Esempio n. 1
0
static int ide_drive_initfn(IDEDevice *dev)
{
    IDEBus *bus = DO_UPCAST(IDEBus, qbus, dev->qdev.parent_bus);
    IDEState *s = bus->ifs + dev->unit;
    const char *serial;
    DriveInfo *dinfo;

    serial = dev->serial;
    if (!serial) {
        /* try to fall back to value set with legacy -drive serial=... */
        dinfo = drive_get_by_blockdev(dev->conf.bs);
        if (*dinfo->serial) {
            serial = dinfo->serial;
        }
    }

    if (ide_init_drive(s, dev->conf.bs, dev->version, serial) < 0) {
        return -1;
    }

    if (!dev->version) {
        dev->version = qemu_strdup(s->version);
    }
    if (!dev->serial) {
        dev->serial = qemu_strdup(s->drive_serial_str);
    }

    add_boot_device_path(dev->conf.bootindex, &dev->qdev,
                         dev->unit ? "/disk@1" : "/disk@0");

    return 0;
}
Esempio n. 2
0
void qdev_add_property_string(QEMUDeviceClass *dc, const char *name,
                              const char *def)
{
    QEMUDeviceProperty *p = qemu_mallocz(sizeof(*p));

    p->name = qemu_strdup(name);
    p->type = QDEV_PROP_STRING;
    if (def)
        p->value.string = qemu_strdup(def);
    p->next = dc->properties;
    dc->properties = p;
}
Esempio n. 3
0
static void find_properties(QEMUDevice *dev)
{
    const struct fdt_property *p;
    QEMUDeviceProperty *dp;
    int len;

    for (dp = dev->properties; dp; dp = dp->next) {
        p = fdt_get_property(dev->dt, dev->node_offset, dp->name, &len);
        if (!p)
            continue;
        switch (dp->type) {
        case QDEV_PROP_INT:
            if (len != 4) {
                invalid_devtree(dev, "Bad integer property");
                break;
            }
            dp->value.i = fdt32_to_cpu(*(uint32_t *)p->data);
            break;
        case QDEV_PROP_STRING:
            if (len == 0 || p->data[len - 1]) {
                invalid_devtree(dev, "Bad string property");
                break;
            }
            if (dp->value.string)
                qemu_free(dp->value.string);
            dp->value.string = qemu_strdup((const char *)p->data);
            break;
        }
    }
}
Esempio n. 4
0
static QEMUDeviceProperty *qdev_copy_properties(QEMUDeviceProperty *src)
{
    QEMUDeviceProperty *first;
    QEMUDeviceProperty **p;
    QEMUDeviceProperty *dest;

    first = NULL;
    p = &first;
    while (src) {
        dest = qemu_mallocz(sizeof(*dest));
        dest->name = src->name;
        dest->type = src->type;
        switch (src->type) {
        case QDEV_PROP_INT:
            dest->value.i = src->value.i;
            break;
        case QDEV_PROP_STRING:
            if (src->value.string)
                dest->value.string = qemu_strdup(src->value.string);
            break;
        }
        src = src->next;
        *p = dest;
        p = &dest->next;
    }
    return first;
}
Esempio n. 5
0
static int vnc_auth_sasl_check_access(VncState *vs)
{
    const void *val;
    int err;
    int allow;

    err = sasl_getprop(vs->sasl.conn, SASL_USERNAME, &val);
    if (err != SASL_OK) {
        VNC_DEBUG("cannot query SASL username on connection %d (%s), denying access\n",
                  err, sasl_errstring(err, NULL, NULL));
        return -1;
    }
    if (val == NULL) {
        VNC_DEBUG("no client username was found, denying access\n");
        return -1;
    }
    VNC_DEBUG("SASL client username %s\n", (const char *)val);

    vs->sasl.username = qemu_strdup((const char*)val);

    if (vs->vd->sasl.acl == NULL) {
        VNC_DEBUG("no ACL activated, allowing access\n");
        return 0;
    }

    allow = qemu_acl_party_is_allowed(vs->vd->sasl.acl, vs->sasl.username);

    VNC_DEBUG("SASL client %s %s by ACL\n", vs->sasl.username,
              allow ? "allowed" : "denied");
    return allow ? 0 : -1;
}
Esempio n. 6
0
static int vmc_initfn(VirtIOSerialDevice *dev)
{
    VirtIOSerialPort *port = DO_UPCAST(VirtIOSerialPort, dev, &dev->qdev);
    SpiceVirtualChannel *svc = DO_UPCAST(SpiceVirtualChannel, port, port);
    const char** psubtype = spice_server_char_device_recognized_subtypes();
    const char *subtype = NULL;

    if (!using_spice) {
        return -1;
    }

    dprintf(svc, 1, "%s\n", __func__);

    if (svc->subtype == NULL) {
        svc->subtype = strdup("vdagent");
    }

    for(;*psubtype != NULL; ++psubtype) {
        if (strcmp(svc->subtype, *psubtype) == 0) {
            subtype = *psubtype;
            break;
        }
    }
    if (subtype == NULL) {
        fprintf(stderr, "spice-vmc: unsupported subtype\n");
        vmc_print_optional_subtypes();
        return -1;
    }
    port->name = qemu_strdup(VMC_GUEST_DEVICE_NAME);
    svc->vmstate = qemu_add_vm_change_state_handler
        (vmc_change_state_handler, svc);
    svc->sin.subtype = svc->subtype;
    virtio_serial_open(port);
    return 0;
}
Esempio n. 7
0
void qdev_add_property_int(QEMUDeviceClass *dc, const char *name, int def)
{
    QEMUDeviceProperty *p = qemu_mallocz(sizeof(*p));

    p->name = qemu_strdup(name);
    p->type = QDEV_PROP_INT;
    p->value.i = def;
    p->next = dc->properties;
    dc->properties = p;
}
Esempio n. 8
0
void sysbus_register_dev(const char *name, size_t size, sysbus_initfn init)
{
    SysBusDeviceInfo *info;

    info = qemu_mallocz(sizeof(*info));
    info->qdev.name = qemu_strdup(name);
    info->qdev.size = size;
    info->init = init;
    sysbus_register_withprop(info);
}
Esempio n. 9
0
static QDictEntry *alloc_entry(const char *key, QObject *value)
{
    QDictEntry *entry;

    entry = qemu_mallocz(sizeof(*entry));
    entry->key = qemu_strdup(key);
    entry->value = value;

    return entry;
}
Esempio n. 10
0
void configure_alarms(char const *opt)
{
    int i;
    int cur = 0;
    int count = ARRAY_SIZE(alarm_timers) - 1;
    char *arg;
    char *name;
    struct qemu_alarm_timer tmp;

    if (!strcmp(opt, "?")) {
        show_available_alarms();
        exit(0);
    }

    arg = qemu_strdup(opt);

