Esempio n. 1
0
static void threadSequenceThroughGraph(TightString * tString,
				       KmerOccurenceTable * kmerTable,
				       Graph * graph,
				       IDnum seqID, Category category,
				       boolean readTracking,
				       boolean double_strand,
				       ReferenceMapping * referenceMappings,
				       Coordinate referenceMappingCount,
				       IDnum refCount,
				       Annotation * annotations,
				       IDnum annotationCount,
				       boolean second_in_pair)
{
	Kmer word;
	Kmer antiWord;
	Coordinate readNucleotideIndex;
	Coordinate kmerIndex;
	KmerOccurence *kmerOccurence;
	int wordLength = getWordLength(graph);

	PassageMarkerI marker = NULL_IDX;
	PassageMarkerI previousMarker = NULL_IDX;
	Node *node = NULL;
	Node *previousNode = NULL;
	Coordinate coord = 0;
	Coordinate previousCoord = 0;
	Nucleotide nucleotide;
	boolean reversed;

	IDnum refID;
	Coordinate refCoord = 0;
	ReferenceMapping * refMap;
	Annotation * annotation = annotations;
	Coordinate index = 0;
	Coordinate uniqueIndex = 0;
	Coordinate annotIndex = 0;
	IDnum annotCount = 0;
	SmallNodeList * nodePile = NULL;

	// Neglect any string shorter than WORDLENGTH :
	if (getLength(tString) < wordLength)
		return;

	clearKmer(&word);
	clearKmer(&antiWord);

	// Fill in the initial word : 
	for (readNucleotideIndex = 0;
	     readNucleotideIndex < wordLength - 1; readNucleotideIndex++) {
		nucleotide = getNucleotide(readNucleotideIndex, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand || second_in_pair) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}
	}

	// Go through sequence
	while (readNucleotideIndex < getLength(tString)) {
		nucleotide = getNucleotide(readNucleotideIndex++, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand || second_in_pair) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}

		// Update annotation if necessary
		if (annotCount < annotationCount && annotIndex == getAnnotationLength(annotation)) {
			annotation = getNextAnnotation(annotation);
			annotCount++;
			annotIndex = 0;
		}

		// Search for reference mapping
		if (category == REFERENCE) {
			if (referenceMappings) 
				refMap = findReferenceMapping(seqID, index, referenceMappings, referenceMappingCount);
			else 
				refMap = NULL;

			if (refMap) {
				node = getNodeInGraph(graph, refMap->nodeID);
				if (refMap->nodeID > 0) {
					coord = refMap->nodeStart + (index - refMap->referenceStart);
				} else {
					coord = getNodeLength(node) - refMap->nodeStart - refMap->length + (index - refMap->referenceStart);
				}
			} else  {
				node = NULL;
				if (previousNode)
					break;
			}
		}
		// Search for reference-based mapping
		else if (annotCount < annotationCount && uniqueIndex >= getPosition(annotation) && getAnnotSequenceID(annotation) <= refCount && getAnnotSequenceID(annotation) >= -refCount) {
			refID = getAnnotSequenceID(annotation);
			if (refID > 0)
				refCoord = getStart(annotation) + annotIndex; 
			else
				refCoord = getStart(annotation) - annotIndex; 
			
			refMap = findReferenceMapping(refID, refCoord, referenceMappings, referenceMappingCount);
			// If success
			if (refMap) {
				if (refID > 0) {
					node = getNodeInGraph(graph, refMap->nodeID);
					if (refMap->nodeID > 0) {
						coord = refMap->nodeStart + (refCoord - refMap->referenceStart);
					} else {
						coord = getNodeLength(node) - refMap->nodeStart - refMap->length + (refCoord - refMap->referenceStart);
					}
				} else {
					node = getNodeInGraph(graph, -refMap->nodeID);
					if (refMap->nodeID > 0) {
						coord =  getNodeLength(node) - refMap->nodeStart - (refCoord - refMap->referenceStart) - 1;
					} else {
						coord = refMap->nodeStart + refMap->length - (refCoord - refMap->referenceStart) - 1;
					}
				}
			} else  {
				node = NULL;
				if (previousNode)
					break;
			}
		}		
		// Search in table
		else {
			reversed = false;
			if (double_strand) {
				if (compareKmers(&word, &antiWord) <= 0) {
					kmerOccurence =
					findKmerInKmerOccurenceTable(&word,
								       kmerTable);
				} else { 
					kmerOccurence =
					       findKmerInKmerOccurenceTable(&antiWord,
						kmerTable);
					reversed = true;
				}
			} else {
				if (!second_in_pair) {
					kmerOccurence =
					findKmerInKmerOccurenceTable(&word,
								       kmerTable);
				} else { 
					kmerOccurence =
					       findKmerInKmerOccurenceTable(&antiWord,
						kmerTable);
					reversed = true;
				}
			}
			
