Esempio n. 1
0
static RList * r_core_asm_back_disassemble_all(RCore *core, ut64 addr, ut64 len, ut64 max_hit_count, ut32 extra_padding){
	RList *hits = r_core_asm_hit_list_new ();
	RCoreAsmHit dummy_value;
	RCoreAsmHit *hit = NULL;
	RAsmOp op;
	ut8 *buf = (ut8 *)malloc (len + extra_padding);
	int current_instr_len = 0;
	ut64 current_instr_addr = addr,
		 current_buf_pos = len - 1,
		 hit_count = 0;

	memset (&dummy_value, 0, sizeof (RCoreAsmHit));

	if (hits == NULL || buf == NULL ){
		if (hits) {
			r_list_purge (hits);
			free (hits);
		}
		free (buf);
		return NULL;
	}

	if (r_io_read_at (core->io, addr-(len+extra_padding), buf, len+extra_padding) != len+extra_padding) {
		r_list_purge (hits);
		free (hits);
		free (buf);
		return NULL;
	}

	if (len == 0){
		return hits;
	}

	current_buf_pos = len - 1;

	do {
		if (r_cons_singleton ()->breaked) break;
		// reset assembler
		r_asm_set_pc (core->assembler, current_instr_addr);
		current_instr_len = len - current_buf_pos + extra_padding;
		IFDBG eprintf("current_buf_pos: 0x%"PFMT64x", current_instr_len: %d\n", current_buf_pos, current_instr_len);
		current_instr_len = r_asm_disassemble (core->assembler, &op, buf+current_buf_pos, current_instr_len);
		hit = r_core_asm_hit_new ();
		hit->addr = current_instr_addr;
		hit->len = current_instr_len;
		hit->code = NULL;
		r_list_add_sorted (hits, hit, ((RListComparator)rcoreasm_address_comparator));

		current_buf_pos--;
		current_instr_addr--;
		hit_count++;
	} while ( ((int) current_buf_pos  >= 0) && (int)(len - current_buf_pos) >= 0 && hit_count <= max_hit_count);

	free(buf);
	return hits;
}
Esempio n. 2
0
File: io.c Progetto: Rogunix/radare2
R_API ut64 r_io_read_i(RIO *io, ut64 addr, int sz, int endian) {
	ut64 ret = 0LL;
	int err;
	ut8 buf[8];
	if (sz > 8) sz = 8;
	if (sz < 0) sz = 1;
	err = r_io_read_at (io, addr, buf, sz);
	if (err == sz) r_mem_copyendian ((ut8*)&ret, buf, sz, endian);
	else return -1;
	//else perror("Cannot read");
	return ret;
}
Esempio n. 3
0
File: io.c Progetto: m403/radare2
R_API RBuffer *r_io_read_buf(RIO *io, ut64 addr, int len) {
	RBuffer *b = R_NEW0 (RBuffer);
	if (!b) return NULL;
	b->buf = malloc (len);
	if (!b->buf) {
		free (b);
		return NULL;
	}
	len = r_io_read_at (io, addr, b->buf, len);
	b->length = (len < 0)? 0: len;
	return b;
}
Esempio n. 4
0
static void cmd_write_bits(RCore *core, int set, ut64 val) {
	ut64 ret, orig;
	// used to set/unset bit in current address
	r_io_read_at (core->io, core->offset, (ut8*)&orig, sizeof (orig));
	if (set) {
		ret = orig | val;
	} else {
		ret = orig & (~(val));
	}
	if (!r_core_write_at (core, core->offset, (const ut8*)&ret, sizeof (ret))) {
		cmd_write_fail ();
	}
}
Esempio n. 5
0
File: asm.c Progetto: moon2l/radare2
R_API RList *r_core_asm_bwdisassemble (RCore *core, ut64 addr, int n, int len) {
	RCoreAsmHit *hit;
	RAsmOp op;
	RList *hits = NULL;
	ut8 *buf;
	ut64 at;
	int instrlen, ni, idx;

	if (!(hits = r_core_asm_hit_list_new ()))
		return NULL;
	buf = (ut8 *)malloc (len);
	if (!buf) {
		r_list_destroy (hits);
		return NULL;
	}
	if (r_io_read_at (core->io, addr-len, buf, len) != len) {
		r_list_destroy (hits);
		free (buf);
		return NULL;
	}
	for (idx = 1; idx < len; idx++) {
		if (r_cons_singleton ()->breaked)
			break;
		at = addr - idx; ni = 1;
		while (at < addr) {
			r_asm_set_pc (core->assembler, at);
			//XXX HACK We need another way to detect invalid disasm!!
			if (!(instrlen = r_asm_disassemble (core->assembler, &op, buf+(len-(addr-at)), addr-at)) || strstr (op.buf_asm, "invalid")) {
				break;
			} else {
				at += instrlen;
				if (at == addr) {
					if (ni == n) {
						if (!(hit = r_core_asm_hit_new ())) {
							r_list_destroy (hits);
							free (buf);
							return NULL;
						}
						hit->addr = addr-idx;
						hit->len = idx;
						hit->code = NULL;
						r_list_append (hits, hit);
					}
				} else ni++;
			}
		}
	}
	r_asm_set_pc (core->assembler, addr);
	free (buf);
	return hits;
}
Esempio n. 6
0
R_API void r_core_visual_asm(RCore *core) {
	RCoreVisualAsm cva = {0};
	cva.core = core;

	r_io_read_at (core->io, core->offset, cva.buf, sizeof (cva.buf));
	cva.blocklen = r_hex_bin2str (cva.buf, sizeof (cva.buf), cva.blockbuf);

	r_line_readline_cb (readline_callback, &cva);

	if (cva.acode && cva.acode->len>0)
		if (r_cons_yesno ('y', "Save changes? (Y/n)"))
			r_core_cmdf (core, "wx %s", cva.acode->buf_hex);
	r_asm_code_free (cva.acode);
}
Esempio n. 7
0
R_API int r_core_read_at(RCore *core, ut64 addr, ut8 *buf, int size) {
	int ret;
	if (!core->io || !core->file || size<1)
		return R_FALSE;
	r_io_set_fd (core->io, core->file->fd); // XXX ignore ret? -- ultra slow method.. inverse resolution of io plugin brbrb
	ret = r_io_read_at (core->io, addr, buf, size);
	if (ret != size) {
		if (ret<size && ret>0)
			memset (buf+ret, 0xff, size-ret);
		else	memset (buf, 0xff, size);
	}
	if (addr>=core->offset && addr<=core->offset+core->blocksize)
		r_core_block_read (core, 0);
	return (ret!=UT64_MAX);
}
Esempio n. 8
0
File: cio.c Progetto: f0829/radare2
R_API bool r_core_dump(RCore *core, const char *file, ut64 addr, ut64 size, int append) {
	ut64 i;
	ut8 *buf;
	int bs = core->blocksize;
	FILE *fd;
	if (append) {
		fd = r_sandbox_fopen (file, "ab");
	} else {
		r_sys_truncate (file, 0);
		fd = r_sandbox_fopen (file, "wb");
	}
	if (!fd) {
		eprintf ("Cannot open '%s' for writing\n", file);
		return false;
	}
	/* some io backends seems to be buggy in those cases */
	if (bs > 4096) {
		bs = 4096;
	}
	buf = malloc (bs);
	if (!buf) {
		eprintf ("Cannot alloc %d byte(s)\n", bs);
		fclose (fd);
		return false;
	}
	r_cons_break_push (NULL, NULL);
	for (i = 0; i < size; i += bs) {
		if (r_cons_is_breaked ()) {
			break;
		}
		if ((i + bs) > size) {
			bs = size - i;
		}
		r_io_read_at (core->io, addr + i, buf, bs);
		if (fwrite (buf, bs, 1, fd) < 1) {
			eprintf ("write error\n");
			break;
		}
	}
	r_cons_break_pop ();
	fclose (fd);
	free (buf);
	return true;
}
Esempio n. 9
0
static bool ioMemcpy (RCore *core, ut64 dst, ut64 src, int len) {
	bool ret = false;
	if (len > 0) {
		ut8 * buf = calloc (1, len);
		if (buf) {
			if (r_io_read_at (core->io, src, buf, len)) {
				if (r_io_write_at (core->io, dst, buf, len)) {
					r_core_block_read (core);
					ret = true;
				} else {
					eprintf ("r_io_write_at failed at 0x%08"PFMT64x"\n", dst);
				}
			} else {
				eprintf ("r_io_read_at failed at 0x%08"PFMT64x"\n", src);
			}
			free (buf);
		}
	}
	return ret;
}
Esempio n. 10
0
R_API int r_core_read_at(RCore *core, ut64 addr, ut8 *buf, int size) {
	int ret;
	if (!core->io || !core->file || size<1)
		return R_FALSE;
#if 0
	r_io_set_fd (core->io, core->file->fd); // XXX ignore ret? -- ultra slow method.. inverse resolution of io plugin brbrb
	ret = r_io_read_at (core->io, addr, buf, size);
	if (addr>=core->offset && addr<=core->offset+core->blocksize)
		r_core_block_read (core, 0);
#else
	r_io_set_fd (core->io, core->file->fd); // XXX ignore ret? -- ultra slow method.. inverse resolution of io plugin brbrb
	//ret = r_io_read_at (core->io, addr, buf, size);
	r_io_seek (core->io, addr, R_IO_SEEK_SET);
	ret = r_io_read (core->io, buf, size);
	if (ret != size) {
		if (ret>=size || ret<0) ret = 0;
		memset (buf+ret, 0xff, size-ret);
	}
	if (addr>=core->offset && addr<=core->offset+core->blocksize)
		r_core_block_read (core, 0);
#endif
	return (ret==size); //UT64_MAX);
}
Esempio n. 11
0
bool test_r_io_priority(void) {
	RIO *io = r_io_new();
	ut32 map0, map1;
	ut64 buf;
	bool ret;

	io->va = true;
	r_io_open_at (io, "malloc://8", R_PERM_RW, 0644, 0x0);
	map0 = r_io_map_get (io, 0)->id;
	ret = r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert ("should be able to read", ret);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x00\x00\x00\x00\x00\x00\x00\x00", 8, "0 should be there initially");
	buf = 0x9090909090909090;
	r_io_write_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x90\x90\x90\x90\x90\x90\x90\x90", 8, "0x90 should have been written");

	r_io_open_at (io, "malloc://2", R_PERM_RW, 0644, 0x4);
	map1 = r_io_map_get (io, 4)->id;
	r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x90\x90\x90\x90\x00\x00\x90\x90", 8, "0x00 from map1 should overlap");