    /* Reorder the array */
    name = strtok(arg, ",");
    while (name) {
        for (i = 0; i < count && alarm_timers[i].name; i++) {
            if (!strcmp(alarm_timers[i].name, name))
                break;
        }

        if (i == count) {
            fprintf(stderr, "Unknown clock %s\n", name);
            goto next;
        }

        if (i < cur)
            /* Ignore */
            goto next;

	/* Swap */
        tmp = alarm_timers[i];
        alarm_timers[i] = alarm_timers[cur];
        alarm_timers[cur] = tmp;

        cur++;
next:
        name = strtok(NULL, ",");
    }

    qemu_free(arg);

    if (cur) {
        /* Disable remaining timers */
        for (i = cur; i < count; i++)
            alarm_timers[i].name = NULL;
    } else {
        show_available_alarms();
        exit(1);
    }
}
Esempio n. 11
0
QEMUDeviceClass *qdev_new(const char *name, QDEVCreateFn create, int nirq)
{
    QEMUDeviceClass *dc = qemu_mallocz(sizeof(*dc));

    dc->num_irqs = nirq;
    dc->create = create;
    dc->name = qemu_strdup(name);

    dc->next = all_dc;
    all_dc = dc;

    return dc;
}
Esempio n. 12
0
static void qmp_input_type_str(Visitor *v, char **obj, const char *name,
                               Error **errp)
{
    QmpInputVisitor *qiv = to_qiv(v);
    const QObject *qobj = qmp_input_get_object(qiv, name);

    if (!qobj || qobject_type(qobj) != QTYPE_QSTRING) {
        error_set(errp, QERR_INVALID_PARAMETER_TYPE, name ? name : "null",
                  "string");
        return;
    }

    *obj = qemu_strdup(qstring_get_str(qobject_to_qstring(qobj)));
}
Esempio n. 13
0
File: rbd.c Progetto: 16aug/nvmeqemu
static int qemu_rbd_set_conf(rados_t cluster, const char *conf)
{
    char *p, *buf;
    char name[RBD_MAX_CONF_NAME_SIZE];
    char value[RBD_MAX_CONF_VAL_SIZE];
    int ret = 0;

    buf = qemu_strdup(conf);
    p = buf;

    while (p) {
        ret = qemu_rbd_next_tok(name, sizeof(name), p,
                                '=', "conf option name", &p);
        if (ret < 0) {
            break;
        }

        if (!p) {
            error_report("conf option %s has no value", name);
            ret = -EINVAL;
            break;
        }

        ret = qemu_rbd_next_tok(value, sizeof(value), p,
                                ':', "conf option value", &p);
        if (ret < 0) {
            break;
        }

        if (strcmp(name, "conf")) {
            ret = rados_conf_set(cluster, name, value);
            if (ret < 0) {
                error_report("invalid conf option %s", name);
                ret = -EINVAL;
                break;
            }
        } else {
            ret = rados_conf_read_file(cluster, value);
            if (ret < 0) {
                error_report("error reading conf file %s", value);
                break;
            }
        }
    }

    qemu_free(buf);
    return ret;
}
Esempio n. 14
0
File: rbd.c Progetto: 16aug/nvmeqemu
static int qemu_rbd_parsename(const char *filename,
                              char *pool, int pool_len,
                              char *snap, int snap_len,
                              char *name, int name_len,
                              char *conf, int conf_len)
{
    const char *start;
    char *p, *buf;
    int ret;

    if (!strstart(filename, "rbd:", &start)) {
        return -EINVAL;
    }

    buf = qemu_strdup(start);
    p = buf;
    *snap = '\0';
    *conf = '\0';

    ret = qemu_rbd_next_tok(pool, pool_len, p, '/', "pool name", &p);
    if (ret < 0 || !p) {
        ret = -EINVAL;
        goto done;
    }

    if (strchr(p, '@')) {
        ret = qemu_rbd_next_tok(name, name_len, p, '@', "object name", &p);
        if (ret < 0) {
            goto done;
        }
        ret = qemu_rbd_next_tok(snap, snap_len, p, ':', "snap name", &p);
    } else {
        ret = qemu_rbd_next_tok(name, name_len, p, ':', "object name", &p);
    }
    if (ret < 0 || !p) {
        goto done;
    }

    ret = qemu_rbd_next_tok(conf, conf_len, p, '\0', "configuration", &p);

done:
    qemu_free(buf);
    return ret;
}
static int local_rename(FsContext *ctx, const char *oldpath,
                        const char *newpath)
{
    char *tmp;
    int err;

    tmp = qemu_strdup(rpath(ctx, oldpath));

    err = rename(tmp, rpath(ctx, newpath));
    if (err == -1) {
        int serrno = errno;
        qemu_free(tmp);
        errno = serrno;
    } else {
        qemu_free(tmp);
    }

    return err;