			if (kmerOccurence) {
				if (!reversed) {
					node = getNodeInGraph(graph, getKmerOccurenceNodeID(kmerOccurence));
					coord = getKmerOccurencePosition(kmerOccurence);
				} else {
					node = getNodeInGraph(graph, -getKmerOccurenceNodeID(kmerOccurence));
					coord = getNodeLength(node) - getKmerOccurencePosition(kmerOccurence) - 1;
				}
			} else {
				node = NULL;
				if (previousNode) 
					break;
			}
		}

		// Increment positions
		if (annotCount < annotationCount && uniqueIndex >= getPosition(annotation)) 
			annotIndex++;
		else
			uniqueIndex++;

		// Fill in graph
		if (node)
		{
#ifdef OPENMP
			lockNode(node);
#endif
			kmerIndex = readNucleotideIndex - wordLength;

			if (previousNode == node
			    && previousCoord == coord - 1) {
				if (category / 2 >= CATEGORIES) {
					setPassageMarkerFinish(marker,
							       kmerIndex +
							       1);
					setFinishOffset(marker,
							getNodeLength(node)
							- coord - 1);
				} else {
#ifndef SINGLE_COV_CAT
					incrementVirtualCoverage(node, category / 2, 1);
					incrementOriginalVirtualCoverage(node, category / 2, 1);
#else
					incrementVirtualCoverage(node, 1);
#endif
				}
#ifdef OPENMP
				unLockNode(node);
#endif
			} else {
				if (category / 2 >= CATEGORIES) {
					marker =
					    newPassageMarker(seqID,
							     kmerIndex,
							     kmerIndex + 1,
							     coord,
							     getNodeLength
							     (node) -
							     coord - 1);
					transposePassageMarker(marker,
							       node);
					connectPassageMarkers
					    (previousMarker, marker,
					     graph);
					previousMarker = marker;
				} else {
					if (readTracking) {
						if (!isNodeMemorized(node, nodePile)) {
							addReadStart(node,
								     seqID,
								     coord,
								     graph,
								     kmerIndex);
							memorizeNode(node, &nodePile);
						} else {
							blurLastShortReadMarker
							    (node, graph);
						}
					}

#ifndef SINGLE_COV_CAT
					incrementVirtualCoverage(node, category / 2, 1);
					incrementOriginalVirtualCoverage(node, category / 2, 1);
#else
					incrementVirtualCoverage(node, 1);
#endif
				}
#ifdef OPENMP
				lockTwoNodes(node, previousNode);
#endif
				createArc(previousNode, node, graph);
#ifdef OPENMP
				unLockTwoNodes(node, previousNode);
#endif
			}

			previousNode = node;
			previousCoord = coord;
		}
		index++;
	}

	if (readTracking && category / 2 < CATEGORIES)
		unMemorizeNodes(&nodePile);
}
Esempio n. 2
0
// Creates the preNode using insertion marker and annotation lists for each sequence
static void
// Creates the preNode using insertion marker and annotation lists for each sequence
createPreNodes(RoadMapArray * rdmaps, PreGraph * preGraph,
	       IDnum * markerCounters, InsertionMarker * insertionMarkers,
	       InsertionMarker * veryLastMarker, IDnum * chains,
	       SequencesReader *seqReadInfo, int WORDLENGTH)
{
	char *sequenceFilename = seqReadInfo->m_seqFilename;
	Annotation *annot = rdmaps->annotations;
	IDnum latestPreNodeID;
	InsertionMarker *currentMarker = insertionMarkers;
	IDnum sequenceIndex;
	Coordinate currentPosition, nextStop;
	IDnum preNodeCounter = 1;
	FILE *file = NULL;
	char line[50000];
	int lineLength = 50000;
	Coordinate readIndex;
	boolean tooShort;
	Kmer initialKmer;
	char c;
	RoadMap *rdmap;
	IDnum annotIndex, lastAnnotIndex;
	IDnum markerIndex, lastMarkerIndex;

	if (!seqReadInfo->m_bIsBinary) {
		file = fopen(sequenceFilename, "r");
	if (file == NULL) 
		exitErrorf(EXIT_FAILURE, true, "Could not read %s", sequenceFilename);
	// Reading sequence descriptor in first line
	if (sequenceCount_pg(preGraph) > 0 && !fgets(line, lineLength, file))
		exitErrorf(EXIT_FAILURE, true, "%s incomplete.", sequenceFilename);
		seqReadInfo->m_pFile = file;
	}