	buf ^= UT64_MAX;
	r_io_write_at (io, 0, (ut8 *)&buf, 8);
	r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x6f\x6f\x6f\x6f\xff\xff\x6f\x6f", 8, "memory has been xored");

	r_io_map_priorize (io, map0);
	r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x6f\x6f\x6f\x6f\x90\x90\x6f\x6f", 8, "map0 should have been prioritized");

	r_io_map_remap (io, map1, 0x2);
	r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x6f\x6f\x6f\x6f\x90\x90\x6f\x6f", 8, "map1 should have been remapped");

	r_io_map_priorize (io, map1);
	r_io_read_at (io, 0, (ut8 *)&buf, 8);
	mu_assert_memeq ((ut8 *)&buf, (ut8 *)"\x6f\x6f\xff\xff\x90\x90\x6f\x6f", 8, "map1 should have been prioritized");

	r_io_free (io);
	mu_end;
}
Esempio n. 12
0
// TODO: add support for byte-per-byte opcode search
R_API RList *r_core_asm_strsearch(RCore *core, const char *input, ut64 from, ut64 to) {
	RCoreAsmHit *hit;
	RAsmOp op;
	RList *hits;
	ut64 at, toff = core->offset;
	ut8 *buf;
	char *tok, *tokens[1024], *code = NULL, *ptr;
	int idx, tidx = 0, ret, len;
	int tokcount, matchcount;

	if (!*input)
		return NULL;
	if (core->blocksize<=OPSZ) {
		eprintf ("error: block size too small\n");
		return NULL;
	}
	if (!(buf = (ut8 *)malloc (core->blocksize)))
		return NULL;
	if (!(ptr = strdup (input))) {
		free (buf);
		return NULL;
	}
	if (!(hits = r_core_asm_hit_list_new ())) {
		free (buf);
		free (ptr);
		return NULL;
	}
	tokens[0] = NULL;
	for (tokcount=0; tokcount<(sizeof (tokens) / sizeof (char*)) - 1; tokcount++) {
		tok = strtok (tokcount? NULL: ptr, ",");
		if (tok == NULL)
			break;
		tokens[tokcount] = r_str_trim_head_tail (tok);
	}
	tokens[tokcount] = NULL;
	r_cons_break (NULL, NULL);
	for (at = from, matchcount = 0; at < to; at += core->blocksize-OPSZ) {
		if (r_cons_singleton ()->breaked)
			break;
		ret = r_io_read_at (core->io, at, buf, core->blocksize);
		if (ret != core->blocksize)
			break;
		idx = 0, matchcount = 0;
		while (idx<core->blocksize) {
			r_asm_set_pc (core->assembler, at+idx);
			op.buf_asm[0] = 0;
			op.buf_hex[0] = 0;
			if (!(len = r_asm_disassemble (core->assembler, &op, buf+idx, core->blocksize-idx))) {
				idx = (matchcount)? tidx+1: idx+1;
				matchcount = 0;
				continue;
			}
			if (tokens[matchcount] && strstr (op.buf_asm, tokens[matchcount])) {
				code = r_str_concatf (code, "%s", op.buf_asm);
				if (matchcount == tokcount-1) {
					if (tokcount == 1)
						tidx = idx;
					if (!(hit = r_core_asm_hit_new ())) {
						r_list_purge (hits);
						free (hits);
						hits = NULL;
						goto beach;
					}
					hit->addr = at+tidx;
					hit->len = idx+len-tidx;
					if (hit->len == -1) {
						r_core_asm_hit_free (hit);
						goto beach;
					}
					hit->code = strdup (code);
					r_list_append (hits, hit);
					R_FREE (code);
					matchcount = 0;
					idx = tidx+1;
				} else  if (matchcount == 0) {
					tidx = idx;
					matchcount++;
					idx += len;
				} else {
					matchcount++;
					idx += len;
				}
			} else {
				idx = matchcount? tidx+1: idx+1;
				R_FREE (code);
				matchcount = 0;
			}
		}
	}
	r_asm_set_pc (core->assembler, toff);
beach:
	free (buf);
	free (ptr);
	free (code);
	return hits;
}
Esempio n. 13
0
R_API RList *r_core_asm_bwdisassemble (RCore *core, ut64 addr, int n, int len) {
	RList *hits = r_core_asm_hit_list_new();
	RCoreAsmHit dummy_value;
	RAsmOp op;
	ut8 *buf = (ut8 *)malloc (len);
	ut64 instrlen = 0,
		 at = 0;

	ut32
	 	 idx = 0,
	 	 hit_count = 0;

	memset (&dummy_value, 0, sizeof (RCoreAsmHit));

	if (hits == NULL || buf == NULL ){
		if (hits) {
			r_list_purge (hits);
			free (hits);
		}
		free (buf);
		return NULL;
	}

	if (r_io_read_at (core->io, addr-len, buf, len) != len) {
		if (hits) {
			r_list_purge (hits);
			free (hits);
		}
		free (buf);
		return NULL;
	}

	for (idx = 1; idx < len; idx++) {
		ut32 current_buf_pos;
		if (r_cons_singleton ()->breaked) break;
		at = addr - idx; hit_count = 0;
		// XXX - buf here. at may be greater than addr if near boundary.

		for (current_buf_pos = len - idx, hit_count = 0;
			current_buf_pos < len && hit_count <= n;
			current_buf_pos += instrlen, at += instrlen, hit_count++) {
			r_asm_set_pc (core->assembler, at);
			//XXX HACK We need another way to detect invalid disasm!!
			if (!(instrlen = r_asm_disassemble (core->assembler, &op, buf+(len-(addr-at)), addr-at)) || strstr (op.buf_asm, "invalid")) {
				break;
			}
		}
		if (hit_count >= n) break;
	}

	if (hit_count == n) {
		at = addr - idx;
		hit_count = 0;
		r_asm_set_pc (core->assembler, at);
		for ( hit_count = 0; hit_count < n; hit_count++) {
			instrlen = r_asm_disassemble (core->assembler, &op, buf+(len-(addr-at)), addr-at);
			add_hit_to_hits(hits, at, instrlen, R_TRUE);
			at += instrlen;
		}
	}

	r_asm_set_pc (core->assembler, addr);
	free (buf);
	return hits;
}
Esempio n. 14
0
static void print_format_values(RCore *core, const char *fmt, bool onstack, ut64 src, bool color) {
	char opt;
	ut64 bval = src;
	int i;
	int endian = core->print->big_endian;
	int width = (core->anal->bits == 64)? 8: 4;
	int bsize = R_MIN (64, core->blocksize);

	ut8 *buf = malloc (bsize);
	if (!buf) {
		eprintf ("Cannot allocate %d byte(s)\n", bsize);
		free (buf);
		return;
	}
	if (fmt) {
		opt = *fmt;
	} else {
		opt = 'p'; // void *ptr
	}
	if (onstack || ((opt != 'd' && opt != 'x') && !onstack)) {
		if (color) {
			r_cons_printf (Color_BGREEN"0x%08"PFMT64x Color_RESET" --> ", bval);
		} else {
			r_cons_printf ("0x%08"PFMT64x" --> ", bval);
		}
		r_io_read_at (core->io, bval, buf, bsize);
	}
	if (onstack) { // Fetch value from stack
		bval = get_buf_val (buf, endian, width);
		if (opt != 'd' && opt != 'x') {
			r_io_read_at (core->io, bval, buf, bsize); // update buf with val from stack
		}
	}
	r_cons_print (color? Color_BGREEN: "");
	switch (opt) {
	case 'z' : // Null terminated string
		r_cons_print (color ?Color_RESET Color_BWHITE:"");
		r_cons_print ("\"");
		for (i = 0; i < MAXSTRLEN; i++) {
			if (buf[i] == '\0') {
				break;
			}
			ut8 b = buf[i];
			if (IS_PRINTABLE (b)) {
				r_cons_printf ("%c", b);
			} else {
				r_cons_printf ("\\x%02x", b);
			}
			if (i == MAXSTRLEN - 1) {
				 r_cons_print ("..."); // To show string is truncated
			}
		}
		r_cons_print ("\"");
		r_cons_newline ();
		break;
	case 'd' : // integer
	case 'x' :
		r_cons_printf ("0x%08" PFMT64x, bval);
		r_cons_newline ();
		break;
	case 'c' : // char
		r_cons_print ("\'");
		ut8 ch = buf[0];
		if (IS_PRINTABLE (ch)) {
			r_cons_printf ("%c", ch);
		} else {
			r_cons_printf ("\\x%02x", ch);
		}
		r_cons_print ("\'");
		r_cons_newline ();
		break;
	case 'p' : // pointer
		{
		// Try to deref the pointer once again
		r_cons_printf ("0x%08"PFMT64x, get_buf_val (buf, endian, width));
		r_cons_newline ();
		break;
		}
	default:
		//TODO: support types like structs and unions
		r_cons_println ("unk_format");
	}
	r_cons_print (Color_RESET);
	free (buf);
}
Esempio n. 15
0
static ut64 num_callback(RNum *userptr, const char *str, int *ok) {
	RCore *core = (RCore *)userptr; // XXX ?
	RAnalFunction *fcn;
	char *ptr, *bptr;
	RFlagItem *flag;
	RIOSection *s;
	RAnalOp op;
	ut64 ret = 0;

