Esempio n. 1
0
int psrfits_write_subint(struct psrfits *pf) {
    int row, *status, nchan, nivals, mode, out_nbytes;
    float ftmp;
    struct hdrinfo *hdr;
    struct subint *sub;

    hdr = &(pf->hdr);        // dereference the ptr to the header struct
    sub = &(pf->sub);        // dereference the ptr to the subint struct
    status = &(pf->status);  // dereference the ptr to the CFITSIO status
    nchan = hdr->nchan / hdr->ds_freq_fact;
    if (hdr->onlyI)
        nivals = nchan;
    else
        nivals = nchan * hdr->npol;
    mode = psrfits_obs_mode(hdr->obs_mode);
    if (mode==fold)
        out_nbytes = sub->bytes_per_subint / hdr->ds_freq_fact;
    else {
        out_nbytes = sub->bytes_per_subint / (hdr->ds_freq_fact * hdr->ds_time_fact);
        if (hdr->onlyI)
            out_nbytes /= hdr->npol;
    }

    // Create the initial file or change to a new one if needed.
    // Stay with a single file for fold mode.
    if (pf->filenum==0 || 
            ( (mode==search || pf->multifile==1) 
              && pf->rownum > pf->rows_per_file)) {
        if (pf->filenum) {
            printf("Closing file '%s'\n", pf->filename);
            fits_close_file(pf->fptr, status);
        }
        psrfits_create(pf);
    }

    row = pf->rownum;
    fits_write_col(pf->fptr, TDOUBLE, 1, row, 1, 1, &(sub->tsubint), status);
    fits_write_col(pf->fptr, TDOUBLE, 2, row, 1, 1, &(sub->offs), status);
    fits_write_col(pf->fptr, TDOUBLE, 3, row, 1, 1, &(sub->lst), status);
    fits_write_col(pf->fptr, TDOUBLE, 4, row, 1, 1, &(sub->ra), status);
    fits_write_col(pf->fptr, TDOUBLE, 5, row, 1, 1, &(sub->dec), status);
    fits_write_col(pf->fptr, TDOUBLE, 6, row, 1, 1, &(sub->glon), status);
    fits_write_col(pf->fptr, TDOUBLE, 7, row, 1, 1, &(sub->glat), status);
    ftmp = (float) sub->feed_ang;
    fits_write_col(pf->fptr, TFLOAT, 8, row, 1, 1, &ftmp, status);
    ftmp = (float) sub->pos_ang;
    fits_write_col(pf->fptr, TFLOAT, 9, row, 1, 1, &ftmp, status);
    ftmp = (float) sub->par_ang;
    fits_write_col(pf->fptr, TFLOAT, 10, row, 1, 1, &ftmp, status);
    ftmp = (float) sub->tel_az;
    fits_write_col(pf->fptr, TFLOAT, 11, row, 1, 1, &ftmp, status);
    ftmp = (float) sub->tel_zen;
    fits_write_col(pf->fptr, TFLOAT, 12, row, 1, 1, &ftmp, status);
    fits_write_col(pf->fptr, TDOUBLE, 13, row, 1, nchan, sub->dat_freqs, status);
    fits_write_col(pf->fptr, TFLOAT, 14, row, 1, nchan, sub->dat_weights, status);
    fits_write_col(pf->fptr, TFLOAT, 15, row, 1, nivals, sub->dat_offsets, status);
    fits_write_col(pf->fptr, TFLOAT, 16, row, 1, nivals, sub->dat_scales, status);
    if (mode==search) {
        if (hdr->nbits==4) pf_8bit_to_4bit(pf);
        fits_write_col(pf->fptr, TBYTE, 17, row, 1, out_nbytes, 
                       sub->rawdata, status);
    } else if (mode==fold) { 
        // Fold mode writes floats for now..
        fits_write_col(pf->fptr, TFLOAT, 17, row, 1, out_nbytes/sizeof(float), 
                       sub->data, status);
    }

    // Flush the buffers if not finished with the file
    // Note:  this use is not entirely in keeping with the CFITSIO
    //        documentation recommendations.  However, manually 
    //        correcting NAXIS2 and using fits_flush_buffer()
    //        caused occasional hangs (and extrememly large
    //        files due to some infinite loop).
    fits_flush_file(pf->fptr, status);

    // Print status if bad
    if (*status) {
        fprintf(stderr, "Error writing subint %d:\n", pf->rownum);
        fits_report_error(stderr, *status);
        fflush(stderr);
    }

    // Now update some key values if no CFITSIO errors
    if (!(*status)) {
        pf->rownum++;
        pf->tot_rows++;
        pf->N += hdr->nsblk / hdr->ds_time_fact;
        pf->T += sub->tsubint;

        // For fold mode, print info each subint written
        if (mode==fold && pf->quiet!=1) {
            printf("Wrote subint %d (total time %.1fs)\n", pf->rownum-1, pf->T);
            fflush(stdout);
        }

    }

    return *status;
}
Esempio n. 2
0
int main(int argc, char *argv[]) {

    /* Cmd line */
    static struct option long_opts[] = {
        {"output",  1, NULL, 'o'},
        {"npulse",  1, NULL, 'n'},
        {"nbin",    1, NULL, 'b'},
        {"nthread", 1, NULL, 'j'},
        {"initial", 1, NULL, 'i'},
        {"final",   1, NULL, 'f'},
        {"time",    1, NULL, 'T'},
        {"length",  1, NULL, 'L'},
        {"src",     1, NULL, 's'},
        {"polyco",  1, NULL, 'p'},
        {"parfile", 1, NULL, 'P'},
        {"foldfreq",1, NULL, 'F'},
        {"cal",     0, NULL, 'C'},
        {"unsigned",0, NULL, 'u'},
        {"quiet",   0, NULL, 'q'},
        {"help",    0, NULL, 'h'},
        {0,0,0,0}
    };
    int opt, opti;
    int nbin=256, nthread=4, fnum_start=1, fnum_end=0;
    int quiet=0, raw_signed=1, use_polycos=1, cal=0;
    int npulse_per_file = 64;
    double start_time=0.0, process_time=0.0;
    double fold_frequency=0.0;
    char output_base[256] = "";
    char polyco_file[256] = "";
    char par_file[256] = "";
    char source[24];  source[0]='\0';
    while ((opt=getopt_long(argc,argv,"o:n:b:j:i:f:T:L:s:p:P:F:Cuqh",long_opts,&opti))!=-1) {
        switch (opt) {
            case 'o':
                strncpy(output_base, optarg, 255);
                output_base[255]='\0';
                break;
            case 'n':
                npulse_per_file = atoi(optarg);
                break;
            case 'b':
                nbin = atoi(optarg);
                break;
            case 'j':
                nthread = atoi(optarg);
                break;
            case 'i':
                fnum_start = atoi(optarg);
                break;
            case 'f':
                fnum_end = atoi(optarg);
                break;
            case 'T':
                start_time = atof(optarg);
                break;
            case 'L':
                process_time = atof(optarg);
                break;
            case 's':
                strncpy(source, optarg, 24);
                source[23]='\0';
                break;
            case 'p':
                strncpy(polyco_file, optarg, 255);
                polyco_file[255]='\0';
                use_polycos = 1;
                break;
            case 'P':
                strncpy(par_file, optarg, 255);
                par_file[255] = '\0';
                break;
            case 'F':
                fold_frequency = atof(optarg);
                use_polycos = 0;
                break;
            case 'C':
                cal = 1;
                use_polycos = 0;
                break;
            case 'u':
                raw_signed=0;
                break;
            case 'q':
                quiet=1;
                break;
            case 'h':
            default:
                usage();
                exit(0);
                break;
        }

    }
    if (optind==argc) { 
        usage();
        exit(1);
    }

    /* If no polyco/par file given, default to polyco.dat */
    if (use_polycos && (par_file[0]=='\0' && polyco_file[0]=='\0'))
        sprintf(polyco_file, "polyco.dat");