	// Now that we have read all of the annotations, we go on to create the preNodes and tie them up
	for (sequenceIndex = 1;
	     sequenceIndex <= sequenceCount_pg(preGraph);
	     sequenceIndex++) {
		if (sequenceIndex % 1000000 == 0)
			velvetLog("Sequence %li / %li\n", (long) sequenceIndex,
			       (long) sequenceCount_pg(preGraph));

		if (!seqReadInfo->m_bIsBinary) {
		while (line[0] != '>')
			if (!fgets(line, lineLength, file))
				exitErrorf(EXIT_FAILURE, true, "%s incomplete.", sequenceFilename);
		}

		rdmap = getRoadMapInArray(rdmaps, sequenceIndex - 1);
		annotIndex = 0;
		lastAnnotIndex = getAnnotationCount(rdmap);
		markerIndex = 0;
		lastMarkerIndex = markerCounters[sequenceIndex];
		currentPosition = 0;

		// Reading first (k-1) nucleotides
		tooShort = false;
		clearKmer(&initialKmer);
		//velvetLog("Initial kmer: ");
		TightString *tString = NULL;
		char *strString = NULL;
		if (seqReadInfo->m_bIsBinary) {
			tString = getTightStringInArray(seqReadInfo->m_sequences->tSequences, sequenceIndex - 1);
			strString = readTightString(tString);
		}
		for (readIndex = 0; readIndex < WORDLENGTH - 1;
		     readIndex++) {
			if (seqReadInfo->m_bIsBinary) {
				if (readIndex >= tString->length) {
					tooShort = true;
					break;
				}

				c = strString[readIndex];
			} else {
			c = getc(file);
			while (c == '\n' || c == '\r') 
				c = getc(file);
	
			if (c == '>' || c == 'M' || c == EOF) {
				ungetc(c, file);
				tooShort = true;
				break;
			}
			}
			switch (c) {
			case 'A':
			case 'N':
				pushNucleotide(&initialKmer, ADENINE);
				break;
			case 'C':
				pushNucleotide(&initialKmer, CYTOSINE);
				break;
			case 'G':
				pushNucleotide(&initialKmer, GUANINE);
				break;
			case 'T':
				pushNucleotide(&initialKmer, THYMINE);
				break;
			default:
				velvetLog
				    ("Irregular sequence file: are you sure your Sequence and Roadmap file come from the same source?\n");
				fflush(stdout);
				abort();
			}
		}

		if (tooShort) {
			//velvetLog("Skipping short read.. %d\n", sequenceIndex);
			chains[sequenceIndex] = preNodeCounter;
			if (seqReadInfo->m_bIsBinary) {
				free(strString);
			} else {
			if (!fgets(line, lineLength, file) && sequenceIndex < sequenceCount_pg(preGraph))
				exitErrorf(EXIT_FAILURE, true, "%s incomplete.", sequenceFilename);
			}
			continue;
		}

		char *currString = NULL;
		if (seqReadInfo->m_bIsBinary) {
			currString = &strString[readIndex];
			seqReadInfo->m_ppCurrString = &currString;
		}
		latestPreNodeID = 0;

		while (annotIndex < lastAnnotIndex) {
			if (markerIndex == lastMarkerIndex
			    || getPosition(annot) <=
			    getInsertionMarkerPosition(currentMarker))
				nextStop = getPosition(annot);
			else {
				nextStop =
				    getInsertionMarkerPosition
				    (currentMarker);
			}

			if (currentPosition != nextStop) {
				if (seqReadInfo->m_bIsBinary) {
					if (readIndex >= tString->length) {
						velvetLog("readIndex %ld beyond string len %ld\n", (uint64_t) readIndex, (uint64_t) tString->length);
						exit(1);
					}
				}
				//if (sequenceIndex == 481)
				//	velvetLog("Adding pre nodes from %lli to %lli\n", (long long) currentPosition, (long long) nextStop);
				addPreNodeToPreGraph_pg(preGraph,
							currentPosition,
							nextStop,
							seqReadInfo,
							&initialKmer,
							preNodeCounter);
				if (latestPreNodeID == 0) {
					chains[sequenceIndex] =
					    preNodeCounter;
				}
				latestPreNodeID = preNodeCounter++;
				currentPosition = nextStop;
			}

			while (markerIndex < lastMarkerIndex
			       && getInsertionMarkerPosition(currentMarker)
			       == nextStop) {
				convertMarker(currentMarker,
					      latestPreNodeID);
				currentMarker++;
				markerIndex++;
			}

			while (annotIndex < lastAnnotIndex
			       && getPosition(annot) == nextStop) {
				for (readIndex = 0;
				     readIndex <
				     getAnnotationLength(annot);
				     readIndex++) {
					if (seqReadInfo->m_bIsBinary) {
						c = *currString;
						currString += 1;   // increment the pointer
					} else {
					c = getc(file);
					while (!isalpha(c))
						c = getc(file);
					}