	if (ok) *ok = R_FALSE;
	if (*str=='[') {
		int refsz = (core->assembler->bits & R_SYS_BITS_64)? 8: 4;
		const char *p = strchr (str+5, ':');
		ut64 n;
		// TODO: honor endian
		if (p) {
			refsz = atoi (str+1);
			str = p;
		}
		// push state
		{
			char *o = strdup (str+1);
			const char *q = r_num_calc_index (core->num, NULL);
			r_str_replace_char (o, ']', 0);
			n = r_num_math (core->num, o);
			r_num_calc_index (core->num, q);
			free (o);
		}
		// pop state
		switch (refsz) {
		case 8: {
			ut64 num = 0;
			r_io_read_at (core->io, n, (ut8*)&num, sizeof (num));
			return num; }
		case 4: {
			ut32 num = 0;
			r_io_read_at (core->io, n, (ut8*)&num, sizeof (num));
			return num; }
		case 2: {
			ut16 num = 0;
			r_io_read_at (core->io, n, (ut8*)&num, sizeof (num));
			return num; }
		case 1: {
			ut8 num = 0;
			r_io_read_at (core->io, n, (ut8*)&num, sizeof (num));
			return num; }
		default:
			eprintf ("Invalid reference size: %d (%s)\n", refsz, str);
			break;
		}
	} else
	if (str[0]=='$') {
		if (ok) *ok = 1;
		// TODO: group analop-dependant vars after a char, so i can filter
		r_anal_op (core->anal, &op, core->offset,
			core->block, core->blocksize);
		switch (str[1]) {
		case '.': // can use pc, sp, a0, a1, ...
			return r_debug_reg_get (core->dbg, str+2);
		case '{':
			bptr = strdup (str+2);
			ptr = strchr (bptr, '}');
			if (ptr != NULL) {
				ut64 ret;
				ptr[0] = '\0';
				ret = r_config_get_i (core->config, bptr);
				free (bptr);
				return ret;
			}
			break;
		case 'h': {
			int rows;
			r_cons_get_size (&rows);
			return rows;
			}
		case 'e': return op.eob;
		case 'j': return op.jump;
		case 'f': return op.fail;
		case 'r': return op.ref;
		case 'l': return op.length;
		case 'b': return core->blocksize;
		case 's': return core->file->size;
		case 'w': return r_config_get_i (core->config, "asm.bits") / 8;
		case 'S':
			s = r_io_section_get (core->io, 
				r_io_section_vaddr_to_offset (core->io,
				core->offset));
			return s? (str[2]=='S'? s->size: s->offset): 0;
		case '?': return core->num->value;
		case '$': return core->offset;
		case 'o': return core->io->off;
		case 'C': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_CALL);
		case 'J': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_CODE);
		case 'D': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_DATA);
		case 'X': return getref (core, atoi (str+2), 'x',
				R_ANAL_REF_TYPE_CALL);
		case 'I':
			fcn = r_anal_fcn_find (core->anal, core->offset, 0);
			return fcn? fcn->ninstr: 0;
		case 'F':
			fcn = r_anal_fcn_find (core->anal, core->offset, 0);
			return fcn? fcn->size: 0;
		}
	} else
	if (*str>'A') {
		if ((flag = r_flag_get (core->flags, str))) {
			ret = flag->offset;
			if (ok) *ok = R_TRUE;
		}
	}
	return ret;
}
Esempio n. 16
0
// TODO: add support for byte-per-byte opcode search
R_API RList *r_core_asm_strsearch(RCore *core, const char *input, ut64 from, ut64 to, int maxhits, int regexp, int everyByte, int mode) {
	RCoreAsmHit *hit;
	RAsmOp op;
	RList *hits;
	ut64 at, toff = core->offset;
	ut8 *buf;
	int align = core->search->align;
	RRegex* rx = NULL;
	char *tok, *tokens[1024], *code = NULL, *ptr;
	int idx, tidx = 0, len = 0;
	int tokcount, matchcount, count = 0;
	int matches = 0;
	const int addrbytes = core->io->addrbytes;

	if (!input || !*input) {
		return NULL;
	}

	ut64 usrimm = r_num_math (core->num, input + 1);

	if (core->blocksize < 8) {
		eprintf ("error: block size too small\n");
		return NULL;
	}
	if (!(buf = (ut8 *)calloc (core->blocksize, 1))) {
		return NULL;
	}
	if (!(ptr = strdup (input))) {
		free (buf);
		return NULL;
	}
	if (!(hits = r_core_asm_hit_list_new ())) {
		free (buf);
		free (ptr);
		return NULL;
	}
	tokens[0] = NULL;
	for (tokcount = 0; tokcount < R_ARRAY_SIZE (tokens) - 1; tokcount++) {
		tok = strtok (tokcount? NULL: ptr, ";");
		if (!tok) {
			break;
		}
		tokens[tokcount] = r_str_trim_head_tail (tok);
	}
	tokens[tokcount] = NULL;
	r_cons_break_push (NULL, NULL);
	char *opst = NULL;
	for (at = from, matchcount = 0; at < to; at += core->blocksize) {
		if (r_cons_is_breaked ()) {
			break;
		}
		if (!r_io_is_valid_offset (core->io, at, 0)) {
			break;
		}
		(void)r_io_read_at (core->io, at, buf, core->blocksize);
		idx = 0, matchcount = 0;
		while (addrbytes * (idx + 1) <= core->blocksize) {
			ut64 addr = at + idx;
			if (addr >= to) {
				break;
			}
			r_asm_set_pc (core->assembler, addr);
			if (mode == 'i') {
				RAnalOp analop = {0};
				if (r_anal_op (core->anal, &analop, addr, buf + idx, 15, 0) < 1) {
					idx ++; // TODO: honor mininstrsz
					continue;
				}
				if (analop.val == usrimm) {
					if (!(hit = r_core_asm_hit_new ())) {
						r_list_purge (hits);
						R_FREE (hits);
						goto beach;
					}
					hit->addr = addr;
					hit->len = analop.size;  //  idx + len - tidx;
					if (hit->len == -1) {
						r_core_asm_hit_free (hit);
						goto beach;
					}
					r_asm_disassemble (core->assembler, &op, buf + addrbytes * idx,
					      core->blocksize - addrbytes * idx);
					hit->code = r_str_newf (r_strbuf_get (&op.buf_asm));
					idx = (matchcount)? tidx + 1: idx + 1;
					matchcount = 0;
					r_list_append (hits, hit);
					continue;
				}
				r_anal_op_fini (&analop);
				idx ++; // TODO: honor mininstrsz
				continue;
			} else if (mode == 'e') {
				RAnalOp analop = {0};
				if (r_anal_op (core->anal, &analop, addr, buf + idx, 15, R_ANAL_OP_MASK_ESIL) < 1) {
					idx ++; // TODO: honor mininstrsz
					continue;
				}
				//opsz = analop.size;
				opst = strdup (r_strbuf_get (&analop.esil));
				r_anal_op_fini (&analop);
			} else {
				if (!(len = r_asm_disassemble (
					      core->assembler, &op,
					      buf + addrbytes * idx,
					      core->blocksize - addrbytes * idx))) {
					idx = (matchcount)? tidx + 1: idx + 1;
					matchcount = 0;
					continue;
				}
				//opsz = op.size;
				opst = strdup (r_strbuf_get (&op.buf_asm));
			}
			if (opst) {
				matches = strcmp (opst, "invalid") && strcmp (opst, "unaligned");
			}
			if (matches && tokens[matchcount]) {
				if (!regexp) {
					matches = strstr (opst, tokens[matchcount]) != NULL;
				} else {
					rx = r_regex_new (tokens[matchcount], "");
					if (r_regex_comp (rx, tokens[matchcount], R_REGEX_EXTENDED|R_REGEX_NOSUB) == 0) {
						matches = r_regex_exec (rx, opst, 0, 0, 0) == 0;
					}
					r_regex_free (rx);
				}
			}
			if (align && align > 1) {
				if (addr % align) {
					matches = false;
				}
			}
			if (matches) {
				code = r_str_appendf (code, "%s; ", opst);
				if (matchcount == tokcount - 1) {
					if (tokcount == 1) {
						tidx = idx;
					}
					if (!(hit = r_core_asm_hit_new ())) {
						r_list_purge (hits);
						R_FREE (hits);
						goto beach;
					}
					hit->addr = addr;
					hit->len = idx + len - tidx;
					if (hit->len == -1) {
						r_core_asm_hit_free (hit);
						goto beach;
					}
					code[strlen (code) - 2] = 0;
					hit->code = strdup (code);
					r_list_append (hits, hit);
					R_FREE (code);
					matchcount = 0;
					idx = tidx + 1;
					if (maxhits) {
						count++;
						if (count >= maxhits) {
							//eprintf ("Error: search.maxhits reached\n");
							goto beach;
						}
					}
				} else if (!matchcount) {
					tidx = idx;
					matchcount++;
					idx += len;
				} else {
					matchcount++;
					idx += len;
				}
			} else {
				if (everyByte) {
					idx = matchcount? tidx + 1: idx + 1;
				} else {
					idx += R_MAX (1, len);
				}
				R_FREE (code);
				matchcount = 0;
			}
			R_FREE (opst);
		}
	}
	r_cons_break_pop ();
	r_asm_set_pc (core->assembler, toff);
beach:
	free (buf);
	free (ptr);
	free (code);
	R_FREE (opst);
	r_cons_break_pop ();
	return hits;
}
Esempio n. 17
0
R_API RList *r_core_asm_bwdisassemble (RCore *core, ut64 addr, int n, int len) {
	RList *hits = r_core_asm_hit_list_new();
	RAsmOp op;
	ut8 *buf;
	ut64 buf_addr, instrlen = 0, at = 0;
	ut32 idx = 0, hit_count = 0, buf_len = 0;
	int numinstr, ii;
	RAsmCode *c;

	if (!hits)
		return NULL;
	buf_addr = addr - len;
	buf_len = len;

	buf = (ut8 *)malloc (buf_len);
	if (!buf) {
		r_list_free (hits);
		return NULL;
	}

	if (r_io_read_at (core->io, buf_addr, buf, buf_len) != buf_len) {
		r_list_free (hits);
		free (buf);
		return NULL;
	}
	if (!memcmp (buf, "\xff\xff\xff\xff", R_MIN (4, buf_len))) {
		eprintf ("error reading at 0x%08"PFMT64x"\n", buf_addr);
		r_list_free (hits);
		free (buf);
		return NULL;
	}

	if (n<0) n = -n;

	for (idx = 1; idx < len; idx++) {
		if (r_cons_singleton ()->breaked)
			break;
		at = addr - idx;
		hit_count = 0;
		r_asm_set_pc (core->assembler, at);
		// XXX: the disassemble errors are because of this line. mdisasm must not be used here
		//c = r_asm_mdisassemble (core->assembler, buf+idx, buf_len-idx); //+buf_len-idx, idx);
		c = r_asm_mdisassemble (core->assembler, buf+buf_len-idx, idx);
		// XXX: relaying on string contents in the buf_asm is a bad idea
		if (strstr (c->buf_asm, "invalid") || strstr (c->buf_asm, ".byte")) {
			r_asm_code_free (c);
			continue;
		}
//eprintf ("-->(%x)(%s)\n", at, c->buf_asm);
		for (numinstr = ii = 0; c->buf_asm[ii] ; ii++) {
			if (c->buf_asm[ii] == '\n')
				numinstr++;
		}
//eprintf ("mdisasm worked! for 0x%llx with %d\n", addr-len+idx, numinstr);
		r_asm_code_free (c);
		if (numinstr >= n || idx > 32 * n) {
//eprintf ("idx = %d len = %d ninst = %d n = %d\n", idx, len, numinstr, n);
			break;
		}
//eprintf ("idx = %d len = %d\n", idx, len);
	}
	at = addr - idx;