    /* Open first file */
    struct psrfits pf;
    strcpy(pf.basefilename, argv[optind]);
    pf.filenum = fnum_start;
    pf.tot_rows = pf.N = pf.T = pf.status = 0;
    pf.hdr.chan_dm = 0.0; // What if folding data that has been partially de-dispersed?
    pf.filename[0]='\0';
    int rv = psrfits_open(&pf);
    if (rv) { fits_report_error(stderr, rv); exit(1); }

    /* Check any constraints */
    if (pf.hdr.nbits!=8) { 
        fprintf(stderr, "Only implemented for 8-bit data (read nbits=%d).\n",
                pf.hdr.nbits);
        exit(1);
    }

    /* Check for calfreq */
    if (cal) {
        if (pf.hdr.cal_freq==0.0) {
            if (fold_frequency==0.0) {
                fprintf(stderr, "Error: Cal mode selected, but CAL_FREQ=0.  "
                        "Set cal frequency with -F\n");
                exit(1);
            } else {
                pf.hdr.cal_freq = fold_frequency;
            }
        } else {
            fold_frequency = pf.hdr.cal_freq;
        }
    }

    /* Set up output file */
    struct psrfits pf_out;
    memcpy(&pf_out, &pf, sizeof(struct psrfits));
    if (source[0]!='\0') { strncpy(pf_out.hdr.source, source, 24); }
    else { strncpy(source, pf.hdr.source, 24); source[23]='\0'; }
    if (output_base[0]=='\0') {
        /* Set up default output filename */
        if (start_time>0.0) 
            sprintf(output_base, "%s_SP_%s_%5.5d_%5.5d_%4.4d_%3.3d%s", 
                    pf_out.hdr.backend, 
                    pf_out.hdr.source, pf_out.hdr.start_day, 
                    (int)pf_out.hdr.start_sec, fnum_start,
                    (int)start_time,
                    cal ? "_cal" : "");
        else
            sprintf(output_base, "%s_SP_%s_%5.5d_%5.5d%s", pf_out.hdr.backend, 
                    pf_out.hdr.source, pf_out.hdr.start_day, 
                    (int)pf_out.hdr.start_sec, cal ? "_cal" : "");
    }
    strcpy(pf_out.basefilename, output_base);
    if (cal) {
        sprintf(pf_out.hdr.obs_mode, "CAL");
        sprintf(pf_out.hdr.cal_mode, "SYNC");
    } else
        sprintf(pf_out.hdr.obs_mode, "PSR");
    strncpy(pf_out.fold.parfile,par_file,255); pf_out.fold.parfile[255]='\0';
    pf_out.fptr = NULL;
    pf_out.filenum=0;
    pf_out.status=0;
    pf_out.hdr.nbin=nbin;
    pf_out.sub.FITS_typecode = TFLOAT;
    pf_out.sub.bytes_per_subint = sizeof(float) * 
        pf_out.hdr.nchan * pf_out.hdr.npol * pf_out.hdr.nbin;
    pf_out.multifile = 1;
    pf_out.quiet = 1;
    pf_out.rows_per_file = npulse_per_file;
    rv = psrfits_create(&pf_out);
    if (rv) { fits_report_error(stderr, rv); exit(1); }

    /* Alloc data buffers */
    pf.sub.dat_freqs = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf_out.sub.dat_freqs = pf.sub.dat_freqs;
    pf.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf_out.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf.sub.dat_offsets = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.dat_offsets = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf.sub.dat_scales  = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.dat_scales  = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.data  = (unsigned char *)malloc(pf_out.sub.bytes_per_subint);

    /* Output scale/offset */
    int i, j, ipol, ichan;
    float offset_uv=0.0;  
    // Extra cross-term offset for GUPPI
    if (strcmp("GUPPI",pf.hdr.backend)==0) { 
        offset_uv=0.5;
        fprintf(stderr, "Found backend=GUPPI, setting offset_uv=%f\n",
                offset_uv);
    }
    // TODO: copy these from the input file
    for (ipol=0; ipol<pf.hdr.npol; ipol++) {
        for (ichan=0; ichan<pf.hdr.nchan; ichan++) {
            float offs = 0.0;
            if (ipol>1) offs = offset_uv;
            pf_out.sub.dat_scales[ipol*pf.hdr.nchan + ichan] = 1.0;
            pf_out.sub.dat_offsets[ipol*pf.hdr.nchan + ichan] = offs;
        }
    }
    for (i=0; i<pf.hdr.nchan; i++) { pf_out.sub.dat_weights[i]=1.0; }

    /* Read or make polycos */
    int npc=0, ipc=0;
    struct polyco *pc = NULL;
    if (use_polycos) {
        if (polyco_file[0]=='\0') {
            /* Generate from par file */
            npc = make_polycos(par_file, &pf.hdr, source, &pc);
            if (npc<=0) {
                fprintf(stderr, "Error generating polycos.\n");
                exit(1);
            }
            printf("Auto-generated %d polycos, src=%s\n", npc, source);
        } else {
            /* Read from polyco file */
            FILE *pcfile = fopen(polyco_file, "r");
            if (pcfile==NULL) { 
                fprintf(stderr, "Couldn't open polyco file.\n");
                exit(1);
            }
            npc = read_all_pc(pcfile, &pc);
            if (npc==0) {
                fprintf(stderr, "Error parsing polyco file.\n");
                exit(1);
            }
            fclose(pcfile);
        }
    } else {
        // Const fold period mode, generate a fake polyco?
        pc = (struct polyco *)malloc(sizeof(struct polyco));
        sprintf(pc[0].psr, "CONST");
        pc[0].mjd = (int)pf.hdr.MJD_epoch;
        pc[0].fmjd = fmod(pf.hdr.MJD_epoch,1.0);
        pc[0].rphase = 0.0;
        pc[0].f0 = fold_frequency;
        pc[0].nsite = 0; // Does this matter?
        pc[0].nmin = 24 * 60;
        pc[0].nc = 1;
        pc[0].rf = pf.hdr.fctr;
        pc[0].c[0] = 0.0;
        pc[0].used = 0;
        npc = 1;
    }
    int *pc_written = (int *)malloc(sizeof(int) * npc);
    for (i=0; i<npc; i++) pc_written[i]=0;

    /* Set up fold buf */
    struct foldbuf fb;
    fb.nchan = pf.hdr.nchan;
    fb.npol = pf.hdr.npol;
    fb.nbin = pf_out.hdr.nbin;
    malloc_foldbuf(&fb);
    clear_foldbuf(&fb);
    struct fold_args fargs;
    fargs.data = (char *)malloc(sizeof(char)*pf.sub.bytes_per_subint);
    fargs.fb = &fb;
    fargs.nsamp = 1;
    fargs.tsamp = pf.hdr.dt;
    fargs.raw_signed = raw_signed;

    /* Main loop */
    rv=0;
    int imjd;
    double fmjd, fmjd0=0, fmjd_samp, fmjd_epoch;
    long long cur_pulse=0, last_pulse=0;
    double psr_freq=0.0;
    int first_loop=1, first_data=1, sampcount=0, last_filenum=0;
    int bytes_per_sample = pf.hdr.nchan * pf.hdr.npol;
    signal(SIGINT, cc);
    while (run) { 

        /* Read data block */
        pf.sub.data = (unsigned char *)fargs.data;
        rv = psrfits_read_subint(&pf);
        if (rv) { 
            if (rv==FILE_NOT_OPENED) rv=0; // Don't complain on file not found
            run=0; 
            break; 
        }

        /* If we've passed final file, exit */
        if (fnum_end && pf.filenum>fnum_end) { run=0; break; }

        /* Get start date, etc */
        imjd = (int)pf.hdr.MJD_epoch;
        fmjd = (double)(pf.hdr.MJD_epoch - (long double)imjd);
        fmjd += (pf.sub.offs-0.5*pf.sub.tsubint)/86400.0;