}
Esempio n. 16
0
/* Look for support files in the same directory as the executable.  */
char *os_find_datadir(const char *argv0)
{
    char *p;
    char buf[MAX_PATH];
    DWORD len;

    len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
    if (len == 0) {
        return NULL;
    }

    buf[len] = 0;
    p = buf + len - 1;
    while (p != buf && *p != '\\')
        p--;
    *p = 0;
    if (access(buf, R_OK) == 0) {
        return qemu_strdup(buf);
    }
    return NULL;
}
static int local_link(FsContext *ctx, const char *oldpath, const char *newpath)
{
    char *tmp = qemu_strdup(rpath(ctx, oldpath));
    int err, serrno = 0;

    if (tmp == NULL) {
        return -ENOMEM;
    }

    err = link(tmp, rpath(ctx, newpath));
    if (err == -1) {
        serrno = errno;
    }

    qemu_free(tmp);

    if (err == -1) {
        errno = serrno;
    }

    return err;
}
Esempio n. 18
0
File: rbd.c Progetto: 16aug/nvmeqemu
static int qemu_rbd_open(BlockDriverState *bs, const char *filename, int flags)
{
    BDRVRBDState *s = bs->opaque;
    char pool[RBD_MAX_POOL_NAME_SIZE];
    char snap_buf[RBD_MAX_SNAP_NAME_SIZE];
    char conf[RBD_MAX_CONF_SIZE];
    int r;

    if (qemu_rbd_parsename(filename, pool, sizeof(pool),
                           snap_buf, sizeof(snap_buf),
                           s->name, sizeof(s->name),
                           conf, sizeof(conf)) < 0) {
        return -EINVAL;
    }
    s->snap = NULL;
    if (snap_buf[0] != '\0') {
        s->snap = qemu_strdup(snap_buf);
    }

    r = rados_create(&s->cluster, NULL);
    if (r < 0) {
        error_report("error initializing");
        return r;
    }

    if (strstr(conf, "conf=") == NULL) {
        r = rados_conf_read_file(s->cluster, NULL);
        if (r < 0) {
            error_report("error reading config file");
            rados_shutdown(s->cluster);
            return r;
        }
    }

    if (conf[0] != '\0') {
        r = qemu_rbd_set_conf(s->cluster, conf);
        if (r < 0) {
            error_report("error setting config options");
            rados_shutdown(s->cluster);
            return r;
        }
    }

    r = rados_connect(s->cluster);
    if (r < 0) {
        error_report("error connecting");
        rados_shutdown(s->cluster);
        return r;
    }

    r = rados_ioctx_create(s->cluster, pool, &s->io_ctx);
    if (r < 0) {
        error_report("error opening pool %s", pool);
        rados_shutdown(s->cluster);
        return r;
    }

    r = rbd_open(s->io_ctx, s->name, &s->image, s->snap);
    if (r < 0) {
        error_report("error reading header from %s", s->name);
        rados_ioctx_destroy(s->io_ctx);
        rados_shutdown(s->cluster);
        return r;
    }

    bs->read_only = (s->snap != NULL);

    s->event_reader_pos = 0;
    r = qemu_pipe(s->fds);
    if (r < 0) {
        error_report("error opening eventfd");
        goto failed;
    }
    fcntl(s->fds[0], F_SETFL, O_NONBLOCK);
    fcntl(s->fds[1], F_SETFL, O_NONBLOCK);
    qemu_aio_set_fd_handler(s->fds[RBD_FD_READ], qemu_rbd_aio_event_reader,
                            NULL, qemu_rbd_aio_flush_cb, NULL, s);


    return 0;

failed:
    rbd_close(s->image);
    rados_ioctx_destroy(s->io_ctx);
    rados_shutdown(s->cluster);
    return r;
}
Esempio n. 19
0
VirtIODevice *virtio_9p_init(DeviceState *dev, V9fsConf *conf)
 {
    V9fsState *s;
    int i, len;
    struct stat stat;
    FsTypeEntry *fse;


    s = (V9fsState *)virtio_common_init("virtio-9p",
                                    VIRTIO_ID_9P,
                                    sizeof(struct virtio_9p_config)+
                                    MAX_TAG_LEN,
                                    sizeof(V9fsState));

    /* initialize pdu allocator */
    QLIST_INIT(&s->free_list);
    for (i = 0; i < (MAX_REQ - 1); i++) {
        QLIST_INSERT_HEAD(&s->free_list, &s->pdus[i], next);
    }

    s->vq = virtio_add_queue(&s->vdev, MAX_REQ, handle_9p_output);

    fse = get_fsdev_fsentry(conf->fsdev_id);

    if (!fse) {
        /* We don't have a fsdev identified by fsdev_id */
        fprintf(stderr, "Virtio-9p device couldn't find fsdev with the "
                "id = %s\n", conf->fsdev_id ? conf->fsdev_id : "NULL");
        exit(1);
    }

    if (!fse->path || !conf->tag) {
        /* we haven't specified a mount_tag or the path */
        fprintf(stderr, "fsdev with id %s needs path "
                "and Virtio-9p device needs mount_tag arguments\n",
                conf->fsdev_id);
        exit(1);
    }

    if (!strcmp(fse->security_model, "passthrough")) {
        /* Files on the Fileserver set to client user credentials */
        s->ctx.fs_sm = SM_PASSTHROUGH;
        s->ctx.xops = passthrough_xattr_ops;
    } else if (!strcmp(fse->security_model, "mapped")) {
        /* Files on the fileserver are set to QEMU credentials.
         * Client user credentials are saved in extended attributes.
         */
        s->ctx.fs_sm = SM_MAPPED;
        s->ctx.xops = mapped_xattr_ops;
    } else if (!strcmp(fse->security_model, "none")) {
        /*
         * Files on the fileserver are set to QEMU credentials.
         */
        s->ctx.fs_sm = SM_NONE;
        s->ctx.xops = none_xattr_ops;
    } else {
        fprintf(stderr, "Default to security_model=none. You may want"
                " enable advanced security model using "
                "security option:\n\t security_model=passthrough\n\t "
                "security_model=mapped\n");
        s->ctx.fs_sm = SM_NONE;
        s->ctx.xops = none_xattr_ops;
    }

    if (lstat(fse->path, &stat)) {
        fprintf(stderr, "share path %s does not exist\n", fse->path);
        exit(1);
    } else if (!S_ISDIR(stat.st_mode)) {
        fprintf(stderr, "share path %s is not a directory\n", fse->path);
        exit(1);
    }