	hit_count = 0;

	for (hit_count = 0; hit_count < n; hit_count++) {
		if (r_cons_singleton ()->breaked)
			break;
		r_asm_set_pc (core->assembler, at);
		instrlen = r_asm_disassemble (core->assembler,
			&op, buf+buf_len-(addr-at), addr-at); //addr-at);
//		eprintf ("INST LEN = %d\n", instrlen);
		if (instrlen<1) {
			eprintf ("dissasm failed at %llx\n", at);
			instrlen = 1;
//			break;
		}
		add_hit_to_hits (hits, at, instrlen, R_TRUE);
		at += instrlen;
	}
	free (buf);
	return hits;
}
Esempio n. 18
0
R_API RList *r_core_asm_bwdisassemble (RCore *core, ut64 addr, int n, int len) {
	RList *hits = r_core_asm_hit_list_new();
	RAsmOp op;
	// len = n * 32;
	// if (n > core->blocksize) n = core->blocksize;
	ut8 *buf;
	ut64 instrlen = 0, at = 0;
	ut32 idx = 0, hit_count = 0;
	int numinstr, asmlen, ii;
	RAsmCode *c;

	if (len < 1) {
		r_list_free (hits);
		return NULL;
	}

	buf = (ut8 *)malloc (len);
	if (!hits || !buf) {
		if (hits) {
			r_list_free (hits);
		}
		free (buf);
		return NULL;
	}

	if (r_io_read_at (core->io, addr-len, buf, len) != len) {
		if (hits) {
			r_list_free (hits);
		}
		free (buf);
		return NULL;
	}

	for (idx = 1; idx < len; ++idx) {
		if (r_cons_singleton ()->breaked) break;
		at = addr - idx; hit_count = 0;
		c = r_asm_mdisassemble (core->assembler, buf+(len-idx), idx);
		if (strstr(c->buf_asm, "invalid") || strstr(c->buf_asm, ".byte")) {
			r_asm_code_free(c);
			continue;
		}
		numinstr = 0;
		asmlen = strlen(c->buf_asm);
		for(ii = 0; ii < asmlen; ++ii) {
			if (c->buf_asm[ii] == '\n') ++numinstr;
		}
		r_asm_code_free(c);
		if (numinstr >= n || idx > 32 * n) {
			break;
		}
	}
	at = addr - idx;
	hit_count = 0;
	r_asm_set_pc (core->assembler, at);
	at = addr-idx;
	for ( hit_count = 0; hit_count < n; hit_count++) {
		instrlen = r_asm_disassemble (core->assembler, &op, buf+(len-(addr-at)), addr-at);
		add_hit_to_hits(hits, at, instrlen, true);
		at += instrlen;
	}
	free (buf);
	return hits;
}
Esempio n. 19
0
// TODO: add support for byte-per-byte opcode search
R_API RList *r_core_asm_strsearch(RCore *core, const char *input, ut64 from, ut64 to, int maxhits, int regexp) {
	RCoreAsmHit *hit;
	RAsmOp op;
	RList *hits;
	ut64 at, toff = core->offset;
	ut8 *buf;
	int align = core->search->align;
	RRegex* rx = NULL;
	char *tok, *tokens[1024], *code = NULL, *ptr;
	int idx, tidx = 0, ret, len;
	int tokcount, matchcount, count = 0;
	int matches = 0;

	if (!*input)
		return NULL;
	if (core->blocksize <= OPSZ) {
		eprintf ("error: block size too small\n");
		return NULL;
	}
	if (!(buf = (ut8 *)calloc (core->blocksize, 1)))
		return NULL;
	if (!(ptr = strdup (input))) {
		free (buf);
		return NULL;
	}
	if (!(hits = r_core_asm_hit_list_new ())) {
		free (buf);
		free (ptr);
		return NULL;
	}
	tokens[0] = NULL;
	for (tokcount=0; tokcount<(sizeof (tokens) / sizeof (char*)) - 1; tokcount++) {
		tok = strtok (tokcount? NULL: ptr, ";");
		if (!tok)
			break;
		tokens[tokcount] = r_str_trim_head_tail (tok);
	}
	tokens[tokcount] = NULL;
	r_cons_break (NULL, NULL);
	for (at = from, matchcount = 0; at < to; at += core->blocksize-OPSZ) {
		matches = 0;
		if (r_cons_singleton ()->breaked)
			break;
		ret = r_io_read_at (core->io, at, buf, core->blocksize);
		if (ret != core->blocksize)
			break;
		idx = 0, matchcount = 0;
		while (idx < core->blocksize) {
			ut64 addr = at + idx;
			r_asm_set_pc (core->assembler, addr);
			op.buf_asm[0] = 0;
			op.buf_hex[0] = 0;
			if (!(len = r_asm_disassemble (core->assembler, &op, buf+idx, core->blocksize-idx))) {
				idx = (matchcount)? tidx+1: idx+1;
				matchcount = 0;
				continue;
			}
			matches = true;
			if (!strcmp (op.buf_asm, "unaligned"))
				matches = false;
			if (!strcmp (op.buf_asm, "invalid"))
				matches = false;
			if (matches && tokens[matchcount]) {
				if (!regexp) matches = strstr(op.buf_asm, tokens[matchcount]) != NULL;
				else {
					rx = r_regex_new (tokens[matchcount], "");
					matches = r_regex_exec (rx, op.buf_asm, 0, 0, 0) == 0;
					r_regex_free (rx);
				}
			}
			if (align && align>1) {
				if (addr % align) {
					matches = false;
				}
			}
			if (matches) {
				code = r_str_concatf (code, "%s; ", op.buf_asm);
				if (matchcount == tokcount-1) {
					if (tokcount == 1)
						tidx = idx;
					if (!(hit = r_core_asm_hit_new ())) {
						r_list_purge (hits);
						free (hits);
						hits = NULL;
						goto beach;
					}
					hit->addr = addr;
					hit->len = idx + len - tidx;
					if (hit->len == -1) {
						r_core_asm_hit_free (hit);
						goto beach;
					}
					code[strlen (code)-2] = 0;
					hit->code = strdup (code);
					r_list_append (hits, hit);
					R_FREE (code);
					matchcount = 0;
					idx = tidx+1;
					if (maxhits) {
						count ++;
						if (count >= maxhits) {
							//eprintf ("Error: search.maxhits reached\n");
							goto beach;
						}
					}
				} else  if (matchcount == 0) {
					tidx = idx;
					matchcount++;
					idx += len;
				} else {
					matchcount++;
					idx += len;
				}
			} else {
				idx = matchcount? tidx+1: idx+1;
				R_FREE (code);
				matchcount = 0;
			}
		}

		at += OPSZ;
	}
	r_asm_set_pc (core->assembler, toff);
beach:
	free (buf);
	free (ptr);
	free (code);
	return hits;
}
Esempio n. 20
0
static int perform_mapped_file_yank (RCore *core, ut64 offset, ut64 len, const char *filename) {
	// grab the current file descriptor, so we can reset core and io state
	// after our io op is done
	RIODesc *yankfd = NULL;
	ut64 fd = core->file ? core->file->desc->fd : -1, yank_file_sz = 0,
		 loadaddr = 0, addr = offset;
	int res = R_FALSE;

	if (filename && *filename) {
		ut64 load_align = r_config_get_i (core->config,
			"file.loadalign");
		RIOMap * map = NULL;
		yankfd = r_io_open (core->io, filename, R_IO_READ, 0644);
		// map the file in for IO operations.
		if (yankfd && load_align) {
			yank_file_sz = r_io_size (core->io);
			map = r_io_map_add_next_available (core->io,
				yankfd->fd,
				R_IO_READ, 0, 0,
				yank_file_sz,
				load_align);
			loadaddr = map ? map->from : -1;
			if (yankfd && map && loadaddr != -1) {
				// ***NOTE*** this is important, we need to
				// address the file at its physical address!
				addr += loadaddr;
			} else if (yankfd) {
				eprintf ("Unable to map the opened file: %s", filename);
				r_io_close (core->io, yankfd);
				yankfd = NULL;
			} else {
				eprintf ("Unable to open the file: %s", filename);
			}
		}
	}

	// if len is -1 then we yank in everything
	if (len == -1) len = yank_file_sz;

	IFDBG eprintf ("yankfd: %p, yank->fd = %d, fd=%d\n", yankfd,
		       (int)(yankfd ? yankfd->fd : -1), (int)fd);
	// this wont happen if the file failed to open or the file failed to
	// map into the IO layer
	if (yankfd) {
		ut64 res = r_io_seek (core->io, addr, R_IO_SEEK_SET),
		     actual_len = len <= yank_file_sz ? len : 0;
		ut8 *buf = NULL;
		IFDBG eprintf (
			"Addr (%"PFMT64d
			") file_sz (%"PFMT64d
			") actual_len (%"PFMT64d
			") len (%"PFMT64d
			") bytes from file: %s\n", addr, yank_file_sz,
			actual_len, len, filename);
		if (actual_len > 0 && res == addr) {
			IFDBG eprintf (
				"Creating buffer and reading %"PFMT64d
				" bytes from file: %s\n", actual_len, filename);
			buf = malloc (actual_len);
			actual_len = r_io_read_at (core->io, addr, buf,
				actual_len);
			IFDBG eprintf (
				"Reading %"PFMT64d " bytes from file: %s\n",
				actual_len, filename);
			/*IFDBG {
				int i = 0;
				eprintf ("Read these bytes from file: \n");
				for (i = 0; i < actual_len; i++)
					eprintf ("%02x", buf[i]);
				eprintf ("\n");
			}*/
			r_core_yank_set (core, R_CORE_FOREIGN_ADDR, buf, len);
			res = R_TRUE;
		} else if (res != addr) {
			eprintf (
				"ERROR: Unable to yank data from file: (loadaddr (0x%"
				PFMT64x ") (addr (0x%"
				PFMT64x ") > file_sz (0x%"PFMT64x ")\n", res, addr,
				yank_file_sz );
		} else if (actual_len == 0) {
			eprintf (
				"ERROR: Unable to yank from file: addr+len (0x%"
				PFMT64x ") > file_sz (0x%"PFMT64x ")\n", addr+len,
				yank_file_sz );
		}
		r_io_close (core->io, yankfd);
		free (buf);
	}
	if (fd != -1) {
		r_io_raise (core->io, fd);
		core->switch_file_view = 1;
		r_core_block_read (core, 0);
	}
	return res;
}
Esempio n. 21
0
R_API RList *r_core_asm_bwdisassemble(RCore *core, ut64 addr, int n, int len) {
	RAsmOp op;
	// len = n * 32;
	// if (n > core->blocksize) n = core->blocksize;
	ut8 *buf;
	ut64 at;
	ut32 idx = 0, hit_count;
	int numinstr, asmlen, ii;
	int addrbytes = core->assembler->addrbytes;
	RAsmCode *c;
	RList *hits = r_core_asm_hit_list_new();
	if (!hits) return NULL;