					//if (sequenceIndex == 481)
					//	velvetLog("(%c)", c);
					switch (c) {
					case 'A':
					case 'N':
						pushNucleotide(&initialKmer, ADENINE);
						break;
					case 'C':
						pushNucleotide(&initialKmer, CYTOSINE);
						break;
					case 'G':
						pushNucleotide(&initialKmer, GUANINE);
						break;
					case 'T':
						pushNucleotide(&initialKmer, THYMINE);
						break;
					default:
						velvetLog
						    ("Irregular sequence file: are you sure your Sequence and Roadmap file come from the same source?\n");
						fflush(stdout);
#ifdef DEBUG 
						abort();
#endif 
						exit(1);
					}
				}

				annot = getNextAnnotation(annot);
				annotIndex++;
			}

		}

		while (markerIndex < lastMarkerIndex) {
			if (currentPosition ==
			    getInsertionMarkerPosition(currentMarker)) {
				convertMarker(currentMarker,
					      latestPreNodeID);
				currentMarker++;
				markerIndex++;
			} else {
				nextStop =
				    getInsertionMarkerPosition
				    (currentMarker);
				//if (sequenceIndex == 481)
				//	velvetLog("Adding pre nodes from %lli to %lli\n", (long long) currentPosition, (long long) nextStop);
				addPreNodeToPreGraph_pg(preGraph,
							currentPosition,
							nextStop, seqReadInfo,
							&initialKmer,
							preNodeCounter);
				if (latestPreNodeID == 0)
					chains[sequenceIndex] =
					    preNodeCounter;
				latestPreNodeID = preNodeCounter++;
				currentPosition =
				    getInsertionMarkerPosition
				    (currentMarker);
			}
		}
		if (seqReadInfo->m_bIsBinary) {
			free(strString);
		} else {
		// End of sequence
		if (!fgets(line, lineLength, file) && sequenceIndex < sequenceCount_pg(preGraph))
			exitErrorf(EXIT_FAILURE, true, "%s incomplete.", sequenceFilename);
		//velvetLog(" \n");
		}

		if (latestPreNodeID == 0)
			chains[sequenceIndex] = preNodeCounter;
	}

	free(markerCounters);
	if (!seqReadInfo->m_bIsBinary) {
	fclose(file);
	}

}
Esempio n. 3
0
static void ghostThreadSequenceThroughGraph(TightString * tString,
					    KmerOccurenceTable *
					    kmerTable, Graph * graph,
					    IDnum seqID, Category category,
					    boolean readTracking,
					    boolean double_strand,
					    ReferenceMapping * referenceMappings,
					    Coordinate referenceMappingCount,
					    IDnum refCount,
					    Annotation * annotations,
					    IDnum annotationCount,
					    boolean second_in_pair)
{
	Kmer word;
	Kmer antiWord;
	Coordinate readNucleotideIndex;
	KmerOccurence *kmerOccurence;
	int wordLength = getWordLength(graph);
	Nucleotide nucleotide;
	IDnum refID;
	Coordinate refCoord;
	ReferenceMapping * refMap = NULL;
	Coordinate uniqueIndex = 0;
	Coordinate annotIndex = 0;
	IDnum annotCount = 0;
	boolean reversed;
	SmallNodeList * nodePile = NULL;
	Annotation * annotation = annotations;

	Node *node;
	Node *previousNode = NULL;

	// Neglect any read which will not be short paired
	if ((!readTracking && category % 2 == 0)
	    || category / 2 >= CATEGORIES)
		return;

	// Neglect any string shorter than WORDLENGTH :
	if (getLength(tString) < wordLength)
		return;

	// Verify that all short reads are reasonnably short
	if (getLength(tString) > USHRT_MAX) {
		velvetLog("Short read of length %lli, longer than limit %i\n",
			  (long long) getLength(tString), SHRT_MAX);
		velvetLog("You should better declare this sequence as long, because it genuinely is!\n");
		exit(1);
	}

	clearKmer(&word);
	clearKmer(&antiWord);