    s->ctx.fs_root = qemu_strdup(fse->path);
    len = strlen(conf->tag);
    if (len > MAX_TAG_LEN) {
        len = MAX_TAG_LEN;
    }
    /* s->tag is non-NULL terminated string */
    s->tag = qemu_malloc(len);
    memcpy(s->tag, conf->tag, len);
    s->tag_len = len;
    s->ctx.uid = -1;

    s->ops = fse->ops;
    s->vdev.get_features = virtio_9p_get_features;
    s->config_size = sizeof(struct virtio_9p_config) +
                        s->tag_len;
    s->vdev.get_config = virtio_9p_get_config;

    return &s->vdev;
}
Esempio n. 20
0
/* if no id is provided, a new one is constructed */
int qcow2_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
{
    BDRVQcowState *s = bs->opaque;
    QCowSnapshot *snapshots1, sn1, *sn = &sn1;
    int i, ret;
    uint64_t *l1_table = NULL;

    memset(sn, 0, sizeof(*sn));

    if (sn_info->id_str[0] == '\0') {
        /* compute a new id */
        find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str));
    }

    /* check that the ID is unique */
    if (find_snapshot_by_id(bs, sn_info->id_str) >= 0)
        return -ENOENT;

    sn->id_str = qemu_strdup(sn_info->id_str);
    if (!sn->id_str)
        goto fail;
    sn->name = qemu_strdup(sn_info->name);
    if (!sn->name)
        goto fail;
    sn->vm_state_size = sn_info->vm_state_size;
    sn->date_sec = sn_info->date_sec;
    sn->date_nsec = sn_info->date_nsec;
    sn->vm_clock_nsec = sn_info->vm_clock_nsec;

    ret = qcow2_update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1);
    if (ret < 0)
        goto fail;

    /* create the L1 table of the snapshot */
    sn->l1_table_offset = qcow2_alloc_clusters(bs, s->l1_size * sizeof(uint64_t));
    sn->l1_size = s->l1_size;

    l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
    for(i = 0; i < s->l1_size; i++) {
        l1_table[i] = cpu_to_be64(s->l1_table[i]);
    }
    if (bdrv_pwrite(s->hd, sn->l1_table_offset,
                    l1_table, s->l1_size * sizeof(uint64_t)) !=
        (s->l1_size * sizeof(uint64_t)))
        goto fail;
    qemu_free(l1_table);
    l1_table = NULL;

    snapshots1 = qemu_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot));
    if (s->snapshots) {
        memcpy(snapshots1, s->snapshots, s->nb_snapshots * sizeof(QCowSnapshot));
        qemu_free(s->snapshots);
    }
    s->snapshots = snapshots1;
    s->snapshots[s->nb_snapshots++] = *sn;

    if (qcow_write_snapshots(bs) < 0)
        goto fail;
#ifdef DEBUG_ALLOC
    qcow2_check_refcounts(bs);
#endif
    return 0;
 fail:
    qemu_free(sn->name);
    qemu_free(l1_table);
    return -1;
}
Esempio n. 21
0
static void *spapr_create_fdt_skel(const char *cpu_model,
                                   target_phys_addr_t initrd_base,
                                   target_phys_addr_t initrd_size,
                                   const char *boot_device,
                                   const char *kernel_cmdline,
                                   long hash_shift)
{
    void *fdt;
    CPUState *env;
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ram_size) };
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
        "\0hcall-tce\0hcall-vio\0hcall-splpar";
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
    int i;
    char *modelname;

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

    fdt = qemu_mallocz(FDT_MAX_SIZE);
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));

    _FDT((fdt_end_node(fdt)));

    /* memory node */
    _FDT((fdt_begin_node(fdt, "memory@0")));

    _FDT((fdt_property_string(fdt, "device_type", "memory")));
    _FDT((fdt_property(fdt, "reg",
                       mem_reg_property, sizeof(mem_reg_property))));

    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

    modelname = qemu_strdup(cpu_model);

    for (i = 0; i < strlen(modelname); i++) {
        modelname[i] = toupper(modelname[i]);
    }

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        int index = env->cpu_index;
        uint32_t gserver_prop[] = {cpu_to_be32(index), 0}; /* HACK! */
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};

        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
            fprintf(stderr, "Allocation failure\n");
            exit(1);
        }

        _FDT((fdt_begin_node(fdt, nodename)));

        free(nodename);

        _FDT((fdt_property_cell(fdt, "reg", index)));
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "icache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
         * full emu, for kvm we should copy it from the host */
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
        _FDT((fdt_property(fdt, "ibm,pft-size",
                           pft_size_prop, sizeof(pft_size_prop))));
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", index)));
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
                           gserver_prop, sizeof(gserver_prop))));

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

        _FDT((fdt_end_node(fdt)));
    }

    qemu_free(modelname);

    _FDT((fdt_end_node(fdt)));

    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
                       sizeof(hypertas_prop))));

    _FDT((fdt_end_node(fdt)));

    /* interrupt controller */
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property_cell(fdt, "reg", 0)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));

    _FDT((fdt_end_node(fdt)));

    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));

    _FDT((fdt_end_node(fdt)));

    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

    return fdt;
}
Esempio n. 22
0
/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(ram_addr_t ram_size,
                           const char *boot_device,
                           const char *kernel_filename,
                           const char *kernel_cmdline,
                           const char *initrd_filename,
                           const char *cpu_model)
{
    CPUState *env;
    int i;
    ram_addr_t ram_offset;
    uint32_t initrd_base;
    long kernel_size, initrd_size, fw_size;
    long pteg_shift = 17;
    char *filename;
    int irq = 16;

    spapr = qemu_malloc(sizeof(*spapr));
    cpu_ppc_hypercall = emulate_spapr_hypercall;

    /* We place the device tree just below either the top of RAM, or
     * 2GB, so that it can be processed with 32-bit code if
     * necessary */
    spapr->fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
    spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "POWER7";
    }
    for (i = 0; i < smp_cpus; i++) {
        env = cpu_init(cpu_model);

        if (!env) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);

        env->hreset_vector = 0x60;
        env->hreset_excp_prefix = 0;
        env->gpr[3] = env->cpu_index;
    }