	len = R_MIN (len - len % addrbytes, addrbytes * addr);
	if (len < 1) {
		r_list_free (hits);
		return NULL;
	}

	buf = (ut8 *)malloc (len);
	if (!buf) {
		if (hits) {
			r_list_free (hits);
		}
		return NULL;
	} else if (!hits) {
		free (buf);
		return NULL;
	}
	len = len > addr ? addr : len;
	if (!r_io_read_at (core->io, addr - len, buf, len)) {
		r_list_free (hits);
		free (buf);
		return NULL;
	}

	for (idx = addrbytes; idx < len; idx += addrbytes) {
		if (r_cons_singleton ()->breaked) break;
		c = r_asm_mdisassemble (core->assembler, buf+(len-idx), idx);
		if (strstr (c->buf_asm, "invalid") || strstr (c->buf_asm, ".byte")) {
			r_asm_code_free(c);
			continue;
		}
		numinstr = 0;
		asmlen = strlen (c->buf_asm);
		for(ii = 0; ii < asmlen; ++ii) {
			if (c->buf_asm[ii] == '\n') ++numinstr;
		}
		r_asm_code_free(c);
		if (numinstr >= n || idx > 16 * n) { // assume average instruction length <= 16
			break;
		}
	}
	at = addr - idx / addrbytes;
	r_asm_set_pc (core->assembler, at);
	for (hit_count = 0; hit_count < n; hit_count++) {
		int instrlen = r_asm_disassemble (core->assembler, &op,
																			buf + len - addrbytes*(addr-at), addrbytes * (addr-at));
		add_hit_to_hits (hits, at, instrlen, true);
		at += instrlen;
	}
	free (buf);
	return hits;
}
Esempio n. 22
0
File: yank.c Progetto: csarn/radare2
static int perform_mapped_file_yank(RCore *core, ut64 offset, ut64 len, const char *filename) {
	// grab the current file descriptor, so we can reset core and io state
	// after our io op is done
	RIODesc *yankdesc = NULL;
	ut64 fd = core->file? core->file->fd: -1, yank_file_sz = 0,
	     loadaddr = 0, addr = offset;
	int res = false;

	if (filename && *filename) {
		ut64 load_align = r_config_get_i (core->config, "file.loadalign");
		RIOMap *map = NULL;
		yankdesc = r_io_open_nomap (core->io, filename, R_PERM_R, 0644);
		// map the file in for IO operations.
		if (yankdesc && load_align) {
			yank_file_sz = r_io_size (core->io);
			map = r_io_map_add_next_available (core->io, yankdesc->fd, R_PERM_R, 0, 0, yank_file_sz, load_align);
			loadaddr = map? map->itv.addr: -1;
			if (yankdesc && map && loadaddr != -1) {
				// ***NOTE*** this is important, we need to
				// address the file at its physical address!
				addr += loadaddr;
			} else if (yankdesc) {
				eprintf ("Unable to map the opened file: %s", filename);
				r_io_desc_close (yankdesc);
				yankdesc = NULL;
			} else {
				eprintf ("Unable to open the file: %s", filename);
			}
		}
	}

	// if len is -1 then we yank in everything
	if (len == -1) {
		len = yank_file_sz;
	}

	// this wont happen if the file failed to open or the file failed to
	// map into the IO layer
	if (yankdesc) {
		ut64 res = r_io_seek (core->io, addr, R_IO_SEEK_SET);
		ut64 actual_len = len <= yank_file_sz? len: 0;
		ut8 *buf = NULL;
		if (actual_len > 0 && res == addr) {
			buf = malloc (actual_len);
			if (!r_io_read_at (core->io, addr, buf, actual_len)) {
				actual_len = 0;
			}
			r_core_yank_set (core, R_CORE_FOREIGN_ADDR, buf, len);
			res = true;
		} else if (res != addr) {
			eprintf (
				"ERROR: Unable to yank data from file: (loadaddr (0x%"
				PFMT64x ") (addr (0x%"
				PFMT64x ") > file_sz (0x%"PFMT64x ")\n", res, addr,
				yank_file_sz );
		} else if (actual_len == 0) {
			eprintf (
				"ERROR: Unable to yank from file: addr+len (0x%"
				PFMT64x ") > file_sz (0x%"PFMT64x ")\n", addr + len,
				yank_file_sz );
		}
		r_io_desc_close (yankdesc);
		free (buf);
	}
	if (fd != -1) {
		r_io_use_fd (core->io, fd);
		core->switch_file_view = 1;
		r_core_block_read (core);
	}
	return res;
}
Esempio n. 23
0
/* TODO: simplify using r_write */
static int cmd_write(void *data, const char *input) {
	int wseek, i, size, len = strlen (input);
	RCore *core = (RCore *)data;
	char *tmp, *str, *ostr;
	const char *arg, *filename;
	char _fn[32];
	ut64 off;
	ut8 *buf;
	st64 num = 0;
	const char* help_msg[] = {
		"Usage:","w[x] [str] [<file] [<<EOF] [@addr]","",
		"w","[1248][+-][n]","increment/decrement byte,word..",
		"w"," foobar","write string 'foobar'",
		"w0"," [len]","write 'len' bytes with value 0x00",
		"w6","[de] base64/hex","write base64 [d]ecoded or [e]ncoded string",
		"wa"," push ebp","write opcode, separated by ';' (use '\"' around the command)",
		"waf"," file","assemble file and write bytes",
		"wA"," r 0","alter/modify opcode at current seek (see wA?)",
		"wb"," 010203","fill current block with cyclic hexpairs",
		"wB","[-]0xVALUE","set or unset bits with given value",
		"wc","","list all write changes",
		"wc","[ir*?]","write cache undo/commit/reset/list (io.cache)",
		"wd"," [off] [n]","duplicate N bytes from offset at current seek (memcpy) (see y?)",
		"we","[nNsxX] [arg]","extend write operations (insert instead of replace)",
		"wf"," -|file","write contents of file at current offset",
		"wF"," -|file","write contents of hexpairs file here",
		"wh"," r2","whereis/which shell command",
		"wm"," f0ff","set binary mask hexpair to be used as cyclic write mask",
		"wo?"," hex","write in block with operation. 'wo?' fmi",
		"wp"," -|file","apply radare patch file. See wp? fmi",
		"wr"," 10","write 10 random bytes",
		"ws"," pstring","write 1 byte for length and then the string",
		"wt"," file [sz]","write to file (from current seek, blocksize or sz bytes)",
		"ww"," foobar","write wide string 'f\\x00o\\x00o\\x00b\\x00a\\x00r\\x00'",
		"wx"," 9090","write two intel nops",
		"wv"," eip+34","write 32-64 bit value",
		NULL
	};

	if (!input)
		return 0;

	#define WSEEK(x,y) if (wseek)r_core_seek_delta (x,y)
	wseek = r_config_get_i (core->config, "cfg.wseek");
	str = ostr = strdup ((input&&*input)?input+1:"");
	_fn[0] = 0;

	switch (*input) {
	case 'B':
		switch (input[1]) {
		case ' ':
			cmd_write_bits (core, 1, r_num_math (core->num, input+2));
			break;
		case '-':
			cmd_write_bits (core, 0, r_num_math (core->num, input+2));
			break;
		default:
			eprintf ("Usage: wB 0x2000  # or wB-0x2000\n");
			break;
		}
		break;
	case '0':
		{
			ut64 len = r_num_math (core->num, input+1);
			if (len>0) {
				ut8 *buf = calloc (1, len);
				if (buf) {
					r_io_write (core->io, buf, len);
					free (buf);
				} else eprintf ("Cannot allocate %d bytes\n", (int)len);
			}
		}
		break;
	case '1':
	case '2':
	case '4':
	case '8':
		if (input[1] && input[2]) {
			if (input[1]==input[2]) {
				num = 1;
			} else num = r_num_math (core->num, input+2);
		}
		switch (input[2] ? input[1] : 0) {
		case '+':
			cmd_write_inc (core, *input-'0', num);
			break;
		case '-':
			cmd_write_inc (core, *input-'0', -num);
			break;
		default:
			eprintf ("Usage: w[1248][+-][num]   # inc/dec byte/word/..\n");
		}
		break;
	case '6':
		{
		int fail = 0;
		if(input[1] && input[2] != ' ') {
			fail = 1;
		}
		ut8 *buf;
		int len, str_len;
		const char *str;

		if (input[1] && input[2] && input[3])
			str = input + 3;
		else str = "";
		str_len = strlen (str) + 1;
		if (!fail) {
			switch (input[1]) {
			case 'd':
				buf = malloc (str_len);
				len = r_base64_decode (buf, str, 0);
				if(len == 0) {
					free(buf);
					fail = 1;
				}
				break;
			case 'e':
				{
				ut8 *bin_buf = malloc(str_len);
				int bin_len = r_hex_str2bin(str, bin_buf);
				if(bin_len == 0) {
					fail = 1;
				} else {
					buf = malloc(str_len * 4 + 1);
					len = r_base64_encode((char *)buf, bin_buf, bin_len);
					if(len == 0) {
						free(buf);
						fail = 1;
					}
				}
				free (bin_buf);
				break;
				}
			default:
				fail = 1;
				break;
			}
		}
		if(!fail) {
			r_core_write_at (core, core->offset, buf, len);
			WSEEK (core, len);
			r_core_block_read (core, 0);
			free(buf);
		} else {
			eprintf ("Usage: w6[de] base64/hex\n");
		}
		break;
		}
	case 'h':
		{
		char *p = strchr (input, ' ');
		if (p) {
			while (*p==' ') p++;
			p = r_file_path (p);
			if (p) {
				r_cons_printf ("%s\n", p);
				free (p);
			}
		}
		}
		break;
	case 'e':
		{
		ut64 addr = 0, len = 0, b_size = 0;
		st64 dist = 0;
		ut8* bytes = NULL;
		int cmd_suc = R_FALSE;
		char *input_shadow = NULL, *p = NULL;

