Esempio n. 1
0
void pull( Treap * a ){
	a->sum = Sum( a->l ) + Sum( a->r ) + a->val;
	a->lsum = Sum( a->l ) + a->val + max( 0 , lSum( a->r ) );
	if( a->l ) a->lsum = max( lSum( a->l ) , a->lsum );
	a->rsum = Sum( a->r ) + a->val + max( 0 , rSum( a->l ) );
	if( a->r ) a->rsum = max( rSum( a->r ) , a->rsum );
	a->maxsum = max( 0 , rSum( a->l ) ) + a->val + max( 0 , lSum( a->r ) );
	a->maxsum = max( a->maxsum , max( maxSum( a->l ) , maxSum( a->r ) ) );
	a->sz = Size( a->l ) + Size( a->r ) + 1;
}
Esempio n. 2
0
void hoSPIRITOperator<T>::sum_over_src_channel(const ARRAY_TYPE& x, ARRAY_TYPE& r)
{
    try
    {
        boost::shared_ptr< std::vector<size_t> > dim = x.get_dimensions();
        size_t NDim = dim->size();

        if (NDim < 2) return;

        std::vector<size_t> dimR(NDim - 1);
        std::vector<size_t> dimRInternal = *dim;
        dimRInternal[NDim - 2] = 1;

        size_t d;
        for (d = 0; d<NDim - 2; d++)
        {
            dimR[d] = (*dim)[d];
        }
        dimR[NDim - 2] = (*dim)[NDim - 1];

        if (!r.dimensions_equal(&dimR))
        {
            r.create(&dimR);
        }

        if (x.get_size(NDim - 2) <= 1)
        {
            memcpy(r.begin(), x.begin(), x.get_number_of_bytes());
            return;
        }

        hoNDArray<T> rSum(dimRInternal, r.begin());

        GADGET_CATCH_THROW(Gadgetron::sum_over_dimension(x, rSum, NDim - 2));
    }
    catch (...)
    {
        GADGET_THROW("Errors in hoSPIRITOperator<T>::sum_over_src_channel(const ARRAY_TYPE& x, ARRAY_TYPE& r) ... ");
    }
}
Esempio n. 3
0
/*! \brief Tests the **reduce_sum** kernel.
 *  \details The kernel computes the sum of the elements of each row in an array.
 */
TEST (Reduce, reduce_sum)
{
    try
    {
        const unsigned int rows = 1024;
        const unsigned int cols = 1024;
        const unsigned int bufferInSize = cols * rows * sizeof (cl_float);
        const unsigned int bufferOutSize = rows * sizeof (cl_float);

        // Setup the OpenCL environment
        clutils::CLEnv clEnv;
        clEnv.addContext (0);
        clEnv.addQueue (0, 0, CL_QUEUE_PROFILING_ENABLE);
        clEnv.addProgram (0, kernel_filename_reduce);

        // Configure kernel execution parameters
        clutils::CLEnvInfo<1> info (0, 0, 0, { 0 }, 0);
        cl_algo::ICP::Reduce<cl_algo::ICP::ReduceConfig::SUM, cl_float> rSum (clEnv, info);
        rSum.init (cols, rows);

        // Initialize data (writes on staging buffer directly)
        std::generate (rSum.hPtrIn, rSum.hPtrIn + bufferInSize / sizeof (cl_float), ICP::rNum_R_0_1);
        // ICP::printBuffer ("Original:", rSum.hPtrIn, cols, rows);

        rSum.write ();  // Copy data to device
        
        rSum.run ();  // Execute kernels (~ 44 us)
        
        cl_float *results = (cl_float *) rSum.read ();  // Copy results to host
        // ICP::printBuffer ("Received:", results, 1, rows);

        // Produce reference array of distances
        cl_float *refSum = new cl_float[rows];
        ICP::cpuReduceSum (rSum.hPtrIn, refSum, cols, rows);
        // ICP::printBuffer ("Expected:", refSum, 1, rows);

        // Verify blurred output
        float eps = 42000 * std::numeric_limits<float>::epsilon ();  // 0.00500679
        for (uint i = 0; i < rows; ++i)
            ASSERT_LT (std::abs (refSum[i] - results[i]), eps);

        // Profiling ===========================================================
        if (profiling)
        {
            const int nRepeat = 1;  /* Number of times to perform the tests. */

            // CPU
            clutils::CPUTimer<double, std::milli> cTimer;
            clutils::ProfilingInfo<nRepeat> pCPU ("CPU");
            for (int i = 0; i < nRepeat; ++i)
            {
                cTimer.start ();
                ICP::cpuReduceSum (rSum.hPtrIn, refSum, cols, rows);
                pCPU[i] = cTimer.stop ();
            }
            
            // GPU
            clutils::GPUTimer<std::milli> gTimer (clEnv.devices[0][0]);
            clutils::ProfilingInfo<nRepeat> pGPU ("GPU");
            for (int i = 0; i < nRepeat; ++i)
                pGPU[i] = rSum.run (gTimer);

