Esempio n. 1
0
template <typename PointInT> void
pcl::ConvexHull<PointInT>::performReconstruction3D (
    PointCloud &hull, std::vector<pcl::Vertices> &polygons, bool fill_polygon_data)
{
  int dimension = 3;

  // True if qhull should free points in qh_freeqhull() or reallocation
  boolT ismalloc = True;
  // output from qh_produce_output(), use NULL to skip qh_produce_output()
  FILE *outfile = NULL;

  if (compute_area_)
    outfile = stderr;

  // option flags for qhull, see qh_opt.htm
  const char *flags = qhull_flags.c_str ();
  // error messages from qhull code
  FILE *errfile = stderr;

  // Array of coordinates for each point
  coordT *points = reinterpret_cast<coordT*> (calloc (indices_->size () * dimension, sizeof (coordT)));

  int j = 0;
  for (size_t i = 0; i < indices_->size (); ++i, j+=dimension)
  {
    points[j + 0] = static_cast<coordT> (input_->points[(*indices_)[i]].x);
    points[j + 1] = static_cast<coordT> (input_->points[(*indices_)[i]].y);
    points[j + 2] = static_cast<coordT> (input_->points[(*indices_)[i]].z);
  }

  // Compute convex hull
  int exitcode = qh_new_qhull (dimension, static_cast<int> (indices_->size ()), points, ismalloc, const_cast<char*> (flags), outfile, errfile);

  // 0 if no error from qhull
  if (exitcode != 0)
  {
    PCL_ERROR ("[pcl::%s::performReconstrution3D] ERROR: qhull was unable to compute a convex hull for the given point cloud (%zu)!\n", getClassName ().c_str (), input_->points.size ());

    hull.points.resize (0);
    hull.width = hull.height = 0;
    polygons.resize (0);

    qh_freeqhull (!qh_ALL);
    int curlong, totlong;
    qh_memfreeshort (&curlong, &totlong);

    return;
  }

  qh_triangulate ();

  int num_facets = qh num_facets;

  int num_vertices = qh num_vertices;
  hull.points.resize (num_vertices);

  vertexT * vertex;
  int i = 0;
  // Max vertex id
  int max_vertex_id = 0;
  FORALLvertices
  {
    if (vertex->id + 1 > max_vertex_id)
      max_vertex_id = vertex->id + 1;
  }

  ++max_vertex_id;
  std::vector<int> qhid_to_pcidx (max_vertex_id);

  FORALLvertices
  {
    // Add vertices to hull point_cloud
    hull.points[i] = input_->points[(*indices_)[qh_pointid (vertex->point)]];

    qhid_to_pcidx[vertex->id] = i; // map the vertex id of qhull to the point cloud index
    ++i;
  }

  if (compute_area_)
  {
    total_area_  = qh totarea;
    total_volume_ = qh totvol;
  }

  if (fill_polygon_data)
  {
    polygons.resize (num_facets);
    int dd = 0;

    facetT * facet;
    FORALLfacets
    {
      polygons[dd].vertices.resize (3);

      // Needed by FOREACHvertex_i_
      int vertex_n, vertex_i;
      FOREACHvertex_i_ ((*facet).vertices)
      //facet_vertices.vertices.push_back (qhid_to_pcidx[vertex->id]);
      polygons[dd].vertices[vertex_i] = qhid_to_pcidx[vertex->id];
      ++dd;
    }
  }
  // Deallocates memory (also the points)
  qh_freeqhull (!qh_ALL);
  int curlong, totlong;
  qh_memfreeshort (&curlong, &totlong);

  hull.width = static_cast<uint32_t> (hull.points.size ());
  hull.height = 1;
  hull.is_dense = false;
}
Esempio n. 2
0
template <typename PointInT> void
pcl::ConvexHull<PointInT>::performReconstruction (PointCloud &hull, std::vector<pcl::Vertices> &polygons,
                                                  bool fill_polygon_data)
{
  // FInd the principal directions
  EIGEN_ALIGN16 Eigen::Matrix3f covariance_matrix;
  Eigen::Vector4f xyz_centroid;
  compute3DCentroid (*input_, *indices_, xyz_centroid);
  computeCovarianceMatrix (*input_, *indices_, xyz_centroid, covariance_matrix);
  EIGEN_ALIGN16 Eigen::Vector3f eigen_values;
  EIGEN_ALIGN16 Eigen::Matrix3f eigen_vectors;
  pcl::eigen33 (covariance_matrix, eigen_vectors, eigen_values);