        /* Select polyco set.
         * We'll assume same one is valid for whole data block.
         */
        if (use_polycos) {
            ipc = select_pc(pc, npc, source, imjd, fmjd);
            //ipc = select_pc(pc, npc, NULL, imjd, fmjd);
            if (ipc<0) { 
                fprintf(stderr, 
                        "No matching polycos (src=%s, imjd=%d, fmjd=%f)\n",
                        source, imjd, fmjd);
                break;
            }
        } else {
            ipc = 0;
        }
        pc[ipc].used = 1; // Mark this polyco set as used for folding

        /* First time stuff */
        if (first_loop) {
            fmjd0 = fmjd;
            psr_phase(&pc[ipc], imjd, fmjd, NULL, &last_pulse);
            pf_out.sub.offs=0.0;
            first_loop=0;
            for (i=0; i<pf.hdr.nchan; i++) { 
                pf_out.sub.dat_weights[i]=pf.sub.dat_weights[i];
            }
            last_filenum = pf_out.filenum;
        }

        /* Check to see if its time to process data */
        if (start_time>0.0) {
            double cur_time = (fmjd - fmjd0) * 86400.0;
            if (cur_time<start_time) 
                continue; 
        }

        if (first_data) {
           psr_phase(&pc[ipc], imjd, fmjd, NULL, &last_pulse);
           first_data=0;
        }

        /* Check to see if we're done */
        if (process_time>0.0) {
            double cur_time = (fmjd - fmjd0) * 86400.0;
            if (cur_time > start_time + process_time) {
                run=0;
                break;
            }
        }

        /* for singlepulse: loop over samples, output a new subint
         * whenever pulse number increases.
         */
        for (i=0; i<pf.hdr.nsblk; i++) {
        
            /* Keep track of timestamp */
            // TODO also pointing stuff?
            fmjd_samp = fmjd + i*pf.hdr.dt/86400.0;
            pf_out.sub.offs += pf.sub.offs - 0.5*pf.sub.tsubint + i*pf.hdr.dt;
            sampcount++;

            /* Calc current pulse number */
            psr_phase(&pc[ipc], imjd, fmjd_samp, &psr_freq, &cur_pulse);

            /* TODO: deal with scale/offset? */

            /* Fold this sample */
            fargs.pc = &pc[ipc];
            fargs.imjd = imjd;
            fargs.fmjd = fmjd_samp;
            rv = fold_8bit_power(fargs.pc, 
                    fargs.imjd, fargs.fmjd, 
                    fargs.data + i*bytes_per_sample,
                    fargs.nsamp, fargs.tsamp, fargs.raw_signed, fargs.fb);
            if (rv!=0) {
                fprintf(stderr, "Fold error.\n");
                exit(1);
            }

            /* See if integration needs to be written, etc */
            if (cur_pulse > last_pulse) {

                /* Figure out timestamp */
                pf_out.sub.offs /= (double)sampcount;
                pf_out.sub.tsubint = 1.0/psr_freq;
                fmjd_epoch = fmjd0 + pf_out.sub.offs/86400.0;

                /* Transpose, output subint */
                normalize_transpose_folds((float *)pf_out.sub.data, &fb);
                psrfits_write_subint(&pf_out);

                /* If file incremented, clear polyco flags */
                if (pf_out.filenum > last_filenum) 
                    for (j=0; j<npc; j++) 
                        pc_written[j]=0;

                /* Write this polyco if needed */
                if (pc_written[ipc]==0) {
                    psrfits_write_polycos(&pf_out, pc, npc);
                    pc_written[ipc] = 1;
                }

                /* Check for write errors */
                if (pf_out.status) {
                    fprintf(stderr, "Error writing subint.\n");
                    fits_report_error(stderr, pf_out.status);
                    exit(1);
                }

                /* Clear counters, avgs */
                clear_foldbuf(&fb);
                pf_out.sub.offs = 0.0;
                sampcount=0;
                last_pulse = cur_pulse;
                last_filenum = pf_out.filenum;

            }
        }


        /* Progress report */
        if (!quiet) {
            printf("\rFile %d %5.1f%%", pf.filenum, 
                    100.0 * (float)(pf.rownum-1)/(float)pf.rows_per_file);
            fflush(stdout);
        }
    }

    psrfits_close(&pf_out);
    psrfits_close(&pf);

    if (rv) { fits_report_error(stderr, rv); }
    exit(0);
}
Esempio n. 3
0
int main(int argc, char *argv[])
{
    int ii, ipol, nc = 0, ncnp = 0, gpubps = 0, status = 0, statsum = 0;
    int fnum_start = 1, fnum_end = 0;
    int numprocs, numbands, myid, baddata = 0, droppedrow = 0;
    int *counts, *offsets;
    unsigned char *tmpbuf = NULL;
    struct psrfits pf;
    struct {
        double value;
        int index;
    } offs_in, offs_out;
    char hostname[256];
    char vegas_base_dir[256] = "\0";
    char output_base[256] = "\0";
    int starthpc = 0;
    int reverse = 0;
    MPI_Status mpistat;
    /* Cmd line */
    static struct option long_opts[] = {
        {"output",  1, NULL, 'o'},
        {"initial", 1, NULL, 'i'},
        {"final",   1, NULL, 'f'},
        {"vegas",   1, NULL, 'V'},
        {"starthpc",1, NULL, 's'},
        {"reverse" ,0, NULL, 'r'},
        {0,0,0,0}
    };
    int opt, opti;

    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);
    numbands = numprocs - 1;

    // Process the command line
    while ((opt=getopt_long(argc,argv,"o:i:f:V:s:r",long_opts,&opti))!=-1) {
        switch (opt) {
        case 'o':
            strncpy(output_base, optarg, 255);
            output_base[255]='\0';
            break;
        case 'i':
            fnum_start = atoi(optarg);
            break;
        case 'f':
            fnum_end = atoi(optarg);
            break;
        case 'V':
            strcpy(vegas_base_dir, optarg);
            break;
        case 's':
            starthpc = atoi(optarg);
            break;
        case 'r':
            reverse = 1;
            break;
        default:
            if (myid==0) usage();
            MPI_Finalize();
            exit(0);
            break;
        }
    }
    if (optind==argc) { 
        if (myid==0) usage();
        MPI_Finalize();
        exit(1);
    }
    
    if (myid == 0) { // Master proc only
        printf("\n\n");
        printf("      MPI Search-mode PSRFITs Combiner\n");
        printf("              by Scott M. Ransom\n\n");
    }

    // Determine the hostnames of the processes
    {
        if (gethostname(hostname, 255) < 0)
            strcpy(hostname, "unknown");

        MPI_Barrier(MPI_COMM_WORLD);
        if (myid == 0) printf("\n");
        fflush(NULL);
        for (ii = 0 ; ii < numprocs ; ii++) {
            MPI_Barrier(MPI_COMM_WORLD);
            if (myid == ii)
                printf("Process %3d is on machine %s\n", myid, hostname);
            fflush(NULL);
            MPI_Barrier(MPI_COMM_WORLD);
        }
        MPI_Barrier(MPI_COMM_WORLD);
        fflush(NULL);
    }
    
    // Basefilenames for the GPU nodes
    if (myid > 0) {

        // Default to GUPPI mode
        if (vegas_base_dir[0]=='\0') 
            sprintf(pf.basefilename, "/data/gpu/partial/%s/%s", 
                    hostname, argv[optind]);

        // VEGAS mode
        else {

            int hpcidx;
            if (reverse)
                hpcidx = starthpc - myid + 1;
            else
                hpcidx = myid + starthpc - 1;

            sprintf(pf.basefilename, "%s/vegas-hpc%d-bdata1/%s", 
                    vegas_base_dir, hpcidx, argv[optind]);

            printf("**********: hostname = %s, myid = %d, datamnt = %d, basename=%s\n", 
                    hostname, myid, hpcidx, pf.basefilename);

        }
    }

    // Initialize some key parts of the PSRFITS structure
    pf.tot_rows = pf.N = pf.T = pf.status = 0;
    pf.filenum = fnum_start;
    pf.filename[0] = '\0';
    pf.filenames = NULL;
    pf.numfiles = 0;

    if (myid == 1) {
        FILE *psrfitsfile;
        char hdr[HDRLEN], filenm[200];