	// Fill in the initial word :
	for (readNucleotideIndex = 0;
	     readNucleotideIndex < wordLength - 1; readNucleotideIndex++) {
		nucleotide = getNucleotide(readNucleotideIndex, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand || second_in_pair) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}
	}

	// Go through sequence
	while (readNucleotideIndex < getLength(tString)) {
		// Shift word:
		nucleotide = getNucleotide(readNucleotideIndex++, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand || second_in_pair) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}

		// Update annotation if necessary
		if (annotCount < annotationCount && annotIndex == getAnnotationLength(annotation)) {
			annotation = getNextAnnotation(annotation);
			annotCount++;
			annotIndex = 0;
		}

		// Search for reference mapping
 		if (annotCount < annotationCount && uniqueIndex >= getPosition(annotation) && getAnnotSequenceID(annotation) <= refCount && getAnnotSequenceID(annotation) >= -refCount) {
			refID = getAnnotSequenceID(annotation);
			if (refID > 0)
				refCoord = getStart(annotation) + annotIndex;
			else
				refCoord = getStart(annotation) - annotIndex;
			
			refMap = findReferenceMapping(refID, refCoord, referenceMappings, referenceMappingCount);
			// If success
			if (refMap) {
				if (refID > 0) 
					node = getNodeInGraph(graph, refMap->nodeID);
				else
					node = getNodeInGraph(graph, -refMap->nodeID);
			} else  {
				node = NULL;
				if (previousNode)
					break;
			}
		}
		// if not.. look in table
		else {
			reversed = false;
			if (double_strand) {
				if (compareKmers(&word, &antiWord) <= 0) {
					kmerOccurence =
					findKmerInKmerOccurenceTable(&word,
								       kmerTable);
				} else { 
					kmerOccurence =
					       findKmerInKmerOccurenceTable(&antiWord,
						kmerTable);
					reversed = true;
				}
			} else {
				if (!second_in_pair) {
					kmerOccurence =
					findKmerInKmerOccurenceTable(&word,
								       kmerTable);
				} else { 
					kmerOccurence =
					       findKmerInKmerOccurenceTable(&antiWord,
						kmerTable);
					reversed = true;
				}
			}
			
			if (kmerOccurence) {
				if (!reversed) 
					node = getNodeInGraph(graph, getKmerOccurenceNodeID(kmerOccurence));
				else
					node = getNodeInGraph(graph, -getKmerOccurenceNodeID(kmerOccurence));
			} else {
				node = NULL;
				if (previousNode) 
					break;
			}

		}

		if (annotCount < annotationCount && uniqueIndex >= getPosition(annotation))
			annotIndex++;
		else
			uniqueIndex++;

		previousNode = node;

		// Fill in graph
		if (node && !isNodeMemorized(node, nodePile))
		{
#ifdef OPENMP
			lockNode(node);
#endif
			incrementReadStartCount(node, graph);
#ifdef OPENMP
			unLockNode(node);
#endif
			memorizeNode(node, &nodePile);
		}
	}

	unMemorizeNodes(&nodePile);
}
Esempio n. 4
0
static KmerOccurenceTable *referenceGraphKmers(char *preGraphFilename,
					       short int accelerationBits, Graph * graph, boolean double_strand, NodeMask * nodeMasks, Coordinate nodeMaskCount)
{
	FILE *file = fopen(preGraphFilename, "r");
	const int maxline = MAXLINE;
	char line[MAXLINE];
	char c;
	int wordLength;
	Coordinate lineLength, kmerCount;
	Kmer word;
	Kmer antiWord;
	KmerOccurenceTable *kmerTable;
	IDnum index;
	IDnum nodeID = 0;
	Nucleotide nucleotide;
	NodeMask * nodeMask = nodeMasks; 
	Coordinate nodeMaskIndex = 0;

	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	// Count kmers
	velvetLog("Scanning pre-graph file %s for k-mers\n",
		  preGraphFilename);

	// First  line
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	sscanf(line, "%*i\t%*i\t%i\n", &wordLength);

	kmerTable = newKmerOccurenceTable(accelerationBits, wordLength);

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	kmerCount = 0;
	while (line[0] == 'N') {
		lineLength = 0;
		while ((c = getc(file)) != EOF && c != '\n')
			lineLength++;
		kmerCount += lineLength - wordLength + 1;
		if (fgets(line, maxline, file) == NULL)
			break;
	}

	velvetLog("%li kmers found\n", (long) kmerCount);

	for(nodeMaskIndex = 0; nodeMaskIndex < nodeMaskCount; nodeMaskIndex++) {
		kmerCount -= nodeMasks[nodeMaskIndex].finish -
nodeMasks[nodeMaskIndex].start;
	}

	nodeMaskIndex = 0;

	fclose(file);