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset);

    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */
    spapr->htab_size = 1ULL << (pteg_shift + 7);
    spapr->htab = qemu_malloc(spapr->htab_size);

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        env->external_htab = spapr->htab;
        env->htab_base = -1;
        env->htab_mask = spapr->htab_size - 1;
    }

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
                                           ram_size - spapr->rtas_addr);
    if (spapr->rtas_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    qemu_free(filename);

    /* Set up Interrupt Controller */
    spapr->icp = xics_system_init(XICS_IRQS);

    /* Set up VIO bus */
    spapr->vio_bus = spapr_vio_bus_init();

    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
        if (serial_hds[i]) {
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
                             xics_find_qirq(spapr->icp, irq), irq);
        }
    }

    for (i = 0; i < nb_nics; i++, irq++) {
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
            nd->model = qemu_strdup("ibmveth");
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
                              xics_find_qirq(spapr->icp, irq), irq);
        } else {
            fprintf(stderr, "pSeries (sPAPR) platform does not support "
                    "NIC model '%s' (only ibmveth is supported)\n",
                    nd->model);
            exit(1);
        }
    }

    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i,
                           xics_find_qirq(spapr->icp, irq), irq);
        irq++;
    }

    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename,
                                              KERNEL_LOAD_ADDR,
                                              ram_size - KERNEL_LOAD_ADDR);
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
            initrd_base = INITRD_LOAD_ADDR;
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }

        spapr->entry_point = KERNEL_LOAD_ADDR;
    } else {
        if (ram_size < (MIN_RAM_SLOF << 20)) {
            fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                    "%ldM guest RAM\n", MIN_RAM_SLOF);
            exit(1);
        }
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
        fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
        if (fw_size < 0) {
            hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
            exit(1);
        }
        qemu_free(filename);
        spapr->entry_point = 0x100;
        initrd_base = 0;
        initrd_size = 0;

        /* SLOF will startup the secondary CPUs using RTAS,
           rather than expecting a kexec() style entry */
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            env->halted = 1;
        }
    }

    /* Prepare the device tree */
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
                                            initrd_base, initrd_size,
                                            boot_device, kernel_cmdline,
                                            pteg_shift + 7);
    assert(spapr->fdt_skel != NULL);

    qemu_register_reset(spapr_reset, spapr);
}
/* PC hardware initialisation */
static void s390_init(ram_addr_t ram_size,
                      const char *boot_device,
                      const char *kernel_filename,
                      const char *kernel_cmdline,
                      const char *initrd_filename,
                      const char *cpu_model)
{
    CPUState *env = NULL;
    ram_addr_t ram_addr;
    ram_addr_t kernel_size = 0;
    ram_addr_t initrd_offset;
    ram_addr_t initrd_size = 0;
    int i;

    /* XXX we only work on KVM for now */

    if (!kvm_enabled()) {
        fprintf(stderr, "The S390 target only works with KVM enabled\n");
        exit(1);
    }

    /* get a BUS */
    s390_bus = s390_virtio_bus_init(&ram_size);

    /* allocate RAM */
    ram_addr = qemu_ram_alloc(NULL, "s390.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_addr);

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "host";
    }

    ipi_states = qemu_malloc(sizeof(CPUState *) * smp_cpus);

    for (i = 0; i < smp_cpus; i++) {
        CPUState *tmp_env;

        tmp_env = cpu_init(cpu_model);
        if (!env) {
            env = tmp_env;
        }
        ipi_states[i] = tmp_env;
        tmp_env->halted = 1;
        tmp_env->exception_index = EXCP_HLT;
    }

    env->halted = 0;
    env->exception_index = 0;

    if (kernel_filename) {
        kernel_size = load_image(kernel_filename, qemu_get_ram_ptr(0));

        if (lduw_phys(KERN_IMAGE_START) != 0x0dd0) {
            fprintf(stderr, "Specified image is not an s390 boot image\n");
            exit(1);
        }

        env->psw.addr = KERN_IMAGE_START;
        env->psw.mask = 0x0000000180000000ULL;
    } else {
        ram_addr_t bios_size = 0;
        char *bios_filename;

        /* Load zipl bootloader */
        if (bios_name == NULL) {
            bios_name = ZIPL_FILENAME;
        }

        bios_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
        bios_size = load_image(bios_filename, qemu_get_ram_ptr(ZIPL_LOAD_ADDR));
        qemu_free(bios_filename);

        if ((long)bios_size < 0) {
            hw_error("could not load bootloader '%s'\n", bios_name);
        }

        if (bios_size > 4096) {
            hw_error("stage1 bootloader is > 4k\n");
        }

        env->psw.addr = ZIPL_START;
        env->psw.mask = 0x0000000180000000ULL;
    }

    if (initrd_filename) {
        initrd_offset = INITRD_START;
        while (kernel_size + 0x100000 > initrd_offset) {
            initrd_offset += 0x100000;
        }
        initrd_size = load_image(initrd_filename, qemu_get_ram_ptr(initrd_offset));

        stq_phys(INITRD_PARM_START, initrd_offset);
        stq_phys(INITRD_PARM_SIZE, initrd_size);
    }

    if (kernel_cmdline) {
        cpu_physical_memory_rw(KERN_PARM_AREA, (uint8_t *)kernel_cmdline,
                               strlen(kernel_cmdline), 1);
    }

    /* Create VirtIO network adapters */
    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];
        DeviceState *dev;

        if (!nd->model) {
            nd->model = qemu_strdup("virtio");
        }

        if (strcmp(nd->model, "virtio")) {
            fprintf(stderr, "S390 only supports VirtIO nics\n");
            exit(1);
        }

        dev = qdev_create((BusState *)s390_bus, "virtio-net-s390");
        qdev_set_nic_properties(dev, nd);
        qdev_init_nofail(dev);
    }