        // Read the header info
        sprintf(filenm, "%s_0001.fits", pf.basefilename);
        psrfitsfile = fopen(filenm, "r");
        fread(&hdr, 1, HDRLEN, psrfitsfile);
        fclose(psrfitsfile);

        // Send the header to the master proc
        MPI_Send(hdr, HDRLEN, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

    } else if (myid == 0) {
        FILE *psrfitsfile;
        char hdr[HDRLEN], tmpfilenm[80];

        // Receive the header info from proc 1
        MPI_Recv(hdr, HDRLEN, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &mpistat);

        // Now write that header to a temp file
        strcpy(tmpfilenm, "mpi_merge_psrfits.XXXXXX");
        mkstemp(tmpfilenm); 
        psrfitsfile = fopen(tmpfilenm, "w");
        fwrite(&hdr, 1, HDRLEN, psrfitsfile);
        fclose(psrfitsfile); 
        pf.filenames = (char **)malloc(sizeof(char *));
        pf.filenames[0] = tmpfilenm;
        pf.basefilename[0]='\0';
        pf.filenum = 0;
        pf.numfiles = 1;

        // And read the key information into a PSRFITS struct
        status = psrfits_open(&pf);
        status = psrfits_close(&pf);
        free(pf.filenames);
        remove(tmpfilenm);

        // Now create the output PSTFITS file
        if (output_base[0]=='\0') {
            /* Set up default output filename */
            strcpy(output_base, argv[optind]);
        }
        strcpy(pf.basefilename, output_base);
        pf.multifile = 1;
        pf.filenum = 0;
        pf.numfiles = 0;
        pf.filename[0] = '\0';
        pf.filenames = NULL;
        nc = pf.hdr.nchan;
        ncnp = pf.hdr.nchan * pf.hdr.npol;
        gpubps = pf.sub.bytes_per_subint;
        pf.hdr.orig_nchan *= numbands;
        pf.hdr.nchan *= numbands;
        pf.hdr.fctr = pf.hdr.fctr - 0.5 * pf.hdr.BW + numbands/2.0 * pf.hdr.BW;
        pf.hdr.BW *= numbands;
        pf.sub.bytes_per_subint *= numbands;
        long long filelen = 40 * (1L<<30);  // In GB
        pf.rows_per_file = filelen / pf.sub.bytes_per_subint;
        status = psrfits_create(&pf);
        // For in-memory transpose of data
        tmpbuf = (unsigned char *)malloc(pf.sub.bytes_per_subint);
    }

    // Open the input PSRFITs files for real
    if (myid > 0) {
        status = psrfits_open(&pf);
        nc = pf.hdr.nchan;
        ncnp = pf.hdr.nchan * pf.hdr.npol;
        gpubps = pf.sub.bytes_per_subint;
    }

    // Alloc data buffers for the PSRFITS files
    pf.sub.dat_freqs = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf.sub.dat_offsets = (float *)malloc(sizeof(float) * 
                                         pf.hdr.nchan * pf.hdr.npol);
    pf.sub.dat_scales  = (float *)malloc(sizeof(float) * 
                                         pf.hdr.nchan * pf.hdr.npol);
    pf.sub.data = (unsigned char *)malloc(pf.sub.bytes_per_subint);
    pf.sub.rawdata = pf.sub.data; 
    
    // Counts and offsets for MPI_Gatherv
    counts = (int *)malloc(sizeof(int) * numprocs);
    offsets = (int *)malloc(sizeof(int) * numprocs);
    counts[0] = offsets[0] = 0;  //  master sends nothing

    // Now loop over the rows (i.e. subints)...
    do {
        MPI_Barrier(MPI_COMM_WORLD);

        // Read the current subint from each of the "slave" nodes
        if ((myid > 0) && (!baddata)) {
            status = psrfits_read_subint(&pf);
            if (status) {
                pf.sub.offs = FLAG;  //  High value so it won't be min
                if (pf.rownum > pf.rows_per_file) {
                    // Shouldn't be here unless opening of new file failed...
                    printf("Proc %d:  Can't open next file.  Setting status=114.\n", myid);
                    status = 114;
                }
            }
        } else {  // Root process
            pf.sub.offs = FLAG;  //  High value so it won't be min
        }
        
        // Find the minimum value of OFFS_SUB to see if we dropped a row
        offs_in.value = pf.sub.offs;
        offs_in.index = myid;
        MPI_Allreduce(&offs_in, &offs_out, 1, MPI_DOUBLE_INT, 
                      MPI_MINLOC, MPI_COMM_WORLD);
        // If all procs are returning the FLAG value, break.
        if (offs_out.value==FLAG) break;
        // Identify dropped rows
        if ((myid > 0) && (!status) && (!baddata) && 
            (pf.sub.offs > (offs_out.value + 0.1 * pf.sub.tsubint))) {
            printf("Proc %d, row %d:  Dropped a row.  Filling with zeros.\n", 
                   myid, pf.rownum);
            droppedrow = 1;
        }

        if (myid > 0) {
            // Ignore errors for moving past EOF (107), read errors (108) 
            // and missing files (114)
            if (droppedrow || 
                status==108 || 
                ((myid > 0) && (status==114 || status==107) && (!baddata))) {
                if (status) printf("Proc %d, row %d:  Ignoring CFITSIO error %d.  Filling with zeros.\n", myid, pf.rownum, status);
                // Set the data and the weights to all zeros
                for (ii = 0 ; ii < pf.hdr.nchan ; ii++) 
                    pf.sub.dat_weights[ii] = 0.0;
                for (ii = 0 ; ii < pf.sub.bytes_per_subint ; ii++) 
                    pf.sub.data[ii] = 0;
                // And the scales and offsets to nominal values
                for (ii = 0 ; ii < pf.hdr.nchan * pf.hdr.npol ; ii++) {
                    pf.sub.dat_offsets[ii] = 0.0;
                    pf.sub.dat_scales[ii]  = 1.0;
                }
                // reset the status to 0 and allow going to next row
                if (status==114 || status==107) {
                    baddata = 1;
                }
                if (status==108) { // Try reading the next row...
                    pf.rownum++;
                    pf.tot_rows++;
                    pf.N += pf.hdr.nsblk;
                    pf.T = pf.N * pf.hdr.dt;
                }
                if (droppedrow) {  // We want to read the current row again...
                    pf.rownum--;
                    pf.tot_rows--;
                    pf.N -= pf.hdr.nsblk;
                    pf.T = pf.N * pf.hdr.dt;
                    droppedrow = 0;  // reset
                }
                status = 0;
            }
        }
        
        // If we've passed final file, exit
        if (fnum_end && pf.filenum > fnum_end) break;

        // Combine statuses of all nodes by summing....
        MPI_Allreduce(&status, &statsum, 1, 
                      MPI_INT, MPI_SUM, MPI_COMM_WORLD);
        if (statsum) break;
            
        if (myid == offs_out.index) { // Send all of the non-band-specific parts to master
            MPI_Send(&pf.sub.tsubint, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.offs, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.lst, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.ra, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.dec, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.glon, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.glat, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.feed_ang, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.pos_ang, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.par_ang, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.tel_az, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
            MPI_Send(&pf.sub.tel_zen, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
        } else if (myid == 0) { // Receive all of the non-data parts
            MPI_Recv(&pf.sub.tsubint, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.offs, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.lst, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.ra, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.dec, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.glon, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.glat, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.feed_ang, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.pos_ang, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.par_ang, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.tel_az, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
            MPI_Recv(&pf.sub.tel_zen, 1, MPI_DOUBLE, offs_out.index, 0, MPI_COMM_WORLD, &mpistat);
        }

        // Now gather the vector quantities...