  Eigen::Affine3f transform1;
  transform1.setIdentity ();
  int dim = 3;

  if (eigen_values[0] / eigen_values[2] < 1.0e-5)
  {
    // We have points laying on a plane, using 2d convex hull
    // Compute transformation bring eigen_vectors.col(i) to z-axis

    eigen_vectors.col (2) = eigen_vectors.col (0).cross (eigen_vectors.col (1));
    eigen_vectors.col (1) = eigen_vectors.col (2).cross (eigen_vectors.col (0));

    transform1 (0, 2) = eigen_vectors (0, 0);
    transform1 (1, 2) = eigen_vectors (1, 0);
    transform1 (2, 2) = eigen_vectors (2, 0);

    transform1 (0, 1) = eigen_vectors (0, 1);
    transform1 (1, 1) = eigen_vectors (1, 1);
    transform1 (2, 1) = eigen_vectors (2, 1);
    transform1 (0, 0) = eigen_vectors (0, 2);
    transform1 (1, 0) = eigen_vectors (1, 2);
    transform1 (2, 0) = eigen_vectors (2, 2);

    transform1 = transform1.inverse ();
    dim = 2;
  }
  else
    transform1.setIdentity ();

  PointCloud cloud_transformed;
  pcl::demeanPointCloud (*input_, *indices_, xyz_centroid, cloud_transformed);
  pcl::transformPointCloud (cloud_transformed, cloud_transformed, transform1);

  // True if qhull should free points in qh_freeqhull() or reallocation
  boolT ismalloc = True;
  // option flags for qhull, see qh_opt.htm
  char flags[] = "qhull Tc";
  // output from qh_produce_output(), use NULL to skip qh_produce_output()
  FILE *outfile = NULL;
  // error messages from qhull code
  FILE *errfile = stderr;
  // 0 if no error from qhull
  int exitcode;

  // Array of coordinates for each point
  coordT *points = (coordT *)calloc (cloud_transformed.points.size () * dim, sizeof(coordT));

  for (size_t i = 0; i < cloud_transformed.points.size (); ++i)
  {
    points[i * dim + 0] = (coordT)cloud_transformed.points[i].x;
    points[i * dim + 1] = (coordT)cloud_transformed.points[i].y;

    if (dim > 2)
      points[i * dim + 2] = (coordT)cloud_transformed.points[i].z;
  }

  // Compute convex hull
  exitcode = qh_new_qhull (dim, cloud_transformed.points.size (), points, ismalloc, flags, outfile, errfile);

  if (exitcode != 0)
  {
    PCL_ERROR ("[pcl::%s::performReconstrution] ERROR: qhull was unable to compute a convex hull for the given point cloud (%lu)!\n", 
               getClassName ().c_str (), (unsigned long) input_->points.size ());

    //check if it fails because of NaN values...
    if (!cloud_transformed.is_dense)
    {
      bool NaNvalues = false;
      for (size_t i = 0; i < cloud_transformed.size (); ++i)
      {
        if (!pcl_isfinite (cloud_transformed.points[i].x) || 
            !pcl_isfinite (cloud_transformed.points[i].y) ||
            !pcl_isfinite (cloud_transformed.points[i].z))
        {
          NaNvalues = true;
          break;
        }
      }

      if (NaNvalues)
        PCL_ERROR ("[pcl::%s::performReconstruction] ERROR: point cloud contains NaN values, consider running pcl::PassThrough filter first to remove NaNs!\n", getClassName ().c_str ());
    }

    hull.points.resize (0);
    hull.width = hull.height = 0;
    polygons.resize (0);

    qh_freeqhull (!qh_ALL);
    int curlong, totlong;
    qh_memfreeshort (&curlong, &totlong);

    return;
  }

  qh_triangulate ();

  int num_facets = qh num_facets;

  int num_vertices = qh num_vertices;
  hull.points.resize (num_vertices);

  vertexT * vertex;
  int i = 0;
  // Max vertex id
  int max_vertex_id = -1;
  FORALLvertices
  {
    if ((int)vertex->id > max_vertex_id)
    max_vertex_id = vertex->id;
  }

  ++max_vertex_id;
  std::vector<int> qhid_to_pcidx (max_vertex_id);

  FORALLvertices
  {
    // Add vertices to hull point_cloud
    hull.points[i].x = vertex->point[0];
    hull.points[i].y = vertex->point[1];

    if (dim>2)
    hull.points[i].z = vertex->point[2];
    else
    hull.points[i].z = 0;

    qhid_to_pcidx[vertex->id] = i; // map the vertex id of qhull to the point cloud index
    ++i;
  }

  if (fill_polygon_data)
  {
    if (dim == 3)
    {
      polygons.resize (num_facets);
      int dd = 0;

      facetT * facet;
      FORALLfacets
      {
        polygons[dd].vertices.resize (3);

        // Needed by FOREACHvertex_i_
        int vertex_n, vertex_i;
        FOREACHvertex_i_((*facet).vertices)
        //facet_vertices.vertices.push_back (qhid_to_pcidx[vertex->id]);
        polygons[dd].vertices[vertex_i] = qhid_to_pcidx[vertex->id];

        ++dd;
      }
    }
    else
    {