    /* Create VirtIO disk drives */
    for(i = 0; i < MAX_BLK_DEVS; i++) {
        DriveInfo *dinfo;
        DeviceState *dev;

        dinfo = drive_get(IF_IDE, 0, i);
        if (!dinfo) {
            continue;
        }

        dev = qdev_create((BusState *)s390_bus, "virtio-blk-s390");
        qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
        qdev_init_nofail(dev);
    }
}
Esempio n. 24
0
File: nbd.c Progetto: pleed/pyqemu
static int nbd_open(BlockDriverState *bs, const char* filename, int flags)
{
    BDRVNBDState *s = bs->opaque;
    uint32_t nbdflags;

    char *file;
    char *name;
    const char *host;
    const char *unixpath;
    int sock;
    off_t size;
    size_t blocksize;
    int ret;
    int err = -EINVAL;

    file = qemu_strdup(filename);

    name = strstr(file, EN_OPTSTR);
    if (name) {
        if (name[strlen(EN_OPTSTR)] == 0) {
            goto out;
        }
        name[0] = 0;
        name += strlen(EN_OPTSTR);
    }

    if (!strstart(file, "nbd:", &host)) {
        goto out;
    }

    if (strstart(host, "unix:", &unixpath)) {

        if (unixpath[0] != '/') {
            goto out;
        }

        sock = unix_socket_outgoing(unixpath);

    } else {
        uint16_t port = NBD_DEFAULT_PORT;
        char *p, *r;
        char hostname[128];

        pstrcpy(hostname, 128, host);

        p = strchr(hostname, ':');
        if (p != NULL) {
            *p = '\0';
            p++;

            port = strtol(p, &r, 0);
            if (r == p) {
                goto out;
            }
        } else if (name == NULL) {
            goto out;
        }

        sock = tcp_socket_outgoing(hostname, port);
    }

    if (sock == -1) {
        err = -errno;
        goto out;
    }

    ret = nbd_receive_negotiate(sock, name, &nbdflags, &size, &blocksize);
    if (ret == -1) {
        err = -errno;
        goto out;
    }

    s->sock = sock;
    s->size = size;
    s->blocksize = blocksize;
    err = 0;

out:
    qemu_free(file);
    return err;
}
Esempio n. 25
0
int wav_start_capture (CaptureState *s, const char *path, int freq,
                       int bits, int nchannels)
{
    WAVState *wav;
    uint8_t hdr[] = {
        0x52, 0x49, 0x46, 0x46, 0x00, 0x00, 0x00, 0x00, 0x57, 0x41, 0x56,
        0x45, 0x66, 0x6d, 0x74, 0x20, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00,
        0x02, 0x00, 0x44, 0xac, 0x00, 0x00, 0x10, 0xb1, 0x02, 0x00, 0x04,
        0x00, 0x10, 0x00, 0x64, 0x61, 0x74, 0x61, 0x00, 0x00, 0x00, 0x00
    };
    audsettings_t as;
    struct audio_capture_ops ops;
    int stereo, bits16, shift;
    CaptureVoiceOut *cap;

    if (bits != 8 && bits != 16) {
        term_printf ("incorrect bit count %d, must be 8 or 16\n", bits);
        return -1;
    }

    if (nchannels != 1 && nchannels != 2) {
        term_printf ("incorrect channel count %d, must be 1 or 2\n",
                     nchannels);
        return -1;
    }

    stereo = nchannels == 2;
    bits16 = bits == 16;

    as.freq = freq;
    as.nchannels = 1 << stereo;
    as.fmt = bits16 ? AUD_FMT_S16 : AUD_FMT_U8;
    as.endianness = 0;

    ops.notify = wav_notify;
    ops.capture = wav_capture;
    ops.destroy = wav_destroy;

    wav = qemu_mallocz (sizeof (*wav));
    if (!wav) {
        term_printf ("Could not allocate memory for wav capture (%zu bytes)",
                     sizeof (*wav));
        return -1;
    }

    shift = bits16 + stereo;
    hdr[34] = bits16 ? 0x10 : 0x08;

    le_store (hdr + 22, as.nchannels, 2);
    le_store (hdr + 24, freq, 4);
    le_store (hdr + 28, freq << shift, 4);
    le_store (hdr + 32, 1 << shift, 2);

    wav->f = qemu_fopen_file (path, "wb");
    if (!wav->f) {
        term_printf ("Failed to open wave file `%s'\nReason: %s\n",
                     path, strerror (errno));
        qemu_free (wav);
        return -1;
    }

    wav->path = qemu_strdup (path);
    wav->bits = bits;
    wav->nchannels = nchannels;
    wav->freq = freq;

    qemu_put_buffer (wav->f, hdr, sizeof (hdr));

    cap = AUD_add_capture (NULL, &as, &ops, wav);
    if (!cap) {
        term_printf ("Failed to add audio capture\n");
        qemu_free (wav->path);
        qemu_fclose (wav->f);
        qemu_free (wav);
        return -1;
    }

    wav->cap = cap;
    s->opaque = wav;
    s->ops = wav_capture_ops;
    return 0;
}
Esempio n. 26
0
void events_dev_init(uint32_t base, qemu_irq irq)
{
    events_state *s;
    int iomemtype;
    AndroidHwConfig*  config = android_hw;

    s = (events_state *) qemu_mallocz(sizeof(events_state));

    /* now set the events capability bits depending on hardware configuration */
    /* apparently, the EV_SYN array is used to indicate which other
     * event classes to consider.
     */