		switch (input[1]) {
			case 'n':
				if (input[2] == ' ') {
					len = *input ? r_num_math (
						core->num, input+3) : 0;
					if (len > 0){
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, core->offset, len);
						core->offset = cur_off;
						r_core_block_read (core, 0);
					}
				}
				break;
			case 'N':
				if (input[2] == ' ') {
					input += 3;
					while (*input && *input == ' ') input++;
					addr = r_num_math (core->num, input);
					while (*input && *input != ' ') input++;
					input++;
					len = *input ? r_num_math (core->num, input) : 0;
					if (len > 0){
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, addr, len);
						cmd_suc = r_core_seek (core, cur_off, 1);
						core->offset = addr;
						r_core_block_read (core, 0);
					}
				}
				break;
			case 'x':
				if (input[2] == ' ') {
					input+=2;
					len = *input ? strlen (input) : 0;
					bytes = len > 1? malloc (len+1) : NULL;
					len = bytes ? r_hex_str2bin (input, bytes) : 0;
					if (len > 0) {
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, cur_off, len);
						if (cmd_suc) {
							r_core_write_at (core, cur_off, bytes, len);
						}
						core->offset = cur_off;
						r_core_block_read (core, 0);
					}
					free (bytes);
				}
				break;
			case 'X':
				if (input[2] == ' ') {
					addr = r_num_math (core->num, input+3);
					input += 3;
					while (*input && *input != ' ') input++;
					input++;
					len = *input ? strlen (input) : 0;
					bytes = len > 1? malloc (len+1) : NULL;
					len = bytes ? r_hex_str2bin (input, bytes) : 0;
					if (len > 0) {
						//ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, addr, len);
						if (cmd_suc) {
							r_core_write_at (core, addr, bytes, len);
						}
						core->offset = addr;
						r_core_block_read (core, 0);
					}
					free (bytes);
				}
				break;
			case 's':
				input +=  3;
				while (*input && *input == ' ') input++;
				len = strlen (input);
				input_shadow = len > 0? malloc (len+1): 0;

				// since the distance can be negative,
				// the r_num_math will perform an unwanted operation
				// the solution is to tokenize the string :/
				if (input_shadow) {
					strncpy (input_shadow, input, len+1);
					p = strtok (input_shadow, " ");
					addr = p && *p ? r_num_math (core->num, p) : 0;

					p = strtok (NULL, " ");
					dist = p && *p ? r_num_math (core->num, p) : 0;

					p = strtok (NULL, " ");
					b_size = p && *p ? r_num_math (core->num, p) : 0;
					if (dist != 0){
						r_core_shift_block (core, addr, b_size, dist);
						r_core_seek (core, addr, 1);
						cmd_suc = R_TRUE;
					}
				}
				free (input_shadow);
				break;
			case '?':
			default:
				cmd_suc = R_FALSE;
		}