	// Create table
	allocateKmerOccurences(kmerCount, kmerTable);

	// Fill table
	file = fopen(preGraphFilename, "r");
	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	while (line[0] == 'N') {
		nodeID++;

		// Fill in the initial word : 
		clearKmer(&word);
		clearKmer(&antiWord);

		for (index = 0; index < wordLength - 1; index++) {
			c = getc(file);
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else if (c == '\n')
				exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
			else
				nucleotide = ADENINE;
				

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}
		}

		// Scan through node
		index = 0;
		while((c = getc(file)) != '\n' && c != EOF) {
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else
				nucleotide = ADENINE;

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}

			// Update mask if necessary 
			if (nodeMask) { 
				if (nodeMask->nodeID < nodeID || (nodeMask->nodeID == nodeID && index >= nodeMask->finish)) {
					if (++nodeMaskIndex == nodeMaskCount) 
						nodeMask = NULL;
					else 
						nodeMask++;
				}
			}

			// Check if not masked!
			if (nodeMask) { 
				if (nodeMask->nodeID == nodeID && index >= nodeMask->start && index < nodeMask->finish) {
					index++;
					continue;
				} 			
			}

			if (!double_strand || compareKmers(&word, &antiWord) <= 0)
				recordKmerOccurence(&word, nodeID, index, kmerTable);
			else
				recordKmerOccurence(&antiWord, -nodeID, getNodeLength(getNodeInGraph(graph, nodeID)) - 1 - index, kmerTable);

			index++;
		}

		if (fgets(line, maxline, file) == NULL)
			break;
	}

	fclose(file);

	// Sort table
	sortKmerOccurenceTable(kmerTable);

	return kmerTable;
}
Esempio n. 5
0
static void threadSequenceThroughGraph(TightString * tString,
				       KmerOccurenceTable * kmerOccurences,
				       Graph * graph,
				       IDnum seqID, Category category,
				       boolean readTracking,
				       boolean double_strand)
{
	Kmer word;
	Kmer antiWord;
	Coordinate readNucleotideIndex;
	Coordinate kmerIndex;
	KmerOccurence *kmerOccurence;
	int wordLength = getWordLength(graph);

	PassageMarker *marker = NULL;
	PassageMarker *previousMarker = NULL;
	Node *node;
	Node *previousNode = NULL;
	Coordinate coord;
	Coordinate previousCoord = 0;
	Nucleotide nucleotide;

	clearKmer(&word);
	clearKmer(&antiWord);

	// Neglect any string shorter than WORDLENGTH :
	if (getLength(tString) < wordLength)
		return;

	// Fill in the initial word : 
	for (readNucleotideIndex = 0;
	     readNucleotideIndex < wordLength - 1; readNucleotideIndex++) {
		nucleotide = getNucleotide(readNucleotideIndex, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}
	}

	// Go through sequence
	while (readNucleotideIndex < getLength(tString)) {
		nucleotide = getNucleotide(readNucleotideIndex++, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}

		// Search in table
		if ((!double_strand || compareKmers(&word, &antiWord) <= 0)
		    && (kmerOccurence =
			findKmerOccurenceInSortedTable(&word,
						       kmerOccurences))) {
			node =
			    getNodeInGraph(graph, kmerOccurence->nodeID);
			coord = kmerOccurence->position;
		} else if ((double_strand && compareKmers(&word, &antiWord) > 0)
			   && (kmerOccurence =
			       findKmerOccurenceInSortedTable(&antiWord,
							      kmerOccurences)))
		{
			node =
			    getNodeInGraph(graph, -kmerOccurence->nodeID);
			coord =
			    getNodeLength(node) - kmerOccurence->position -
			    1;
		} else {
			node = NULL;
			if (previousNode) {
				break;
			}
		}

		// Fill in graph
		if (node) {
			kmerIndex = readNucleotideIndex - wordLength;

			if (previousNode == node
			    && previousCoord == coord - 1) {
				if (category / 2 >= CATEGORIES) {
					setPassageMarkerFinish(marker,
							       kmerIndex +
							       1);
					setFinishOffset(marker,
							getNodeLength(node)
							- coord - 1);
				} else {
					incrementVirtualCoverage(node,
								 category /
								 2, 1);
					incrementOriginalVirtualCoverage
					    (node, category / 2, 1);
				}