            // Benchmark
            pGPU.print (pCPU, "Reduce<Sum>");
        }

    }
    catch (const cl::Error &error)
    {
        std::cerr << error.what ()
                  << " (" << clutils::getOpenCLErrorCodeString (error.err ()) 
                  << ")"  << std::endl;
        exit (EXIT_FAILURE);
    }
}
Esempio n. 4
0
/* $begin rsum-c */
int rSum(int *Start, int Count)
{
    if (Count <= 0)
	return 0;
    return *Start + rSum(Start+1, Count-1);
}
Esempio n. 5
0
int rSum(int* start,int count){
  if(count<=0)return 0;
  return *start + rSum(start+1,count-1);
}
Esempio n. 6
0
int rSumFits(int n, int m){
	return rSum(n) <= m;
}
Esempio n. 7
0
void CrossNLMFilter::Apply(const TwoDArray<Color> &img,
               const TwoDArray<Feature> &featureImg,
               const TwoDArray<Feature> &featureVarImg,
               const TwoDArray<Color> &rImg,
               const TwoDArray<Color> &varImg,
               vector<TwoDArray<Color> > &fltArray,
               vector<TwoDArray<float> > &mseArray,
               vector<TwoDArray<float> > &priArray) const {    
#pragma omp parallel for num_threads(PbrtOptions.nCores) schedule(static)   
    for(int taskId = 0; taskId < nTasks; taskId++) {
        int txs, txe, tys, tye;
        ComputeSubWindow(taskId, nTasks, width, height,
                         &txs, &txe, &tys, &tye); 
        for(int y = tys; y < tye; y++) 
            for(int x = txs; x < txe; x++) { 
                vector<Color> sum(scaleR.size(), Color(0.f));
                vector<Color> rSum(scaleR.size(), Color(0.f));
                vector<Color> rSumSq(scaleR.size(), Color(0.f));
                vector<float> wSum(scaleR.size(), 0.f);
                vector<vector<float> > wArray(scaleR.size());
                for(size_t p = 0; p < wArray.size(); p++) {
                    wArray[p].resize(patchWidth*patchWidth);
                }
                Feature feature = featureImg(x, y);
                Feature featureVar = featureVarImg(x, y);            
 
                // Filter using pixels within search range
                for(int dy = -searchRadius; dy <= searchRadius; dy++)
                    for(int dx = -searchRadius; dx <= searchRadius; dx++) {
                        int xx = x + dx;
                        int yy = y + dy;
                        if(xx < 0 || yy < 0 || xx >= width || yy >= height) 
                            continue;
                        Color diffSqSum(0.f, 0.f, 0.f);
                        // Calculate block distance
                        for(int by = -patchRadius; by <= patchRadius; by++)
                            for(int bx = -patchRadius; bx <= patchRadius; bx++) {
                                int xbx = x + bx;
                                int yby = y + by;
                                int xxbx = xx + bx;
                                int yyby = yy + by;
                                if( xbx < 0 || xbx >= width ||
                                    yby < 0 || yby >= height ||
                                    xxbx < 0 || xxbx >= width ||
                                    yyby < 0 || yyby >= height)
                                    continue;

                                Color diff = rImg(xbx, yby) - rImg(xxbx, yyby);
                                diffSqSum += (diff*diff);
                            }
                        diffSqSum *= invPatchSize;
                        float dist = Avg(diffSqSum);
                        Feature fDiff = feature - featureImg(xx, yy);                    
                        Feature fVarSum = featureVar + featureVarImg(xx, yy);
                        Feature fDist = (fDiff*fDiff)/fVarSum.Max(c_VarMax);
                        // For each parameter, calculate information necessary for 
                        // filtering and SURE estimation
                        for(size_t p = 0; p < scaleR.size(); p++) {
                            if(scaleR[p] == 0.f) {
                                continue;
                            }
                            float weight = fmath::exp(dist*scaleR[p] +
                                                      Sum(fDist*scaleF));
                            sum[p] += weight * img(xx, yy);
                            rSum[p] += weight * rImg(xx, yy);
                            rSumSq[p] += weight * rImg(xx, yy) * rImg(xx, yy);
                            wSum[p] += weight;
                            if(dy >= -patchRadius && dy <= patchRadius &&
                               dx >= -patchRadius && dx <= patchRadius) {
                                wArray[p][(dy+patchRadius)*patchWidth+(dx+patchRadius)] =
                                    weight;
                            }
                        }
                    }                

                for(size_t p = 0; p < scaleR.size(); p++) {
                    if(scaleR[p] == 0.f) {
                        fltArray[p](x, y) = img(x, y);
                        mseArray[p](x, y) = Avg(2.f*varImg(x, y));
                        continue;
                    }
                    float invWSum = 1.f/wSum[p];
                    Color xl    = sum[p] * invWSum;
                    Color rxl   = rSum[p] * invWSum;
                    Color rxlSq = rSumSq[p] * invWSum;
                    Color ryl   = rImg(x, y);
                    Color dxdy  = (-2.f*scaleR[p])*(rxlSq - rxl*rxl)*invPatchSize + Color(invWSum);

                    Color tmp;
                    for(int by = -patchRadius; by <= patchRadius; by++)
                        for(int bx = -patchRadius; bx <= patchRadius; bx++) {
                            int xbpx = x+bx;
                            int ybpy = y+by;
                            int xbmx = x-bx;
                            int ybmy = y-by;                        
                            if( xbpx < 0 || xbpx >= width  ||
                                ybpy < 0 || ybpy >= height ||
                                xbmx < 0 || xbmx >= width  ||
                                ybmy < 0 || ybmy >= height)
                                continue;
                            Color rylpb = rImg(xbpx, ybpy);
                            Color rylmb = rImg(xbmx, ybmy);
                            float w = wArray[p][(-by+patchRadius)*patchWidth+(-bx+patchRadius)];
                            tmp += w*(ryl - rylpb)*(rxl - rylmb);
                        }
                    tmp *= (-2.f*scaleR[p])*invPatchSize*invWSum;
                    dxdy += tmp;
                    Color mse = (rxl-ryl)*(rxl-ryl) + 2.f*varImg(x, y)*dxdy - varImg(x, y);
                    Color pri = (mse + varImg(x, y));
                    fltArray[p](x, y) = xl;
                    mseArray[p](x, y) = Avg(mse);
                    priArray[p](x, y) = Avg(pri) / (xl.Y()*xl.Y() + 1e-2f);
                } 
            }            
    }
}