        // Vectors of length nchan
        for (ii = 1 ; ii < numprocs ; ii++) {
            counts[ii] = nc;
            offsets[ii] = (ii - 1) * nc;
        }
        status = MPI_Gatherv(pf.sub.dat_freqs, nc, MPI_FLOAT, 
                             pf.sub.dat_freqs, counts, offsets, MPI_FLOAT, 
                             0, MPI_COMM_WORLD);
        status = MPI_Gatherv(pf.sub.dat_weights, nc, MPI_FLOAT, 
                             pf.sub.dat_weights, counts, offsets, MPI_FLOAT, 
                             0, MPI_COMM_WORLD);
        
        // Vectors of length nchan * npol
        for (ipol=0; ipol < pf.hdr.npol; ipol++) {
            for (ii = 1 ; ii < numprocs ; ii++) {
                counts[ii] = nc;
                offsets[ii] = ipol*nc*numbands + (ii - 1) * nc;
            }
            status = MPI_Gatherv(pf.sub.dat_offsets+(ipol*nc), nc, MPI_FLOAT, 
                                 pf.sub.dat_offsets, counts, offsets, 
                                 MPI_FLOAT, 0, MPI_COMM_WORLD);
            status = MPI_Gatherv(pf.sub.dat_scales+(ipol*nc), nc, MPI_FLOAT, 
                                 pf.sub.dat_scales, counts, offsets, 
                                 MPI_FLOAT, 0, MPI_COMM_WORLD);
        }

        // Vectors of length pf.sub.bytes_per_subint for the raw data
        for (ii = 1 ; ii < numprocs ; ii++) {
            counts[ii] = gpubps;
            offsets[ii] = (ii - 1) * gpubps;
        }
        status = MPI_Gatherv(pf.sub.data, gpubps, MPI_UNSIGNED_CHAR, 
                             tmpbuf, counts, offsets, MPI_UNSIGNED_CHAR, 
                             0, MPI_COMM_WORLD);

        // Reorder and write the new row to the output file
        if (myid == 0) {
            reorder_data(pf.sub.data, tmpbuf, numbands, 
                         pf.hdr.nsblk, pf.hdr.npol, nc);
            status = psrfits_write_subint(&pf);
        }

    } while (statsum == 0);

    // Free the arrays
    free(pf.sub.dat_freqs);
    free(pf.sub.dat_weights);
    free(pf.sub.dat_offsets);
    free(pf.sub.dat_scales);
    free(pf.sub.data);
    if (myid == 0) free(tmpbuf);
    free(counts);
    free(offsets);
    
    // Close the files and finalize things
    status = psrfits_close(&pf);
    MPI_Finalize();
    exit(0);
}
Esempio n. 4
0
int main(int argc, char *argv[]) {

  /* Cmd line */
  static struct option long_opts[] = {
	{"frontend",   1, NULL, 'F'},
	{"offset",   0, NULL, 'o'},
	{"srcname",   1, NULL, 's'},
  };
  
    int ii;
    double dtmp;
    char filename[256], *adr;
    struct psrfits pf;
    int c1,c2;
    double c3;
	int opt, opti;
    int scan_id, beam_id;
	bool have_Stokes = false;
	bool have_chan_offset = false;
	bool have_frontend = false; char frontend[3];
	bool have_srcname = false; char srcname[24];

	while ((opt=getopt_long(argc,argv,"ob:t:j:i:F:s:p:P:F:CuU:SAqh",long_opts,&opti))!=-1) {
	  switch (opt) {
	  case 'F':
		have_frontend = true;
		strncpy(frontend, optarg, 3);
		break;
	  case 'o':
		have_chan_offset = true;
		break;
	  case 's':
		have_srcname = true;
		strncpy(srcname, optarg, 24);
		break;
	  case 'S':
		have_Stokes = true;
		break;
	  case 'h':
	  default:
		usage();
		exit(0);
		break;
	  }

	}
    
    // Only set the basefilename and not "filename"
    // Also, fptr will be set by psrfits_create_searchmode()

    FILE *pfi;

    strcpy(filename, argv[optind]);
    printf("Filename = %s\n", filename);

    // Read filterbank                                                                              
    if((pfi=fopen(filename,"r"))==NULL) {
      printf("Cannot open file %s\n", filename);
      exit(-2);
    } else {
      printf("Opening file %s\n", filename);
    }

    /* try to read the header */
    long long header_size, numsamps;
    header iheader;
    if (!(header_size=read_header(pfi,&iheader))) {
      printf("Error reading header\n");
      exit(-2);
    }
    //printf("header_size = %lld\n", header_size);

    // Get the number of samples                                                                              
    numsamps=nsamples(filename, header_size, &iheader);
    //printf("numsamps = %lld  ra=%lf  dec=%lf\n", numsamps, iheader.src_raj, iheader.src_dej);
    //fflush(stdout);
    
    pf.filenum = 0;           // This is the crucial one to set to initialize things
    pf.rows_per_file = 4000;  // Need to set this based on PSRFITS_MAXFILELEN

    // Now set values for our hdrinfo structure
    pf.hdr.scanlen = 3600; // in sec
    strcpy(pf.hdr.observer, "Observer");
    strcpy(pf.hdr.telescope, "Effelsberg");
    strcpy(pf.hdr.obs_mode, "SEARCH");
    strcpy(pf.hdr.backend, "PFFTS");
    strncpy(pf.hdr.source, iheader.source_name, 24);
    strcpy(pf.hdr.frontend, "LBand");
    strcpy(pf.hdr.project_id, "HTRUN");
    strcpy(pf.hdr.date_obs, "2010-01-01T05:15:30.000");
    strcpy(pf.hdr.poln_type, "LIN");
    strcpy(pf.hdr.poln_order, "IQUV");
    strcpy(pf.hdr.track_mode, "TRACK");
    strcpy(pf.hdr.cal_mode, "OFF");
    strcpy(pf.hdr.feed_mode, "FA");
    //printf("filename = %s\n", filename); fflush(stdout);
    if(strstr(filename,"/") != NULL) { adr=(char *)strrchr(filename,'/')+1; sprintf(pf.filename,"%s",adr); }
    else strncpy(pf.filename, filename, 80);
    //printf("filename = %s\n", pf.filename); fflush(stdout);
    sscanf(pf.filename, "%d_%d_%d_%dbit.fil", &scan_id, &c1, &beam_id, &c2);
      
    pf.hdr.dt = iheader.tsamp;
    pf.hdr.fctr = iheader.fch1+iheader.foff*iheader.nchans/2. - iheader.foff/2.;
	if (have_chan_offset)
	  pf.hdr.fctr += iheader.foff/2.;
	
    pf.hdr.BW = iheader.nchans * iheader.foff;
    angle_split(iheader.src_raj, &c1, &c2, &c3);
    sprintf(pf.hdr.ra_str, "%2.2d:%2.2d:%07.4lf", c1, c2, c3);
    
    angle_split(iheader.src_dej, &c1, &c2, &c3);
    sprintf(pf.hdr.dec_str, "%2.2d:%2.2d:%07.4lf", c1, c2, c3);
    pf.hdr.azimuth = iheader.az_start;
    pf.hdr.zenith_ang = iheader.za_start;
    pf.hdr.beam_FWHM = 0.25;
    pf.hdr.start_lst = 0.0;
    pf.hdr.start_sec = 0.0;
    pf.hdr.start_day = 55000;
    pf.hdr.scan_number = scan_id;
    pf.hdr.rcvr_polns = 2;
    pf.hdr.summed_polns = 0;
    pf.hdr.offset_subint = 0;
    pf.hdr.nchan = iheader.nchans;
    pf.hdr.orig_nchan = pf.hdr.nchan;
    pf.hdr.orig_df = pf.hdr.df = pf.hdr.BW / pf.hdr.nchan;
    pf.hdr.nbits = iheader.nbits;
    pf.hdr.npol = iheader.nifs;
	pf.hdr.onlyI = 0;
	if (pf.hdr.npol==1) pf.hdr.onlyI = 1;
    pf.hdr.chan_dm = 0.0;
    pf.hdr.fd_hand = 1;
    pf.hdr.fd_sang = 0;
    pf.hdr.fd_xyph = 0;
    pf.hdr.be_phase = 1;
    pf.hdr.ibeam = beam_id;
    pf.hdr.nsblk = 2048;

    pf.hdr.MJD_epoch = iheader.tstart;  // Note the "L" for long double
    pf.hdr.ds_time_fact = 1;
    pf.hdr.ds_freq_fact = 1;
    //sprintf(pf.basefilename, "%s_%04d_%02d", pf.hdr.backend, pf.hdr.scan_number, pf.hdr.ibeam);