			} else {
				if (category / 2 >= CATEGORIES) {
					marker =
					    newPassageMarker(seqID,
							     kmerIndex,
							     kmerIndex + 1,
							     coord,
							     getNodeLength
							     (node) -
							     coord - 1);
					transposePassageMarker(marker,
							       node);
					connectPassageMarkers
					    (previousMarker, marker,
					     graph);
					previousMarker = marker;
				} else {
					if (readTracking) {
						if (!getNodeStatus(node)) {
							addReadStart(node,
								     seqID,
								     coord,
								     graph,
								     kmerIndex);
							setSingleNodeStatus
							    (node, true);
							memorizeNode(node);
						} else {
							blurLastShortReadMarker
							    (node, graph);
						}
					}

					incrementVirtualCoverage(node,
								 category /
								 2, 1);
					incrementOriginalVirtualCoverage
					    (node, category / 2, 1);
				}

				createArc(previousNode, node, graph);
			}

			previousNode = node;
			previousCoord = coord;
		}
	}

	unlockMemorizedNodes();
}
Esempio n. 6
0
static void ghostThreadSequenceThroughGraph(TightString * tString,
					    KmerOccurenceTable *
					    kmerOccurences, Graph * graph,
					    IDnum seqID, Category category,
					    boolean readTracking,
					    boolean double_strand)
{
	Kmer word;
	Kmer antiWord;
	Coordinate readNucleotideIndex;
	KmerOccurence *kmerOccurence;
	int wordLength = getWordLength(graph);
	Nucleotide nucleotide;

	Node *node;
	Node *previousNode = NULL;

	clearKmer(&word);
	clearKmer(&antiWord);

	// Neglect any read which will not be short paired
	if ((!readTracking && category % 2 == 0)
	    || category / 2 >= CATEGORIES)
		return;

	// Neglect any string shorter than WORDLENGTH :
	if (getLength(tString) < wordLength)
		return;

	// Verify that all short reads are reasonnably short
	if (getLength(tString) > USHRT_MAX) {
		printf("Short read of length %lli, longer than limit %i\n",
		       (long long) getLength(tString), SHRT_MAX);
		puts("You should better declare this sequence as long, because it genuinely is!");
		exit(1);
	}
	// Allocate memory for the read pairs
	if (!readStartsAreActivated(graph))
		activateReadStarts(graph);

	// Fill in the initial word : 
	for (readNucleotideIndex = 0;
	     readNucleotideIndex < wordLength - 1; readNucleotideIndex++) {
		nucleotide = getNucleotide(readNucleotideIndex, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}
	}

	// Go through sequence
	while (readNucleotideIndex < getLength(tString)) {
		// Shift word:
		nucleotide = getNucleotide(readNucleotideIndex++, tString);
		pushNucleotide(&word, nucleotide);
		if (double_strand) {
#ifdef COLOR
			reversePushNucleotide(&antiWord, nucleotide);
#else
			reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
		}

		// Search in table
		if ((!double_strand || compareKmers(&word, &antiWord) <= 0)
		    && (kmerOccurence =
			findKmerOccurenceInSortedTable(&word,
						       kmerOccurences))) {
			node =
			    getNodeInGraph(graph, kmerOccurence->nodeID);
		} else if ((double_strand && compareKmers(&word, &antiWord) > 0)
			   && (kmerOccurence =
			       findKmerOccurenceInSortedTable(&antiWord,
							      kmerOccurences)))
		{
			node =
			    getNodeInGraph(graph, -kmerOccurence->nodeID);
		} else {
			node = NULL;
			if (previousNode)
				break;
		}

		previousNode = node;

		// Fill in graph
		if (node && !getNodeStatus(node)) {
			incrementReadStartCount(node, graph);
			setSingleNodeStatus(node, true);
			memorizeNode(node);
		}
	}

	unlockMemorizedNodes();
}
Esempio n. 7
0
static KmerOccurenceTable *referenceGraphKmers(char *preGraphFilename,
					       short int accelerationBits, Graph * graph, boolean double_strand)
{
	FILE *file = fopen(preGraphFilename, "r");
	const int maxline = MAXLINE;
	char line[MAXLINE];
	char c;
	int wordLength;
	Coordinate lineLength, kmerCount;
	Kmer word;
	Kmer antiWord;
	KmerOccurenceTable *kmerTable = NULL;
	KmerOccurence *kmerOccurences, *kmerOccurencePtr;
	Coordinate kmerOccurenceIndex;
	IDnum index;
	IDnum nodeID = 0;
	IDnum *accelPtr = NULL;
	KmerKey lastHeader = 0;
	KmerKey header;
	Nucleotide nucleotide;