		if (cmd_suc == R_FALSE) {
			r_cons_printf ("|Usage: write extend\n"
			"wen <num>               insert num null bytes at current offset\n"
			"wex <hex_bytes>         insert bytes at current offset\n"
			"weN <addr> <len>        insert bytes at address\n"
			"weX <addr> <hex_bytes>  insert bytes at address\n"
			"wes <addr>  <dist> <block_size>   shift a blocksize left or write in the editor\n"
			);
		}
		}
		break;
	case 'p':
		if (input[1]=='-' || (input[1]==' ' && input[2]=='-')) {
			char *out = r_core_editor (core, NULL, NULL);
			if (out) {
				r_core_patch (core, out);
				free (out);
			}
		} else {
			if (input[1]==' ' && input[2]) {
				char *data = r_file_slurp (input+2, NULL);
				if (data) {
					r_core_patch (core, data);
					free (data);
				}
			} else {
				eprintf ("Usage: wp [-|r2patch-file]\n"
			         "TODO: rapatch format documentation here\n");
			}
		}
		break;
	case 'u':
		// TODO: implement it in an API RCore.write_unified_hexpatch() is ETOOLONG
		if (input[1]==' ') {
			char *data = r_file_slurp (input+2, NULL);
			if (data) {
				char sign = ' ';
				int line = 0, offs = 0, hexa = 0;
				int newline = 1;
				for (i=0; data[i]; i++) {
					switch (data[i]) {
					case '+':
						if (newline)
							sign = 1;
						break;
					case '-':
						if (newline) {
							sign = 0;
							offs = i + ((data[i+1]==' ')?2:1);
						}
						break;
					case ' ':
						data[i] = 0;
						if (sign) {
							if (!line) line = i+1;
							else
							if (!hexa) hexa = i+1;
						}
						break;
					case '\r':
						break;
					case '\n':
						newline = 1;
						if (sign == -1) {
							offs = 0;
							line = 0;
							hexa = 0;
						} else if (sign) {
							if (offs && hexa) {
								r_cons_printf ("wx %s @ %s\n", data+hexa, data+offs);
							} else eprintf ("food\n");
							offs = 0;
							line = 0;
						} else hexa = 0;
						sign = -1;
						continue;
					}
					newline = 0;
				}
				free (data);
			}
		} else {
			eprintf ("|Usage: wu [unified-diff-patch]    # see 'cu'\n");
		}
		break;
	case 'r':
		off = r_num_math (core->num, input+1);
		len = (int)off;
		if (len>0) {
			buf = malloc (len);
			if (buf != NULL) {
				r_num_irand ();
				for (i=0; i<len; i++)
					buf[i] = r_num_rand (256);
				r_core_write_at (core, core->offset, buf, len);
				WSEEK (core, len);
				free (buf);
			} else eprintf ("Cannot allocate %d bytes\n", len);
		}
		break;
	case 'A':
		switch (input[1]) {
		case ' ':
			if (input[2] && input[3]==' ') {
				r_asm_set_pc (core->assembler, core->offset);
				eprintf ("modify (%c)=%s\n", input[2], input+4);
				len = r_asm_modify (core->assembler, core->block, input[2],
					r_num_math (core->num, input+4));
				eprintf ("len=%d\n", len);
				if (len>0) {
					r_core_write_at (core, core->offset, core->block, len);
					WSEEK (core, len);
				} else eprintf ("r_asm_modify = %d\n", len);
			} else eprintf ("Usage: wA [type] [value]\n");
			break;
		case '?':
		default:
			r_cons_printf ("|Usage: wA [type] [value]\n"
			"|Types:\n"
			"| r   raw write value\n"
			"| v   set value (taking care of current address)\n"
			"| d   destination register\n"
			"| 0   1st src register\n"
			"| 1   2nd src register\n"
			"|Example: wA r 0 # e800000000\n");
			break;
		}
		break;
	case 'c':
		switch (input[1]) {
		case 'i':
			r_io_cache_commit (core->io, 0, UT64_MAX);
			r_core_block_read (core, 0);
			break;
		case 'r':
			r_io_cache_reset (core->io, R_TRUE);
			/* Before loading the core block we have to make sure that if
			 * the cache wrote past the original EOF these changes are no
			 * longer displayed. */
			memset (core->block, 0xff, core->blocksize);
			r_core_block_read (core, 0);
			break;
		case '+':
			if (input[2]=='*') {
				//r_io_cache_reset (core->io, R_TRUE);
				eprintf ("TODO\n");
			} else if (input[2]==' ') {
				char *p = strchr (input+3, ' ');
				ut64 to, from = core->offset;
				if (p) {
					*p = 0;
					from = r_num_math (core->num, input+3);
					to = r_num_math (core->num, input+3);
					if (to<from) {
						eprintf ("Invalid range (from>to)\n");
						return 0;
					}
				} else {
					from = r_num_math (core->num, input+3);
					to = from + core->blocksize;
				}
				r_io_cache_commit (core->io, from, to);
			} else {
				eprintf ("Invalidate write cache at 0x%08"PFMT64x"\n", core->offset);
				r_io_cache_commit (core->io, core->offset, core->offset+1);
			}
			break;
		case '-':
			if (input[2]=='*') {
				r_io_cache_reset (core->io, R_TRUE);
			} else if (input[2]==' ') {
				char *p = strchr (input+3, ' ');
				ut64 to, from = core->offset;
				if (p) {
					*p = 0;
					from = r_num_math (core->num, input+3);
					to = r_num_math (core->num, input+3);
					if (to<from) {
						eprintf ("Invalid range (from>to)\n");
						return 0;
					}
				} else {
					from = r_num_math (core->num, input+3);
					to = from + core->blocksize;
				}
				r_io_cache_invalidate (core->io, from, to);
			} else {
				eprintf ("Invalidate write cache at 0x%08"PFMT64x"\n", core->offset);
				r_io_cache_invalidate (core->io, core->offset, core->offset+core->blocksize);
			}
			/* See 'r' above. */
			memset (core->block, 0xff, core->blocksize);
			r_core_block_read (core, 0);
			break;
		case '?':
	{
                const char* help_msg[] = {
			"Usage:", "wc[ir+-*?]","  # NOTE: Uses io.cache=true",
			"wc","","list all write changes",
			"wc-"," [from] [to]","remove write op at curseek or given addr",
			"wc+"," [addr]","commit change from cache to io",
			"wc*","","\"\" in radare commands",
			"wcr","","reset all write changes in cache",
			"wci","","commit write cache",
                        NULL
                        };
                        r_core_cmd_help(core, help_msg);
        }
			break;
		case '*':
			r_io_cache_list (core->io, R_TRUE);
			break;
		case '\0':
			//if (!r_config_get_i (core->config, "io.cache"))
			//	eprintf ("[warning] e io.cache must be true\n");
			r_io_cache_list (core->io, R_FALSE);
			break;
		}
		break;
	case ' ':
		/* write string */
		len = r_str_unescape (str);
		r_core_write_at (core, core->offset, (const ut8*)str, len);
#if 0
		r_io_use_desc (core->io, core->file->desc);
		r_io_write_at (core->io, core->offset, (const ut8*)str, len);
#endif
		WSEEK (core, len);
		r_core_block_read (core, 0);
		break;
	case 't': // "wt"
		if (*str == '?' || *str == '\0') {
			eprintf ("Usage: wt[a] file [size]   write 'size' bytes in current block to file\n");
			free (ostr);
			return 0;
		} else {
			int append = 0;
			st64 sz = core->blocksize;
			if (*str=='a') { // "wta"
				append = 1;
				str++;
				if (str[0]==' ') {
					filename = str+1;
				} else {
					const char* prefix = r_config_get (core->config, "cfg.prefixdump");
					snprintf (_fn, sizeof (_fn), "%s.0x%08"PFMT64x, prefix, core->offset);
					filename = _fn;
				}
			} else if (*str != ' ') {
				const char* prefix = r_config_get (core->config, "cfg.prefixdump");
				snprintf(_fn, sizeof(_fn), "%s.0x%08"PFMT64x, prefix, core->offset);
				filename = _fn;
			} else filename = str+1;
			tmp = strchr (str+1, ' ');
			if (tmp) {
				sz = (st64) r_num_math (core->num, tmp+1);
				if (!sz) {
					sz = core->blocksize;
				}
				*tmp = 0;
				if (sz<1) eprintf ("Invalid length\n");
				else r_core_dump (core, filename, core->offset, (ut64)sz, append);
			} else {
				if (!r_file_dump (filename, core->block, core->blocksize, append)) {
					sz = 0;
				} else sz = core->blocksize;
			}
			eprintf ("Dumped %"PFMT64d" bytes from 0x%08"PFMT64x" into %s\n",
				sz, core->offset, filename);
		}
		break;
	case 'f':
		arg = (const char *)(input+((input[1]==' ')?2:1));
		if (!strcmp (arg, "-")) {
			char *out = r_core_editor (core, NULL, NULL);
			if (out) {
				r_io_write_at (core->io, core->offset,
					(ut8*)out, strlen (out));
				free (out);
			}
		} else
		if ((buf = (ut8*) r_file_slurp (arg, &size))) {
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, buf, size);
			WSEEK (core, size);
			free (buf);
			r_core_block_read (core, 0);
		} else eprintf ("Cannot open file '%s'\n", arg);
		break;
	case 'F':
		arg = (const char *)(input+((input[1]==' ')?2:1));
		if (!strcmp (arg, "-")) {
			int len;
			ut8 *out;
			char *in = r_core_editor (core, NULL, NULL);
			if (in) {
				out = (ut8 *)strdup (in);
				if (out) {
					len = r_hex_str2bin (in, out);
					if (len>0)
						r_io_write_at (core->io, core->offset, out, len);
					free (out);
				}
				free (in);
			}
		} else
		if ((buf = r_file_slurp_hexpairs (arg, &size))) {
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, buf, size);
			WSEEK (core, size);
			free (buf);
			r_core_block_read (core, 0);
		} else eprintf ("Cannot open file '%s'\n", arg);
		break;
	case 'w':
		str++;
		len = (len-1)<<1;
		if (len>0) tmp = malloc (len+1);
		else tmp = NULL;
		if (tmp) {
			for (i=0; i<len; i++) {
				if (i%2) tmp[i] = 0;
				else tmp[i] = str[i>>1];
			}
			str = tmp;
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, (const ut8*)str, len);
			WSEEK (core, len);
			r_core_block_read (core, 0);
			free (tmp);
		} else eprintf ("Cannot malloc %d\n", len);
		break;
	case 'x':
		{
		int b, len = strlen (input);
		ut8 *buf = malloc (len+1);
		len = r_hex_str2bin (input+1, buf);
		if (len != 0) {
			if (len<0) len = -len+1;
			if (len<core->blocksize) {
				b = core->block[len]&0xf;
				b |= (buf[len]&0xf0);
			} else b = buf[len];
			buf[len] = b;
			r_core_write_at (core, core->offset, buf, len);
			WSEEK (core, len);
			r_core_block_read (core, 0);
		} else eprintf ("Error: invalid hexpair string\n");
		free (buf);
		}
		break;
	case 'a':
		switch (input[1]) {
		case 'o':
			if (input[2] == ' ')
				r_core_hack (core, input+3);
			else r_core_hack_help (core);
			break;
		case ' ':
		case '*':
			{ const char *file = input[1]=='*'? input+2: input+1;
			RAsmCode *acode;
			r_asm_set_pc (core->assembler, core->offset);
			acode = r_asm_massemble (core->assembler, file);
			if (acode) {
				if (input[1]=='*') {
					r_cons_printf ("wx %s\n", acode->buf_hex);
				} else {
					if (r_config_get_i (core->config, "scr.prompt"))
						eprintf ("Written %d bytes (%s) = wx %s\n", acode->len, input+2, acode->buf_hex);
					r_core_write_at (core, core->offset, acode->buf, acode->len);
					WSEEK (core, acode->len);
					r_core_block_read (core, 0);
				}
				r_asm_code_free (acode);
			}
			} break;
		case 'f':
			if ((input[2]==' '||input[2]=='*')) {
				const char *file = input[2]=='*'? input+4: input+3;
				RAsmCode *acode;
				r_asm_set_pc (core->assembler, core->offset);
				acode = r_asm_assemble_file (core->assembler, file);
				if (acode) {
					if (input[2]=='*') {
						r_cons_printf ("wx %s\n", acode->buf_hex);
					} else {
						if (r_config_get_i (core->config, "scr.prompt"))
						eprintf ("Written %d bytes (%s)=wx %s\n", acode->len, input+1, acode->buf_hex);
						r_core_write_at (core, core->offset, acode->buf, acode->len);
						WSEEK (core, acode->len);
						r_core_block_read (core, 0);
					}
					r_asm_code_free (acode);
				} else eprintf ("Cannot assemble file\n");
			} else eprintf ("Wrong argument\n");
			break;
		default:
			r_cons_printf ("|Usage: wa[of*] [arg]\n"
				"| wa nop           : write nopcode using asm.arch and asm.bits\n"
				"| wa* mov eax, 33  : show 'wx' op with hexpair bytes of assembled opcode\n"
				"| \"wa nop;nop\"     : assemble more than one instruction (note the quotes)\n"
				"| waf foo.asm      : assemble file and write bytes\n"
				"| wao nop          : convert current opcode into nops\n"
				"| wao?             : show help for assembler operation on current opcode (hack)\n");
			break;
		}
		break;
	case 'b':
		{
		int len = strlen (input);
		ut8 *buf = malloc (len+1);
		if (buf) {
			len = r_hex_str2bin (input+1, buf);
			if (len > 0) {
				r_mem_copyloop (core->block, buf, core->blocksize, len);
				r_core_write_at (core, core->offset, core->block, core->blocksize);
				WSEEK (core, core->blocksize);
				r_core_block_read (core, 0);
			} else eprintf ("Wrong argument\n");
			free (buf);
		} else eprintf ("Cannot malloc %d\n", len+1);
		}
		break;
	case 'm':
		size = r_hex_str2bin (input+1, (ut8*)str);
		switch (input[1]) {
		case '\0':
			eprintf ("Current write mask: TODO\n");
			// TODO
			break;
		case '?':
			break;
		case '-':
			r_io_set_write_mask (core->io, 0, 0);
			eprintf ("Write mask disabled\n");
			break;
		case ' ':
			if (size>0) {
				r_io_use_desc (core->io, core->file->desc);
				r_io_set_write_mask (core->io, (const ut8*)str, size);
				WSEEK (core, size);
				eprintf ("Write mask set to '");
				for (i=0; i<size; i++)
					eprintf ("%02x", str[i]);
				eprintf ("'\n");
			} else eprintf ("Invalid string\n");
			break;
		}
		break;
	case 'v':
		cmd_write_value (core, input);
		break;
	case 'o':
		cmd_write_op (core, input);
		break;
	case 'd':
		if (input[1] && input[1]==' ') {
			char *arg, *inp = strdup (input+2);
			arg = strchr (inp, ' ');
			if (arg) {
				*arg = 0;
				ut64 addr = r_num_math (core->num, input+2);
				ut64 len = r_num_math (core->num, arg+1);
				ut8 *data = malloc (len);
				r_io_read_at (core->io, addr, data, len);
				r_io_write_at (core->io, core->offset, data, len);
				free (data);
			} else eprintf ("See wd?\n");
			free (inp);
		} else eprintf ("Usage: wd [source-offset] [length] @ [dest-offset]\n");
		break;
	case 's':
		if (str && *str && str[1]) {
			len = r_str_unescape (str+1);
			if (len>255) {
				eprintf ("Too large\n");
			} else {
				ut8 ulen = (ut8)len;
				r_core_write_at (core, core->offset, &ulen, 1);
				r_core_write_at (core, core->offset+1, (const ut8*)str+1, len);
				WSEEK (core, len);
				r_core_block_read (core, 0);
			}
		} else eprintf ("Too short.\n");
		break;
	default:
	case '?':
		if (core->oobi) {
			eprintf ("Writing oobi buffer!\n");
			r_io_use_desc (core->io, core->file->desc);
			r_io_write (core->io, core->oobi, core->oobi_len);
			WSEEK (core, core->oobi_len);
			r_core_block_read (core, 0);
		} else {
			r_core_cmd_help (core, help_msg);
		}
		break;
	}
Esempio n. 24
0
static int cmd_cmp(void *data, const char *input) {
	RCore *core = data;
	FILE *fd;
	ut8 *buf;
	int ret;
	ut32 v32;
	ut64 v64;