    //psrfits_create(&pf);


    // Now set values for our subint structure
    pf.sub.tsubint = pf.hdr.nsblk * pf.hdr.dt;
    pf.tot_rows = 0.0;
    pf.sub.offs = (pf.tot_rows + 0.5) * pf.sub.tsubint;
    pf.sub.lst = pf.hdr.start_lst;
    pf.sub.ra = pf.hdr.ra2000;
    pf.sub.dec = pf.hdr.dec2000;
    // GD slaEqgal(pf.hdr.ra2000*DEGTORAD, pf.hdr.dec2000*DEGTORAD, 
    //&pf.sub.glon, &pf.sub.glat);
    //pf.sub.glon *= RADTODEG;
    //pf.sub.glat *= RADTODEG;
    pf.sub.feed_ang = 0.0;
    pf.sub.pos_ang = 0.0;
    pf.sub.par_ang = 0.0;
    pf.sub.tel_az = pf.hdr.azimuth;
    pf.sub.tel_zen = pf.hdr.zenith_ang;
    pf.sub.bytes_per_subint = (pf.hdr.nbits * pf.hdr.nchan * 
                               pf.hdr.npol * pf.hdr.nsblk) / 8;
	
    if (pf.hdr.nbits==32) pf.sub.FITS_typecode = TFLOAT;
	else pf.sub.FITS_typecode = TBYTE;  // 11 = byte

	//
	if (have_frontend) {
	  if (strncmp(frontend,"S36",3)==0) {
		strcpy(pf.hdr.backend, "PSRIX");
		strcpy(pf.hdr.frontend, "S36");
		strcpy(pf.hdr.poln_type, "CIRC");
		strcpy(pf.hdr.poln_order, "AABBCRCI");
		pf.hdr.fd_hand = -1; // To conform PA and Stokes V to PSR/IEEE 
	  }
	  else if (strncmp(frontend,"S60",3)==0) {
		strcpy(pf.hdr.backend, "PSRIX");
		strcpy(pf.hdr.frontend, "S60");
		strcpy(pf.hdr.poln_type, "CIRC");
		strcpy(pf.hdr.poln_order, "AABBCRCI");		
	  }
	  else if (strncmp(frontend,"S110",3)==0) {
		strcpy(pf.hdr.backend, "PSRIX");
		strcpy(pf.hdr.frontend, "S110");
		strcpy(pf.hdr.poln_type, "CIRC");
		strcpy(pf.hdr.poln_order, "AABBCRCI");
		pf.hdr.be_phase = -1; // To conform Stokes V to PSR/IEEE
	  }
	  else if (strncmp(frontend,"S45",3)==0) {
		strcpy(pf.hdr.backend, "PSRIX");
		strcpy(pf.hdr.frontend, "S45");
		strcpy(pf.hdr.poln_type, "LIN");
		strcpy(pf.hdr.poln_order, "AABBCRCI");
		pf.hdr.be_phase = -1; // To conform Stokes V to PSR/IEEE
	  }
	  else {printf("Frontend %s not recognised\n", frontend);}
	}
	if (have_srcname) strncpy(pf.hdr.source, srcname, 24);

	if (have_Stokes) strcpy(pf.hdr.poln_order, "IQUV");
	
	if (strncmp(pf.hdr.backend, "PFFTS",5)==0)
	  sprintf(pf.basefilename, "%s_%04d_%02d", pf.hdr.backend, pf.hdr.scan_number, pf.hdr.ibeam);
	else
	  sprintf(pf.basefilename, "%s_%s_%5d_%d", pf.hdr.backend, pf.hdr.source, (int) pf.hdr.MJD_epoch, (int) pf.hdr.fctr);
	psrfits_create(&pf);
	
    // Create and initialize the subint arrays
    pf.sub.dat_freqs = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    dtmp = pf.hdr.fctr - 0.5 * pf.hdr.BW + 0.5 * pf.hdr.df;
    for (ii = 0 ; ii < pf.hdr.nchan ; ii++) {
        pf.sub.dat_freqs[ii] = dtmp + ii * pf.hdr.df;
        pf.sub.dat_weights[ii] = 1.0;
    }
    pf.sub.dat_offsets = (float *)malloc(sizeof(float) * pf.hdr.nchan * pf.hdr.npol);
    pf.sub.dat_scales = (float *)malloc(sizeof(float) * pf.hdr.nchan * pf.hdr.npol);
    for (ii = 0 ; ii < pf.hdr.nchan * pf.hdr.npol ; ii++) {
        pf.sub.dat_offsets[ii] = 0.0;
        pf.sub.dat_scales[ii] = 1.0;
    }
 

    // This is what you would update for each time sample (likely just
    // adjusting the pointer to point to your data)
    pf.sub.rawdata = (unsigned char *)malloc(pf.sub.bytes_per_subint);
   
    // Here is the real data-writing loop
    do {
      // Update the pf.sub entries here for each subint
      // as well as the pf.sub.data pointer
      
      fread(pf.sub.rawdata, pf.sub.bytes_per_subint, 1, pfi);
      pf.sub.offs = (pf.tot_rows + 0.5) * pf.sub.tsubint;
      
      psrfits_write_subint(&pf);
    } while (pf.T < pf.hdr.scanlen && !feof (pfi) && !pf.status);
    
    // Close the last file and cleanup
    fits_close_file(pf.fptr, &(pf.status));
    free(pf.sub.dat_freqs);
    free(pf.sub.dat_weights);
    free(pf.sub.dat_offsets);
    free(pf.sub.dat_scales);
    free(pf.sub.rawdata);

    printf("Done.  Wrote %d subints (%f sec) in %d files.  status = %d\n", 
           pf.tot_rows, pf.T, pf.filenum, pf.status);

    exit(0);
}
Esempio n. 5
0
int main(int argc, char *argv[]) {

    /* Cmd line */
    static struct option long_opts[] = {
        {"output",  1, NULL, 'o'},
        {"nbin",    1, NULL, 'b'},
        {"tsub",    1, NULL, 't'},
        {"nthread", 1, NULL, 'j'},
        {"initial", 1, NULL, 'i'},
        {"final",   1, NULL, 'f'},
        {"src",     1, NULL, 's'},
        {"polyco",  1, NULL, 'p'},
        {"parfile", 1, NULL, 'P'},
        {"foldfreq",1, NULL, 'F'},
        {"cal",     0, NULL, 'C'},
        {"unsigned",0, NULL, 'u'},
        {"nunsigned",1, NULL, 'U'},
        {"split",   1, NULL, 'S'},
        {"apply",   0, NULL, 'A'},
        {"quiet",   0, NULL, 'q'},
        {"help",    0, NULL, 'h'},
        {0,0,0,0}
    };
    int opt, opti;
    int nbin=256, nthread=4, fnum_start=1, fnum_end=0;
    int quiet=0, raw_signed=1, use_polycos=1, cal=0, apply_scale=0;
    double split_size_gb = 1.0;
    double tfold = 60.0; 
    double fold_frequency=0.0;
    char output_base[256] = "";
    char polyco_file[256] = "";
    char par_file[256] = "";
    char source[24];  source[0]='\0';
    while ((opt=getopt_long(argc,argv,"o:b:t:j:i:f:s:p:P:F:CuU:S:Aqh",long_opts,&opti))!=-1) {
        switch (opt) {
            case 'o':
                strncpy(output_base, optarg, 255);
                output_base[255]='\0';
                break;
            case 'b':
                nbin = atoi(optarg);
                break;
            case 't':
                tfold = atof(optarg);
                break;
            case 'j':
                nthread = atoi(optarg);
                break;
            case 'i':
                fnum_start = atoi(optarg);
                break;
            case 'f':
                fnum_end = atoi(optarg);
                break;
            case 's':
                strncpy(source, optarg, 24);
                source[23]='\0';
                break;
            case 'p':
                strncpy(polyco_file, optarg, 255);
                polyco_file[255]='\0';
                use_polycos = 1;
                break;
            case 'P':
                strncpy(par_file, optarg, 255);
                par_file[255] = '\0';
                break;
            case 'F':
                fold_frequency = atof(optarg);
                use_polycos = 0;
                break;
            case 'C':
                cal = 1;
                use_polycos = 0;
                break;
            case 'u':
                raw_signed=0;
                break;
            case 'U':
                raw_signed = 4 - atoi(optarg);
                break;
            case 'S':
                split_size_gb = atof(optarg);
                break;
            case 'A':
                apply_scale = 1;
                break;
            case 'q':
                quiet=1;
                break;
            case 'h':
            default:
                usage();
                exit(0);
                break;
        }

