bool attitude_error_estimator_update(attitude_error_estimator_t* estimator)
{
	quat_t quat_attitude = estimator->ahrs->qe;
	quat_t quat_ref = estimator->quat_ref;
	quat_t quat_error;

	// Compute quaternioin error in global frame
	quat_error = quaternions_multiply(quat_ref, quaternions_inverse(quat_attitude));
	
	// Express error in local coordinates
	quat_error = quaternions_multiply(	quaternions_inverse(quat_attitude),
										quaternions_multiply(quat_error, 
															 quat_attitude)  );

	// Find shortest rotation
	if (quat_error.s < 0)
	{
		quat_error = quaternions_inverse(quat_error);
	}

	// Approximate roll pitch and yaw errors with quat_error vector part
	estimator->rpy_errors[0] = 2 * quat_error.v[0];
	estimator->rpy_errors[1] = 2 * quat_error.v[1];
	estimator->rpy_errors[2] = 2 * quat_error.v[2];

	return true;
}
bool Magnetometer_sim::update(void)
{
    bool success = true;

    // Update dynamic model
    success &= dynamic_model_.update();

    // Field pointing 62 degrees down to the north (NED)
    const float mag_field_lf[3]     = { 0.46947156f, 0.0f, 0.88294759f };
    float mag_field_bf[3];

    // Get current attitude
    quat_t attitude = dynamic_model_.attitude();

    // Get magnetic field in body frame
    quaternions_rotate_vector(quaternions_inverse(attitude), mag_field_lf, mag_field_bf);
    // quaternions_rotate_vector( attitude, mag_field_lf, mag_field_bf);

    // Save in member array
    mag_field_[X] = mag_field_bf[X];
    mag_field_[Y] = mag_field_bf[Y];
    mag_field_[Z] = mag_field_bf[Z];

    return success;
}
Esempio n. 3
0
bool Flow_sim::update(void)
{
    raytracing::Ray           ray_tmp;
    raytracing::Intersection  inter_tmp;
    raytracing::Object*       obj_tmp = NULL;
    Mat<2,1>                  of_tmp;

    // Get current velocity
    quat_t att = dynamic_model_.attitude();
    float vel_lf[3] = {dynamic_model_.velocity_lf()[0], dynamic_model_.velocity_lf()[1], dynamic_model_.velocity_lf()[2]};
    float vel_bf[3];
    quaternions_rotate_vector(att, vel_lf, vel_bf);
    Mat<3,1> vel;
    vel[0] = vel_bf[0];
    vel[1] = vel_bf[1];
    vel[2] = vel_bf[2];


    for (uint32_t i = 0; i < of_count; i++)
    {
        // Translate ray
        local_position_t pos_lf = dynamic_model_.position_lf();
        ray_tmp.set_origin(Vector3f{pos_lf.pos[0], pos_lf.pos[1], pos_lf.pos[2]});

        // Rotate ray
        float orient_bf[3] = {rays_[i].direction()[0], rays_[i].direction()[1], rays_[i].direction()[2]};
        float orient_lf[3];
        quaternions_rotate_vector( quaternions_inverse(att), orient_bf, orient_lf);
        ray_tmp.set_direction(Vector3f{orient_lf[0], orient_lf[1], orient_lf[2]});

        // Test intersection
        float proximity;
        if (world_.intersect(ray_tmp, inter_tmp, obj_tmp))
        {
            proximity = 1.0f / inter_tmp.distance();
        }
        else
        {
            proximity = 0.0f;
        }

        // Compute optic flow
        // of_tmp = jacob_[i] % (vel * proximity);
        // of.x[i] = of_tmp[0];
        // of.y[i] = of_tmp[1];

        of.x[i] = (vel[0] * proximity) * quick_trig_sin(of_loc.x[i]);
        of.y[i] = 0.0f;
    }

    return true;
}
void stabilisation_copter_send_outputs(stabilisation_copter_t* stabilisation_copter, const mavlink_stream_t* mavlink_stream, mavlink_message_t* msg)
{
	aero_attitude_t attitude_yaw_inverse;
	quat_t q_rot,qtmp;
	
	attitude_yaw_inverse = coord_conventions_quat_to_aero(stabilisation_copter->ahrs->qe);
	attitude_yaw_inverse.rpy[0] = 0.0f;
	attitude_yaw_inverse.rpy[1] = 0.0f;
	attitude_yaw_inverse.rpy[2] = attitude_yaw_inverse.rpy[2];