    /* configure EV_KEY array
     *
     * All Android devices must have the following keys:
     *   KEY_HOME, KEY_BACK, KEY_SEND (Call), KEY_END (EndCall),
     *   KEY_SOFT1 (Menu), VOLUME_UP, VOLUME_DOWN
     *
     *   Note that previous models also had a KEY_SOFT2,
     *   and a KEY_POWER  which we still support here.
     *
     *   Newer models have a KEY_SEARCH key, which we always
     *   enable here.
     *
     * A Dpad will send: KEY_DOWN / UP / LEFT / RIGHT / CENTER
     *
     * The KEY_CAMERA button isn't very useful if there is no camera.
     *
     * BTN_MOUSE is sent when the trackball is pressed
     * BTN_TOUCH is sent when the touchscreen is pressed
     */
    events_set_bit (s, EV_SYN, EV_KEY );

    events_set_bit(s, EV_KEY, KEY_HOME);
    events_set_bit(s, EV_KEY, KEY_BACK);
    events_set_bit(s, EV_KEY, KEY_SEND);
    events_set_bit(s, EV_KEY, KEY_END);
    events_set_bit(s, EV_KEY, KEY_SOFT1);
    events_set_bit(s, EV_KEY, KEY_VOLUMEUP);
    events_set_bit(s, EV_KEY, KEY_VOLUMEDOWN);
    events_set_bit(s, EV_KEY, KEY_SOFT2);
    events_set_bit(s, EV_KEY, KEY_POWER);
    events_set_bit(s, EV_KEY, KEY_SEARCH);

    if (config->hw_dPad) {
        events_set_bit(s, EV_KEY, KEY_DOWN);
        events_set_bit(s, EV_KEY, KEY_UP);
        events_set_bit(s, EV_KEY, KEY_LEFT);
        events_set_bit(s, EV_KEY, KEY_RIGHT);
        events_set_bit(s, EV_KEY, KEY_CENTER);
    }

    if (config->hw_trackBall) {
        events_set_bit(s, EV_KEY, BTN_MOUSE);
    }
    if (androidHwConfig_isScreenTouch(config)) {
        events_set_bit(s, EV_KEY, BTN_TOUCH);
    }

    if (strcmp(config->hw_camera_back, "none") ||
        strcmp(config->hw_camera_front, "none")) {
        /* Camera emulation is enabled. */
        events_set_bit(s, EV_KEY, KEY_CAMERA);
    }

    if (config->hw_keyboard) {
        /* since we want to implement Unicode reverse-mapping
         * allow any kind of key, even those not available on
         * the skin.
         *
         * the previous code did set the [1..0x1ff] range, but
         * we don't want to enable certain bits in the middle
         * of the range that are registered for mouse/trackball/joystick
         * events.
         *
         * see "linux_keycodes.h" for the list of events codes.
         */
        events_set_bits(s, EV_KEY, 1, 0xff);
        events_set_bits(s, EV_KEY, 0x160, 0x1ff);

        /* If there is a keyboard, but no DPad, we need to clear the
         * corresponding bits. Doing this is simpler than trying to exclude
         * the DPad values from the ranges above.
         */
        if (!config->hw_dPad) {
            events_clr_bit(s, EV_KEY, KEY_DOWN);
            events_clr_bit(s, EV_KEY, KEY_UP);
            events_clr_bit(s, EV_KEY, KEY_LEFT);
            events_clr_bit(s, EV_KEY, KEY_RIGHT);
            events_clr_bit(s, EV_KEY, KEY_CENTER);
        }
    }

    /* configure EV_REL array
     *
     * EV_REL events are sent when the trackball is moved
     */
    if (config->hw_trackBall) {
        events_set_bit (s, EV_SYN, EV_REL );
        events_set_bits(s, EV_REL, REL_X, REL_Y);
    }

    /* configure EV_ABS array.
     *
     * EV_ABS events are sent when the touchscreen is pressed
     */
    if (!androidHwConfig_isScreenNoTouch(config)) {
        ABSEntry* abs_values;

        events_set_bit (s, EV_SYN, EV_ABS );
        events_set_bits(s, EV_ABS, ABS_X, ABS_Z);
        /* Allocate the absinfo to report the min/max bounds for each
         * absolute dimension. The array must contain 3, or ABS_MAX tuples
         * of (min,max,fuzz,flat) 32-bit values.
         *
         * min and max are the bounds
         * fuzz corresponds to the device's fuziness, we set it to 0
         * flat corresponds to the flat position for JOEYDEV devices,
         * we also set it to 0.
         *
         * There is no need to save/restore this array in a snapshot
         * since the values only depend on the hardware configuration.
         */
        s->abs_info_count = androidHwConfig_isScreenMultiTouch(config) ? ABS_MAX * 4 : 3 * 4;
        const int abs_size = sizeof(uint32_t) * s->abs_info_count;
        s->abs_info = malloc(abs_size);
        memset(s->abs_info, 0, abs_size);
        abs_values = (ABSEntry*)s->abs_info;

        abs_values[ABS_X].max = config->hw_lcd_width-1;
        abs_values[ABS_Y].max = config->hw_lcd_height-1;
        abs_values[ABS_Z].max = 1;

        if (androidHwConfig_isScreenMultiTouch(config)) {
            /*
             * Setup multitouch.
             */
            events_set_bit(s, EV_ABS, ABS_MT_SLOT);
            events_set_bit(s, EV_ABS, ABS_MT_POSITION_X);
            events_set_bit(s, EV_ABS, ABS_MT_POSITION_Y);
            events_set_bit(s, EV_ABS, ABS_MT_TRACKING_ID);
            events_set_bit(s, EV_ABS, ABS_MT_TOUCH_MAJOR);
            events_set_bit(s, EV_ABS, ABS_MT_PRESSURE);

            abs_values[ABS_MT_SLOT].max = multitouch_get_max_slot();
            abs_values[ABS_MT_TRACKING_ID].max = abs_values[ABS_MT_SLOT].max + 1;
            abs_values[ABS_MT_POSITION_X].max = abs_values[ABS_X].max;
            abs_values[ABS_MT_POSITION_Y].max = abs_values[ABS_Y].max;
            abs_values[ABS_MT_TOUCH_MAJOR].max = 0x7fffffff; // TODO: Make it less random
            abs_values[ABS_MT_PRESSURE].max = 0x100; // TODO: Make it less random
        }
    }

    /* configure EV_SW array
     *
     * EV_SW events are sent to indicate that the keyboard lid
     * was closed or opened (done when we switch layouts through
     * KP-7 or KP-9).
     *
     * We only support this when hw.keyboard.lid is true.
     */
    if (config->hw_keyboard && config->hw_keyboard_lid) {
        events_set_bit(s, EV_SYN, EV_SW);
        events_set_bit(s, EV_SW, 0);
    }

    iomemtype = cpu_register_io_memory(events_readfn, events_writefn, s);

    cpu_register_physical_memory(base, 0xfff, iomemtype);

    qemu_add_kbd_event_handler(events_put_keycode, s);
    qemu_add_mouse_event_handler(events_put_mouse, s, 1, "goldfish-events");

    s->base = base;
    s->irq = irq;

    s->first = 0;
    s->last = 0;
    s->state = STATE_INIT;
    s->name = qemu_strdup(config->hw_keyboard_charmap);