    }
    if (optind==argc) { 
        usage();
        exit(1);
    }

    /* If no polyco/par file given, default to polyco.dat */
    if (use_polycos && (par_file[0]=='\0' && polyco_file[0]=='\0'))
        sprintf(polyco_file, "polyco.dat");

    /* Open first file */
    struct psrfits pf;
    sprintf(pf.basefilename, argv[optind]);
    pf.filenum = fnum_start;
    pf.tot_rows = pf.N = pf.T = pf.status = 0;
    pf.hdr.chan_dm = 0.0; // What if folding data that has been partially de-dispersed?
    pf.filename[0]='\0';
    int rv = psrfits_open(&pf);
    if (rv) { fits_report_error(stderr, rv); exit(1); }

    /* Check any constraints */
    if (pf.hdr.nbits!=8) { 
        fprintf(stderr, "Only implemented for 8-bit data (read nbits=%d).\n",
                pf.hdr.nbits);
        exit(1);
    }

    /* Check for calfreq */
    if (cal) {
        if (pf.hdr.cal_freq==0.0) {
            if (fold_frequency==0.0) {
                fprintf(stderr, "Error: Cal mode selected, but CAL_FREQ=0.  "
                        "Set cal frequency with -F\n");
                exit(1);
            } else {
                pf.hdr.cal_freq = fold_frequency;
            }
        } else {
            fold_frequency = pf.hdr.cal_freq;
        }
    }

    /* Set up output file */
    struct psrfits pf_out;
    memcpy(&pf_out, &pf, sizeof(struct psrfits));
    if (source[0]!='\0') { strncpy(pf_out.hdr.source, source, 24); }
    else { strncpy(source, pf.hdr.source, 24); source[23]='\0'; }
    if (output_base[0]=='\0') {
        /* Set up default output filename */
        sprintf(output_base, "%s_%s_%5.5d_%5.5d%s", pf_out.hdr.backend, 
                pf_out.hdr.source, pf_out.hdr.start_day, 
                (int)pf_out.hdr.start_sec, cal ? "_cal" : "");
    }
    sprintf(pf_out.basefilename, output_base);
    if (cal) {
        sprintf(pf_out.hdr.obs_mode, "CAL");
        sprintf(pf_out.hdr.cal_mode, "SYNC");
    } else
        sprintf(pf_out.hdr.obs_mode, "PSR");
    strncpy(pf_out.fold.parfile,par_file,255); pf_out.fold.parfile[255]='\0';
    pf_out.fptr = NULL;
    pf_out.filenum=0;
    pf_out.status=0;
    pf_out.quiet=0;
    pf_out.hdr.nbin=nbin;
    pf_out.sub.FITS_typecode = TFLOAT;
    pf_out.sub.bytes_per_subint = sizeof(float) * 
        pf_out.hdr.nchan * pf_out.hdr.npol * pf_out.hdr.nbin;
    if (split_size_gb > 0.0) { 
        pf_out.multifile = 1;
        pf_out.rows_per_file = (int) (split_size_gb * (1024.0*1024.0*1024.0)
                / (double)pf_out.sub.bytes_per_subint);
        printf("Writing a maximum of %d subintegrations (~%.1f GB) per output file.\n", 
            pf_out.rows_per_file, split_size_gb);
    } else {
        pf_out.multifile = 0;
        printf("Writing a single output file.\n");
    }

    rv = psrfits_create(&pf_out);
    if (rv) { fits_report_error(stderr, rv); exit(1); }

    /* Alloc data buffers */
    pf.sub.dat_freqs = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf_out.sub.dat_freqs = pf.sub.dat_freqs;
    pf.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf_out.sub.dat_weights = (float *)malloc(sizeof(float) * pf.hdr.nchan);
    pf.sub.dat_offsets = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.dat_offsets = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf.sub.dat_scales  = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.dat_scales  = (float *)malloc(sizeof(float) 
            * pf.hdr.nchan * pf.hdr.npol);
    pf_out.sub.data  = (unsigned char *)malloc(pf_out.sub.bytes_per_subint);

    /* Output scale/offset */
    int i, ipol, ichan;
    float offset_uv=0.0;  
    // Extra cross-term offset for GUPPI
    if (strcmp("GUPPI",pf.hdr.backend)==0 && apply_scale==0) { 
        offset_uv=0.5;
        fprintf(stderr, "Found backend=GUPPI, setting offset_uv=%f\n",
                offset_uv);
    }
    // Initialize scale/output and weights.
    // These get copied from the input file later during the main loop.
    for (ipol=0; ipol<pf.hdr.npol; ipol++) {
        for (ichan=0; ichan<pf.hdr.nchan; ichan++) {
            float offs = 0.0;
            if (ipol>1) offs = offset_uv;
            pf_out.sub.dat_scales[ipol*pf.hdr.nchan + ichan] = 1.0;
            pf_out.sub.dat_offsets[ipol*pf.hdr.nchan + ichan] = offs;
        }
    }
    for (i=0; i<pf.hdr.nchan; i++) { pf_out.sub.dat_weights[i]=1.0; }

    /* Read or make polycos */
    int npc=0, ipc=0;
    struct polyco *pc = NULL;
    if (use_polycos) {
        if (polyco_file[0]=='\0') {
            /* Generate from par file */
            npc = make_polycos(par_file, &pf.hdr, source, &pc);
            if (npc<=0) {
                fprintf(stderr, "Error generating polycos.\n");
                exit(1);
            }
            printf("Auto-generated %d polycos, src=%s\n", npc, source);
        } else {
            /* Read from polyco file */
            FILE *pcfile = fopen(polyco_file, "r");
            if (pcfile==NULL) { 
                fprintf(stderr, "Couldn't open polyco file.\n");
                exit(1);
            }
            npc = read_all_pc(pcfile, &pc);
            if (npc==0) {
                fprintf(stderr, "Error parsing polyco file.\n");
                exit(1);
            }
            fclose(pcfile);
        }
    } else {
        // Const fold period mode, generate a fake polyco?
        pc = (struct polyco *)malloc(sizeof(struct polyco));
        sprintf(pc[0].psr, "CONST");
        pc[0].mjd = (int)pf.hdr.MJD_epoch;
        pc[0].fmjd = fmod(pf.hdr.MJD_epoch,1.0);
        pc[0].rphase = 0.0;
        pc[0].f0 = fold_frequency;
        pc[0].nsite = 0; // Does this matter?
        pc[0].nmin = 24 * 60;
        pc[0].nc = 1;
        pc[0].rf = pf.hdr.fctr;
        pc[0].c[0] = 0.0;
        pc[0].used = 0;
        npc = 1;
    }
    int *pc_written = (int *)malloc(sizeof(int) * npc);
    for (i=0; i<npc; i++) pc_written[i]=0;

    /* Alloc total fold buf */
    struct foldbuf fb;
    fb.nchan = pf.hdr.nchan;
    fb.npol = pf.hdr.npol;
    fb.nbin = pf_out.hdr.nbin;
    malloc_foldbuf(&fb);
    clear_foldbuf(&fb);