	q_rot = coord_conventions_quaternion_from_aero(attitude_yaw_inverse);
	qtmp=quaternions_create_from_vector(stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.rpy);
	quat_t rpy_local;
	quaternions_rotate_vector(quaternions_inverse(q_rot), qtmp.v, rpy_local.v);
	
	mavlink_msg_debug_vect_pack(	mavlink_stream->sysid,
									mavlink_stream->compid,
									msg,
									"OutVel",
									time_keeper_get_micros(),
									-rpy_local.v[X] * 1000,
									rpy_local.v[Y] * 1000,
									stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.rpy[YAW] * 1000);
	mavlink_stream_send(mavlink_stream,msg);
	
	mavlink_msg_debug_vect_pack(	mavlink_stream->sysid,
									mavlink_stream->compid,
									msg,
									"OutAtt",
									time_keeper_get_micros(),
									stabilisation_copter->stabiliser_stack.attitude_stabiliser.output.rpy[ROLL] * 1000,
									stabilisation_copter->stabiliser_stack.attitude_stabiliser.output.rpy[PITCH] * 1000,
									stabilisation_copter->stabiliser_stack.attitude_stabiliser.output.rpy[YAW] * 1000);
	mavlink_stream_send(mavlink_stream,msg);
	
	mavlink_msg_debug_vect_pack(	mavlink_stream->sysid,
									mavlink_stream->compid,
									msg,
									"OutRate",
									time_keeper_get_micros(),
									stabilisation_copter->stabiliser_stack.rate_stabiliser.output.rpy[ROLL] * 1000,
									stabilisation_copter->stabiliser_stack.rate_stabiliser.output.rpy[PITCH] * 1000,
									stabilisation_copter->stabiliser_stack.rate_stabiliser.output.rpy[YAW] * 1000);
	mavlink_stream_send(mavlink_stream,msg);
}
static void get_velocity_command_from_semilocal_to_global(const velocity_controller_copter_t* controller, float command[3])
{
	aero_attitude_t semilocal_frame_rotation;
	quat_t q_semilocal;

	// Get current heading
	float heading = coord_conventions_quat_to_aero(controller->ahrs->qe).rpy[YAW];
	semilocal_frame_rotation.rpy[ROLL]  = 0.0f;
	semilocal_frame_rotation.rpy[PITCH] = 0.0f;
	semilocal_frame_rotation.rpy[YAW]   = heading;		

	// Get rotation quaternion from semilocal frame to global frame
	q_semilocal = coord_conventions_quaternion_from_aero( semilocal_frame_rotation );

	// Rotate command from semilocal to global
	quaternions_rotate_vector( 	quaternions_inverse( q_semilocal ), 	// TODO: Check why this is not "quaternions_inverse( q_semilocal )" here
	// quaternions_rotate_vector( 	q_semilocal, 							
								controller->velocity_command->xyz, 
								command );
}
static void get_velocity_command_from_local_to_global(const velocity_controller_copter_t* controller, float command[3])
{
	quaternions_rotate_vector( 	quaternions_inverse( controller->ahrs->qe ), 
								controller->velocity_command->xyz, 
								command);
}
void stabilisation_copter_cascade_stabilise(stabilisation_copter_t* stabilisation_copter)
{
	float rpyt_errors[4];
	control_command_t input;
	int32_t i;
	quat_t qtmp, q_rot;
	aero_attitude_t attitude_yaw_inverse;
	
	// set the controller input
	input= *stabilisation_copter->controls;
	switch (stabilisation_copter->controls->control_mode) 
	{
	case VELOCITY_COMMAND_MODE:
		
		attitude_yaw_inverse = coord_conventions_quat_to_aero(stabilisation_copter->ahrs->qe);
		attitude_yaw_inverse.rpy[0] = 0.0f;
		attitude_yaw_inverse.rpy[1] = 0.0f;
		attitude_yaw_inverse.rpy[2] = attitude_yaw_inverse.rpy[2];
		