    /* This function migh fire buffered events to the device, so
     * ensure that it is called after initialization is complete
     */
    user_event_register_generic(s, events_put_generic);

    register_savevm( "events_state", 0, EVENTS_STATE_SAVE_VERSION,
                      events_state_save, events_state_load, s );
}
Esempio n. 27
0
void add_completion(const char *str)
{
    if (nb_completions < NB_COMPLETIONS_MAX) {
        completions[nb_completions++] = qemu_strdup(str);
    }
}
Esempio n. 28
0
static
void mips_jazz_init (ram_addr_t ram_size,
                     const char *cpu_model,
                     enum jazz_model_e jazz_model)
{
    char *filename;
    int bios_size, n;
    CPUState *env;
    qemu_irq *rc4030, *i8259;
    rc4030_dma *dmas;
    void* rc4030_opaque;
    int s_rtc, s_dma_dummy;
    NICInfo *nd;
    PITState *pit;
    DriveInfo *fds[MAX_FD];
    qemu_irq esp_reset;
    ram_addr_t ram_offset;
    ram_addr_t bios_offset;

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        /* FIXME: All wrong, this maybe should be R3000 for the older JAZZs. */
        cpu_model = "24Kf";
#endif
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    qemu_register_reset(main_cpu_reset, env);

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);

    bios_offset = qemu_ram_alloc(MAGNUM_BIOS_SIZE);
    cpu_register_physical_memory(0x1fc00000LL,
                                 MAGNUM_BIOS_SIZE, bios_offset | IO_MEM_ROM);
    cpu_register_physical_memory(0xfff00000LL,
                                 MAGNUM_BIOS_SIZE, bios_offset | IO_MEM_ROM);

    /* load the BIOS image. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = load_image_targphys(filename, 0xfff00000LL,
                                        MAGNUM_BIOS_SIZE);
        qemu_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > MAGNUM_BIOS_SIZE) {
        fprintf(stderr, "qemu: Could not load MIPS bios '%s'\n",
                bios_name);
        exit(1);
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* Chipset */
    rc4030_opaque = rc4030_init(env->irq[6], env->irq[3], &rc4030, &dmas);
    s_dma_dummy = cpu_register_io_memory(dma_dummy_read, dma_dummy_write, NULL);
    cpu_register_physical_memory(0x8000d000, 0x00001000, s_dma_dummy);

    /* ISA devices */
    i8259 = i8259_init(env->irq[4]);
    isa_bus_new(NULL);
    isa_bus_irqs(i8259);
    DMA_init(0);
    pit = pit_init(0x40, i8259[0]);
    pcspk_init(pit);

    /* ISA IO space at 0x90000000 */
    isa_mmio_init(0x90000000, 0x01000000);
    isa_mem_base = 0x11000000;

    /* Video card */
    switch (jazz_model) {
    case JAZZ_MAGNUM:
        g364fb_mm_init(0x40000000, 0x60000000, 0, rc4030[3]);
        break;
    case JAZZ_PICA61:
        isa_vga_mm_init(0x40000000, 0x60000000, 0);
        break;
    default:
        break;
    }

    /* Network controller */
    for (n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];
        if (!nd->model)
            nd->model = qemu_strdup("dp83932");
        if (strcmp(nd->model, "dp83932") == 0) {
            dp83932_init(nd, 0x80001000, 2, rc4030[4],
                         rc4030_opaque, rc4030_dma_memory_rw);
            break;
        } else if (strcmp(nd->model, "?") == 0) {
            fprintf(stderr, "qemu: Supported NICs: dp83932\n");
            exit(1);
        } else {
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
            exit(1);
        }
    }

    /* SCSI adapter */
    esp_init(0x80002000, 0,
             rc4030_dma_read, rc4030_dma_write, dmas[0],
             rc4030[5], &esp_reset);

    /* Floppy */
    if (drive_get_max_bus(IF_FLOPPY) >= MAX_FD) {
        fprintf(stderr, "qemu: too many floppy drives\n");
        exit(1);
    }
    for (n = 0; n < MAX_FD; n++) {
        fds[n] = drive_get(IF_FLOPPY, 0, n);
    }
    fdctrl_init_sysbus(rc4030[1], 0, 0x80003000, fds);

    /* Real time clock */
    rtc_init(1980);
    s_rtc = cpu_register_io_memory(rtc_read, rtc_write, NULL);
    cpu_register_physical_memory(0x80004000, 0x00001000, s_rtc);

    /* Keyboard (i8042) */
    i8042_mm_init(rc4030[6], rc4030[7], 0x80005000, 0x1000, 0x1);

    /* Serial ports */
    if (serial_hds[0])
        serial_mm_init(0x80006000, 0, rc4030[8], 8000000/16, serial_hds[0], 1);
    if (serial_hds[1])
        serial_mm_init(0x80007000, 0, rc4030[9], 8000000/16, serial_hds[1], 1);

    /* Parallel port */
    if (parallel_hds[0])
        parallel_mm_init(0x80008000, 0, rc4030[0], parallel_hds[0]);

    /* Sound card */
    /* FIXME: missing Jazz sound at 0x8000c000, rc4030[2] */
#ifdef HAS_AUDIO
    audio_init(i8259);
#endif

    /* NVRAM: Unprotected at 0x9000, Protected at 0xa000, Read only at 0xb000 */
    ds1225y_init(0x80009000, "nvram");

    /* LED indicator */
    jazz_led_init(0x8000f000);
}
Esempio n. 29
0
void readline_add_completion(ReadLineState *rs, const char *str)
{
    if (rs->nb_completions < READLINE_MAX_COMPLETIONS) {
        rs->completions[rs->nb_completions++] = qemu_strdup(str);
    }
}