	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	// Count kmers
	printf("Scanning pre-graph file %s for k-mers\n",
	       preGraphFilename);

	// First  line
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	sscanf(line, "%*i\t%*i\t%i\n", &wordLength);

	// Initialize kmer occurence table:
	kmerTable = mallocOrExit(1, KmerOccurenceTable);
	if (accelerationBits > 2 * wordLength)
		accelerationBits = 2 * wordLength;

	if (accelerationBits > 32)
		accelerationBits = 32;

	if (accelerationBits > 0) {
		kmerTable->accelerationBits = accelerationBits;
		kmerTable->accelerationTable =
		    callocOrExit((((size_t) 1) << accelerationBits) + 1,
			   IDnum);
		accelPtr = kmerTable->accelerationTable;
		kmerTable->accelerationShift =
		    (short int) 2 *wordLength - accelerationBits;
	} else {
		kmerTable->accelerationBits = 0;
		kmerTable->accelerationTable = NULL;
		kmerTable->accelerationShift = 0;
	}

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	kmerCount = 0;
	while (line[0] == 'N') {
		lineLength = 0;
		while ((c = getc(file)) != EOF && c != '\n')
			lineLength++;
		kmerCount += lineLength - wordLength + 1;
		if (fgets(line, maxline, file) == NULL)
			break;
	}
	fclose(file);

	// Create table
	printf("%li kmers found\n", (long) kmerCount);
	kmerOccurences = callocOrExit(kmerCount, KmerOccurence);
	kmerOccurencePtr = kmerOccurences;
	kmerOccurenceIndex = 0;
	kmerTable->kmerTable = kmerOccurences;
	kmerTable->kmerTableSize = kmerCount;

	// Fill table
	file = fopen(preGraphFilename, "r");
	if (file == NULL)
		exitErrorf(EXIT_FAILURE, true, "Could not open %s", preGraphFilename);

	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");

	// Read nodes
	if (!fgets(line, maxline, file))
		exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
	while (line[0] == 'N') {
		nodeID++;

		// Fill in the initial word : 
		clearKmer(&word);
		clearKmer(&antiWord);

		for (index = 0; index < wordLength - 1; index++) {
			c = getc(file);
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else if (c == '\n')
				exitErrorf(EXIT_FAILURE, true, "PreGraph file incomplete");
			else
				nucleotide = ADENINE;
				

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}
		}

		// Scan through node
		index = 0;
		while((c = getc(file)) != '\n' && c != EOF) {
			if (c == 'A')
				nucleotide = ADENINE;
			else if (c == 'C')
				nucleotide = CYTOSINE;
			else if (c == 'G')
				nucleotide = GUANINE;
			else if (c == 'T')
				nucleotide = THYMINE;
			else
				nucleotide = ADENINE;

			pushNucleotide(&word, nucleotide);
			if (double_strand) {
#ifdef COLOR
				reversePushNucleotide(&antiWord, nucleotide);
#else
				reversePushNucleotide(&antiWord, 3 - nucleotide);
#endif
			}

			if (!double_strand || compareKmers(&word, &antiWord) <= 0) {
				copyKmers(&kmerOccurencePtr->kmer, &word);
				kmerOccurencePtr->nodeID = nodeID;
				kmerOccurencePtr->position =
				    index;
			} else {
				copyKmers(&kmerOccurencePtr->kmer, &antiWord);
				kmerOccurencePtr->nodeID = -nodeID;
				kmerOccurencePtr->position =
				    getNodeLength(getNodeInGraph(graph, nodeID)) - 1 - index;
			}

			kmerOccurencePtr++;
			kmerOccurenceIndex++;
			index++;
		}

		if (fgets(line, maxline, file) == NULL)
			break;
	}

	fclose(file);

	// Sort table
	qsort(kmerOccurences, kmerCount, sizeof(KmerOccurence),
	      compareKmerOccurences);

	// Fill up acceleration table
	if (kmerTable->accelerationTable != NULL) {
		*accelPtr = (IDnum) 0;
		for (kmerOccurenceIndex = 0;
		     kmerOccurenceIndex < kmerCount;
		     kmerOccurenceIndex++) {
			header =
			    keyInAccelerationTable(&kmerOccurences
						   [kmerOccurenceIndex].
						   kmer, kmerTable);
			while (lastHeader < header) {
				lastHeader++;
				accelPtr++;
				*accelPtr = kmerOccurenceIndex;
			}
		}

		while (lastHeader < (KmerKey) 1 << accelerationBits) {
			lastHeader++;
			accelPtr++;
			*accelPtr = kmerCount;
		}
	}

	return kmerTable;
}