		//qtmp=quaternions_create_from_vector(input.tvel);
		//quat_t input_global = quaternions_local_to_global(stabilisation_copter->ahrs->qe, qtmp);
		
		q_rot = coord_conventions_quaternion_from_aero(attitude_yaw_inverse);
		
		quat_t input_global;
		quaternions_rotate_vector(q_rot, input.tvel, input_global.v);
		
		input.tvel[X] = input_global.v[X];
		input.tvel[Y] = input_global.v[Y];
		input.tvel[Z] = input_global.v[Z];
		
		rpyt_errors[X] = input.tvel[X] - stabilisation_copter->pos_est->vel[X];
		rpyt_errors[Y] = input.tvel[Y] - stabilisation_copter->pos_est->vel[Y];
		rpyt_errors[3] = -(input.tvel[Z] - stabilisation_copter->pos_est->vel[Z]);
		
		if (stabilisation_copter->controls->yaw_mode == YAW_COORDINATED) 
		{
			float rel_heading_coordinated;
			if ((maths_f_abs(stabilisation_copter->pos_est->vel_bf[X])<0.001f)&&(maths_f_abs(stabilisation_copter->pos_est->vel_bf[Y])<0.001f))
			{
				rel_heading_coordinated = 0.0f;
			}
			else
			{
				rel_heading_coordinated = atan2(stabilisation_copter->pos_est->vel_bf[Y], stabilisation_copter->pos_est->vel_bf[X]);
			}
			
			float w = 0.5f * (maths_sigmoid(vectors_norm(stabilisation_copter->pos_est->vel_bf)-stabilisation_copter->stabiliser_stack.yaw_coordination_velocity) + 1.0f);
			input.rpy[YAW] = (1.0f - w) * input.rpy[YAW] + w * rel_heading_coordinated;
		}

		rpyt_errors[YAW]= input.rpy[YAW];
		
		// run PID update on all velocity controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.velocity_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
		
		//velocity_stabiliser.output.thrust = maths_f_min(velocity_stabiliser.output.thrust,stabilisation_param.controls->thrust);
		stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.thrust += stabilisation_copter->thrust_hover_point;
		stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.theading = input.theading;
		input = stabilisation_copter->stabiliser_stack.velocity_stabiliser.output;
		
		qtmp=quaternions_create_from_vector(stabilisation_copter->stabiliser_stack.velocity_stabiliser.output.rpy);
		//quat_t rpy_local = quaternions_global_to_local(stabilisation_copter->ahrs->qe, qtmp);
		
		quat_t rpy_local;
		quaternions_rotate_vector(quaternions_inverse(q_rot), qtmp.v, rpy_local.v);
		
		input.rpy[ROLL] = rpy_local.v[Y];
		input.rpy[PITCH] = -rpy_local.v[X];
		//input.thrust = stabilisation_copter->controls->tvel[Z];
		
	// -- no break here  - we want to run the lower level modes as well! -- 
	
	case ATTITUDE_COMMAND_MODE:
		// run absolute attitude_filter controller
		rpyt_errors[0]= input.rpy[0] - ( - stabilisation_copter->ahrs->up_vec.v[1] ); 
		rpyt_errors[1]= input.rpy[1] - stabilisation_copter->ahrs->up_vec.v[0];
		
		if ((stabilisation_copter->controls->yaw_mode == YAW_ABSOLUTE) ) 
		{
			rpyt_errors[2] =maths_calc_smaller_angle(input.theading- stabilisation_copter->pos_est->local_position.heading);
		}
		else
		{ // relative yaw
			rpyt_errors[2]= input.rpy[2];
		}
		
		rpyt_errors[3]= input.thrust;       // no feedback for thrust at this level
		
		// run PID update on all attitude_filter controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.attitude_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
		
		// use output of attitude_filter controller to set rate setpoints for rate controller 
		input = stabilisation_copter->stabiliser_stack.attitude_stabiliser.output;
	
	// -- no break here  - we want to run the lower level modes as well! -- 
	
	case RATE_COMMAND_MODE: // this level is always run
		// get rate measurements from IMU (filtered angular rates)
		for (i=0; i<3; i++)
		{
			rpyt_errors[i]= input.rpy[i]- stabilisation_copter->ahrs->angular_speed[i];
		}
		rpyt_errors[3] = input.thrust ;  // no feedback for thrust at this level
		
		// run PID update on all rate controllers
		stabilisation_run(&stabilisation_copter->stabiliser_stack.rate_stabiliser, stabilisation_copter->imu->dt, rpyt_errors);
	}
	
	// mix to servo outputs depending on configuration
	if( stabilisation_copter->motor_layout == QUADCOPTER_MOTOR_LAYOUT_DIAG )
	{
		stabilisation_copter_mix_to_servos_diag_quad(&stabilisation_copter->stabiliser_stack.rate_stabiliser.output, stabilisation_copter->servos);
	}
	else if( stabilisation_copter->motor_layout == QUADCOPTER_MOTOR_LAYOUT_CROSS )
	{
		stabilisation_copter_mix_to_servos_cross_quad(&stabilisation_copter->stabiliser_stack.rate_stabiliser.output, stabilisation_copter->servos);

	}
}