position (G54 and G92 applied). Eventually
  // to be added are distance to go on block, processed block id, and feed rate. Also a settings bitmask
  // for a user to select the desired real-time data.
  uint8_t idx;
  int32_t current_position[N_AXIS]; // Copy current state of the system position variable
  memcpy(current_position,sys.position,sizeof(sys.position));
  float print_position[N_AXIS];
 
  // Report current machine state
  switch (sys.state) {
    case STATE_IDLE: printPgmString(PSTR("<Idle")); break;
    case STATE_MOTION_CANCEL: // Report run state.
    case STATE_CYCLE: printPgmString(PSTR("<Run")); break;
    case STATE_HOLD: printPgmString(PSTR("<Hold")); break;
    case STATE_HOMING: printPgmString(PSTR("<Home")); break;
    case STATE_ALARM: printPgmString(PSTR("<Alarm")); break;
    case STATE_CHECK_MODE: printPgmString(PSTR("<Check")); break;
    case STATE_SAFETY_DOOR: printPgmString(PSTR("<Door")); break;
  }
 
  // If reporting a position, convert the current step count (current_position) to millimeters.
  if (bit_istrue(settings.status_report_mask,(BITFLAG_RT_STATUS_MACHINE_POSITION | BITFLAG_RT_STATUS_WORK_POSITION))) {
    system_convert_array_steps_to_mpos(print_position,current_position);
  }
  
  // Report machine position
  if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_MACHINE_POSITION)) {
    printPgmString(PSTR(",MPos:")); 
    for (idx=0; idx< N_AXIS; idx++) {
      printFloat_CoordValue(print_position[idx]);
      if (idx < (N_AXIS-1)) { printPgmString(PSTR(",")); }
    }
  }
  
  // Report work position
  if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_WORK_POSITION)) {
    printPgmString(PSTR(",WPos:")); 
    for (idx=0; idx< N_AXIS; idx++) {
      // Apply work coordinate offsets and tool length offset to current position.
      print_position[idx] -= gc_state.coord_system[idx]+gc_state.coord_offset[idx];
      if (idx == TOOL_LENGTH_OFFSET_AXIS) { print_position[idx] -= gc_state.tool_length_offset; }    
      printFloat_CoordValue(print_position[idx]);
      if (idx < (N_AXIS-1)) { printPgmString(PSTR(",")); }
    }
  }
        
  // Returns the number of active blocks are in the planner buffer.
  if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_PLANNER_BUFFER)) {
    printPgmString(PSTR(",Buf:"));
    print_uint8_base10(plan_get_block_buffer_count());
  }

  // Report serial read buffer status
  if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_SERIAL_RX)) {
    printPgmString(PSTR(",RX:"));
    print_uint8_base10(serial_get_rx_buffer_count());
  }
    
  #ifdef USE_LINE_NUMBERS
    // Report current line number
    printPgmString(PSTR(",Ln:")); 
    int32_t ln=0;
    plan_block_t * pb = plan_get_current_block();
    if(pb != NULL) {
      ln = pb->line_number;
    } 
    printInteger(ln);
  #endif
    
  #ifdef REPORT_REALTIME_RATE
    // Report realtime rate 
    printPgmString(PSTR(",F:")); 
    printFloat_RateValue(st_get_realtime_rate());
  #endif    
  
  #ifdef REPORT_ALL_PIN_STATES
    if (bit_istrue(settings.status_report_mask,
          ( BITFLAG_RT_STATUS_LIMIT_PINS| BITFLAG_RT_STATUS_PROBE_PIN | BITFLAG_RT_STATUS_CONTROL_PINS ))) {
      printPgmString(PSTR(",Pin:"));
      if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_LIMIT_PINS)) { 
        print_unsigned_int8(limits_get_state(),2,N_AXIS);
      }
      printPgmString(PSTR("|"));
      if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_PROBE_PIN)) {
        if (probe_get_state()) { printPgmString(PSTR("1")); }
        else { printPgmString(PSTR("0")); }
      }
      printPgmString(PSTR("|"));
      if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_CONTROL_PINS)) {
        print_unsigned_int8(system_control_get_state(),2,N_CONTROL_PIN);
      }
    }
  #else
    if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_LIMIT_PINS)) {
      printPgmString(PSTR(",Lim:"));
      print_unsigned_int8(limits_get_state(),2,N_AXIS);
    }
  #endif
  
  printPgmString(PSTR(">\r\n"));
}