    /* Set up thread management */
    pthread_t *thread_id;
    struct fold_args *fargs;
    thread_id = (pthread_t *)malloc(sizeof(pthread_t) * nthread);
    fargs = (struct fold_args *)malloc(sizeof(struct fold_args) * nthread);
    for (i=0; i<nthread; i++) { 
        thread_id[i] = 0; 
        fargs[i].data = (char *)malloc(sizeof(char)*pf.sub.bytes_per_subint);
        fargs[i].fb = (struct foldbuf *)malloc(sizeof(struct foldbuf));
        fargs[i].fb->nbin = pf_out.hdr.nbin;
        fargs[i].fb->nchan = pf.hdr.nchan;
        fargs[i].fb->npol = pf.hdr.npol;
        fargs[i].nsamp = pf.hdr.nsblk;
        fargs[i].tsamp = pf.hdr.dt;
        fargs[i].raw_signed=raw_signed;
        malloc_foldbuf(fargs[i].fb);
        clear_foldbuf(fargs[i].fb);
        fargs[i].scale = (float *)malloc(sizeof(float) 
                * pf.hdr.nchan * pf.hdr.npol);
        fargs[i].offset = (float *)malloc(sizeof(float) 
                * pf.hdr.nchan * pf.hdr.npol);
    }

    /* Main loop */
    rv=0;
    int imjd;
    double fmjd, fmjd0=0, fmjd_next=0, fmjd_epoch;
    double offs0=0, offs1=0;
    //double phase=0.0, freq=1.0;
    int first=1, subcount=0;
    int cur_thread = 0;
    signal(SIGINT, cc);
    while (run) { 

        /* Read data block */
        pf.sub.data = (unsigned char *)fargs[cur_thread].data;
        rv = psrfits_read_subint(&pf);
        if (rv) { 
            if (rv==FILE_NOT_OPENED) rv=0; // Don't complain on file not found
            run=0; 
            break; 
        }

        /* If we've passed final file, exit */
        if (fnum_end && pf.filenum>fnum_end) { run=0; break; }

        /* Get start date, etc */
        imjd = (int)pf.hdr.MJD_epoch;
        fmjd = (double)(pf.hdr.MJD_epoch - (long double)imjd);
        fmjd += (pf.sub.offs-0.5*pf.sub.tsubint)/86400.0;

        /* First time stuff */
        if (first) {
            fmjd0 = fmjd;
            fmjd_next = fmjd + tfold/86400.0;
            pf_out.sub.offs=0.0;
            offs0 = pf.sub.offs - 0.5*pf.sub.tsubint;
            offs1 = pf.sub.offs + 0.5*pf.sub.tsubint;
            first=0;
            for (i=0; i<pf.hdr.nchan; i++) { 
                pf_out.sub.dat_weights[i]=pf.sub.dat_weights[i];
            }
        }

        /* Keep track of timestamp */
        // TODO also pointing stuff.
        pf_out.sub.offs += pf.sub.offs;
        subcount++;

        /* Update output block end time */
        offs1 = pf.sub.offs + 0.5*pf.sub.tsubint;

        /* Select polyco set */
        if (use_polycos) {
            ipc = select_pc(pc, npc, source, imjd, fmjd);
            //ipc = select_pc(pc, npc, NULL, imjd, fmjd);
            if (ipc<0) { 
                fprintf(stderr, "No matching polycos (src=%s, imjd=%d, fmjd=%f)\n",
                        source, imjd, fmjd);
                break;
            }
        } else {
            ipc = 0;
        }
        pc[ipc].used = 1; // Mark this polyco set as used for folding

        /* Copy scale/offset from input to output if we're not applying it */
        if (apply_scale==0) {
            for (i=0; i<pf.hdr.nchan*pf.hdr.npol; i++) {
                pf_out.sub.dat_scales[i] = pf.sub.dat_scales[i];
                pf_out.sub.dat_offsets[i] = pf.sub.dat_offsets[i];
            }
        }

        /* Fold this subint */
        fargs[cur_thread].pc = &pc[ipc];
        fargs[cur_thread].imjd = imjd;
        fargs[cur_thread].fmjd = fmjd;
        rv = pthread_create(&thread_id[cur_thread], NULL, 
                fold_8bit_power_thread, &fargs[cur_thread]);
        if (rv) {
            fprintf(stderr, "Thread creation error.\n");
            exit(1);
        }
        if (apply_scale) {
            for (i=0; i<pf.hdr.nchan*pf.hdr.npol; i++) {
                fargs[cur_thread].scale[i] = pf.sub.dat_scales[i];
                fargs[cur_thread].offset[i] = pf.sub.dat_offsets[i];
            }
        }
        cur_thread++;

        /* Combine thread results if needed */
        if (cur_thread==nthread || fmjd>fmjd_next) {

            /* Loop over active threads */
            for (i=0; i<cur_thread; i++) {

                /* Wait for thread to finish */
                rv = pthread_join(thread_id[i], NULL);
                if (rv) { 
                    fprintf(stderr, "Thread join error.\n");
                    exit(1);
                }

                /* Apply scale and offset here */
                if (apply_scale) 
                    scale_offset_folds(fargs[i].fb, fargs[i].scale,
                            fargs[i].offset);

                /* Combine its result into total fold */
                accumulate_folds(&fb, fargs[i].fb);

                /* Reset thread info */
                clear_foldbuf(fargs[i].fb);
                thread_id[i] = 0;

            }

            /* Reset active thread count */
            cur_thread = 0;
        }

        /* See if integration needs to be written, etc */
        if (fmjd > fmjd_next) {

            /* Figure out timestamp */
            pf_out.sub.offs /= (double)subcount;
            pf_out.sub.tsubint = offs1 - offs0;
            fmjd_epoch = fmjd0 + pf_out.sub.offs/86400.0;
            /*
            // Don't need this stuff if we set EPOCHS=MIDTIME
            ipc = select_pc(pc, npc, pf.hdr.source, imjd, fmjd_epoch); 
            if (ipc<0) { 
                fprintf(stderr, "Polyco error, exiting.\n");
                exit(1);
            }
            phase = psr_phase(&pc[ipc], imjd, fmjd_epoch, &freq);
            phase = fmod(phase, 1.0);
            pf_out.sub.offs -= phase/freq; // ref epoch needs 0 phase
            */

            /* Transpose, output subint */
            normalize_transpose_folds((float *)pf_out.sub.data, &fb);
            int last_filenum = pf_out.filenum;
            psrfits_write_subint(&pf_out);


            /* Check for write errors */
            if (pf_out.status) {
                fprintf(stderr, "Error writing subint.\n");
                fits_report_error(stderr, pf_out.status);
                exit(1);
            }

            /* Check if we started a new file */
            if (pf_out.filenum!=last_filenum) {
                /* No polycos yet written to this file */
                for (i=0; i<npc; i++) pc_written[i]=0;
            }

            /* Write the current polyco if needed */
            if (pc_written[ipc]==0) {
                psrfits_write_polycos(&pf_out, &pc[ipc], 1);
                if (pf_out.status) {
                    fprintf(stderr, "Error writing polycos.\n");
                    fits_report_error(stderr, pf_out.status);
                    exit(1);
                }
                pc_written[ipc] = 1;
            }

            /* Clear counters, avgs */
            clear_foldbuf(&fb);
            pf_out.sub.offs = 0.0;
            offs0 = pf.sub.offs - 0.5*pf.sub.tsubint;
            subcount=0;

            /* Set next output time */
            fmjd_next = fmjd + tfold/86400.0;
        }


        /* Progress report */
        if (!quiet) {
            printf("\rFile %d %5.1f%%", pf.filenum, 
                    100.0 * (float)(pf.rownum-1)/(float)pf.rows_per_file);
            fflush(stdout);
        }
    }

    /* Join any running threads */
    for (i=0; i<cur_thread; i++)  
        if (thread_id[i]) pthread_join(thread_id[i], NULL);

    /* Remove polyco table in cal mode */
    if (cal) {
        rv = psrfits_remove_polycos(&pf_out);
        if (rv) { fits_report_error(stderr, rv); }
    }

    psrfits_close(&pf_out);
    psrfits_close(&pf);

    if (rv) { fits_report_error(stderr, rv); }
    exit(0);
}