	switch (*input) {
	case ' ':
		radare_compare (core, core->block, (ut8*)input+1, strlen (input+1)+1);
		break;
	case 'x':
		if (input[1]!=' ') {
			eprintf ("Usage: cx 001122'\n");
			return 0;
		}
		buf = (ut8*)malloc (strlen (input+2));
		ret = r_hex_str2bin (input+2, buf);
		if (ret<1) eprintf ("Cannot parse hexpair\n");
		else radare_compare (core, core->block, buf, ret);
		free (buf);
		break;
	case 'X':
		buf = malloc (core->blocksize);
		ret = r_io_read_at (core->io, r_num_math (core->num, input+1), buf, core->blocksize);
		radare_compare (core, core->block, buf, ret);
		free (buf);
		break;
	case 'f':
		if (input[1]!=' ') {
			eprintf ("Please. use 'cf [file]'\n");
			return 0;
		}
		fd = fopen (input+2, "rb");
		if (fd == NULL) {
			eprintf ("Cannot open file '%s'\n", input+2);
			return 0;
		}
		buf = (ut8 *)malloc (core->blocksize);
		fread (buf, 1, core->blocksize, fd);
		fclose (fd);
		radare_compare (core, core->block, buf, core->blocksize);
		free (buf);
		break;
	case 'q':
		v64 = (ut64) r_num_math (core->num, input+1);
		radare_compare (core, core->block, (ut8*)&v64, sizeof (v64));
		break;
	case 'd':
		v32 = (ut32) r_num_math (core->num, input+1);
		radare_compare (core, core->block, (ut8*)&v32, sizeof (v32));
		break;
#if 0
	case 'c':
		radare_compare_code (
			r_num_math (core->num, input+1),
			core->block, core->blocksize);
		break;
	case 'D':
		{ // XXX ugly hack
		char cmd[1024];
		sprintf (cmd, "radiff -b %s %s", ".curblock", input+2);
		r_file_dump (".curblock", config.block, config.block_size);
		radare_system(cmd);
		unlink(".curblock");
		}
		break;
#endif
	case 'g':
		{ // XXX: this is broken
			int diffops = 0;
		RCore *core2;
		char *file2 = NULL;
		if (input[1]=='o') {
			file2 = (char*)r_str_chop_ro (input+2);
			r_anal_diff_setup (core->anal, R_TRUE, -1, -1);
		} else
		if (input[1]==' ') {
			file2 = (char*)r_str_chop_ro (input+2);
			r_anal_diff_setup (core->anal, R_FALSE, -1, -1);
		} else {
			eprintf ("Usage: cg[o] [file]\n");
			eprintf (" cg  - byte-per-byte code graph diff\n");
			eprintf (" cgo - opcode-bytes code graph diff\n");
			return R_FALSE;
		}

		if (!(core2 = r_core_new ())) {
			eprintf ("Cannot init diff core\n");
			return R_FALSE;
		}
		core2->io->va = core->io->va;
		core2->anal->split = core->anal->split;
		if (!r_core_file_open (core2, file2, 0, 0LL)) {
			eprintf ("Cannot open diff file '%s'\n", file2);
			r_core_free (core2);
			return R_FALSE;
		}
		// TODO: must replicate on core1 too
		r_config_set_i (core2->config, "io.va", R_TRUE);
		r_config_set_i (core2->config, "anal.split", R_TRUE);
                r_anal_diff_setup (core->anal, diffops, -1, -1);
                r_anal_diff_setup (core2->anal, diffops, -1, -1);

		r_core_bin_load (core2, file2);
		r_core_gdiff (core, core2);
		r_core_diff_show (core, core2);
		r_core_free (core2);
		}
		break;
	case '?':
		r_cons_strcat (
		"Usage: c[?cdfx] [argument]\n"
		" c  [string]   Compares a plain with escaped chars string\n"
		//" cc [offset]   Code bindiff current block against offset\n"
		" cd [value]    Compare a doubleword from a math expression\n"
		//" cD [file]     Like above, but using radiff -b\n");
		" cq [value]    Compare a quadword from a math expression\n"
		" cx [hexpair]  Compare hexpair string\n"
		" cX [addr]     Like 'cc' but using hexdiff output\n"
		" cf [file]     Compare contents of file at current seek\n"
		" cg[o] [file]  Graphdiff current file and [file]\n");
		break;
	default:
		eprintf ("Usage: c[?Ddxf] [argument]\n");
	}

	return 0;
}
Esempio n. 25
0
static RList *r_core_asm_back_disassemble (RCore *core, ut64 addr, int len, ut64 max_hit_count, ut8 disassmble_each_addr, ut32 extra_padding) {
	RList *hits;;
	RAsmOp op;
	ut8 *buf = NULL;
	ut8 max_invalid_b4_exit = 4,
		last_num_invalid = 0;
	int current_instr_len = 0;
	ut64 current_instr_addr = addr,
		current_buf_pos = 0,
		next_buf_pos = len;

	RCoreAsmHit dummy_value;
	ut32 hit_count = 0;

	if (disassmble_each_addr){
		return r_core_asm_back_disassemble_all(core, addr, len, max_hit_count, extra_padding+1);
	}

	hits = r_core_asm_hit_list_new ();
	buf = malloc (len + extra_padding);

	if (!hits || !buf ){
		if (hits) {
			r_list_purge (hits);
			free (hits);
		}
		free (buf);
		return NULL;
	}

	if (r_io_read_at (core->io, (addr + extra_padding)-len, buf, len+extra_padding) != len+extra_padding) {
		r_list_purge (hits);
		free (hits);
		free (buf);
		return NULL;
	}

	//
	// XXX - This is a heavy handed approach without a
	// 		an appropriate btree or hash table for storing
	//	 hits, because are using:
	//			1) Sorted RList with many inserts and searches
	//			2) Pruning hits to find the most optimal disassembly

	// greedy approach
	// 1) Consume previous bytes
	// 1a) Instruction is invalid (incr current_instr_addr)
	// 1b) Disasm is perfect
	// 1c) Disasm is underlap (disasm(current_instr_addr, next_instr_addr - current_instr_addr) short some bytes)
	// 1d) Disasm is overlap (disasm(current_instr_addr, next_instr_addr - current_instr_addr) over some bytes)

	memset (&dummy_value, 0, sizeof (RCoreAsmHit));
	// disassemble instructions previous to current address, extra_padding can move the location of addr
	// so we need to account for that with current_buf_pos
	current_buf_pos = len - extra_padding - 1;
	next_buf_pos = len + extra_padding - 1;
	current_instr_addr = addr-1;
	do {
		if (r_cons_singleton ()->breaked) break;
		// reset assembler
		r_asm_set_pc (core->assembler, current_instr_addr);
		current_instr_len = next_buf_pos - current_buf_pos;
		current_instr_len = r_asm_disassemble (core->assembler, &op, buf+current_buf_pos, current_instr_len);

		IFDBG {
			ut32 byte_cnt =  current_instr_len ? current_instr_len : 1;
			eprintf("current_instr_addr: 0x%"PFMT64x", current_buf_pos: 0x%"PFMT64x", current_instr_len: %d \n", current_instr_addr, current_buf_pos, current_instr_len);

			ut8 *hex_str = (ut8*)r_hex_bin2strdup(buf+current_buf_pos, byte_cnt);
			eprintf("==== current_instr_bytes: %s ",hex_str);

			if (current_instr_len > 0)
				eprintf("op.buf_asm: %s\n", op.buf_asm);
			else
				eprintf("op.buf_asm: <invalid>\n");

			free(hex_str);
		}

		// disassembly invalid
		if (current_instr_len == 0 || strstr (op.buf_asm, "invalid")) {
			if (current_instr_len == 0) current_instr_len = 1;
			add_hit_to_sorted_hits(hits, current_instr_addr, current_instr_len, /* is_valid */ false);
			hit_count ++;
			last_num_invalid ++;
		// disassembly perfect
		} else if (current_buf_pos + current_instr_len == next_buf_pos) {
			// i think this may be the only case where an invalid instruction will be
			// added because handle_forward_disassemble and handle_disassembly_overlap
			// are only called in cases where a valid instruction has been found.
			// and they are lazy, since they purge the hit list
			ut32 purge_results = 0;
			ut8 is_valid = true;
			IFDBG eprintf(" handling underlap case: current_instr_addr: 0x%"PFMT64x".\n", current_instr_addr);
			purge_results =  prune_hits_in_addr_range(hits, current_instr_addr, current_instr_len, /* is_valid */ true);
			if (purge_results) {
				handle_forward_disassemble(core, hits, buf, len, current_buf_pos+current_instr_len, current_instr_addr+current_instr_len, addr);
				hit_count = r_list_length(hits);
			}
			add_hit_to_sorted_hits(hits, current_instr_addr, current_instr_len, is_valid);
			//handle_forward_disassemble(core, hits, buf, len, current_buf_pos+current_instr_len, current_instr_addr+current_instr_len, addr/*end_addr*/);
			hit_count ++;
			next_buf_pos = current_buf_pos;
			last_num_invalid = 0;
		// disassembly underlap
		} else if (current_buf_pos + current_instr_len < next_buf_pos) {
			ut32 purge_results = 0;
			ut8 is_valid = true;
			purge_results =  prune_hits_in_addr_range(hits, current_instr_addr, current_instr_len, /* is_valid */ true);
			add_hit_to_sorted_hits(hits, current_instr_addr, current_instr_len, is_valid);

			if (hit_count < purge_results ) hit_count = 0; // WTF??
			else hit_count -= purge_results;

			next_buf_pos = current_buf_pos;
			handle_forward_disassemble(core, hits, buf, len - extra_padding, current_buf_pos+current_instr_len, current_instr_addr+current_instr_len, addr);
			hit_count = r_list_length(hits);
			last_num_invalid = 0;
		// disassembly overlap
		} else if (current_buf_pos + current_instr_len > next_buf_pos) {
			//ut64 value = handle_disassembly_overlap(core, hits, buf, len, current_buf_pos, current_instr_addr);
			next_buf_pos = current_buf_pos;
			hit_count = r_list_length (hits);
			last_num_invalid = 0;
		}

		// walk backwards by one instruction
		IFDBG eprintf(" current_instr_addr: 0x%"PFMT64x" current_instr_len: %d next_instr_addr: 0x%04"PFMT64x"\n",
			current_instr_addr, current_instr_len, next_buf_pos);
		IFDBG eprintf(" hit count: %d \n", hit_count );
		current_instr_addr -= 1;
		current_buf_pos -= 1;

		if ( hit_count >= max_hit_count &&
			 (last_num_invalid >= max_invalid_b4_exit || last_num_invalid == 0))
			break;
	} while (((int) current_buf_pos >= 0) && (int)(len - current_buf_pos) >= 0);

	r_asm_set_pc (core->assembler, addr);
	free (buf);
	return hits;
}
Esempio n. 26
0
static ut64 readQword (RCoreObjc *objc, ut64 addr) {
	ut8 buf[8];
	(void)r_io_read_at (objc->core->io, addr, buf, sizeof (buf));
	return r_read_le64 (buf);
}
Esempio n. 27
0
static int do_hash(const char *algo, RIO *io, int bsize, int rad) {
	ut8 *buf;
	RHash *ctx;
	ut64 j, fsize;
	int i;
	ut64 algobit = r_hash_name_to_bits (algo);
	if (algobit == R_HASH_NONE) {
		eprintf ("Invalid hashing algorithm specified\n");
		return 1;
	}
	fsize = r_io_size (io);
	if (bsize == 0 || bsize > fsize)
		bsize = fsize;
	if (to == 0LL)
		to = fsize;
	if (from>to) {
		eprintf ("Invalid -f -t range\n");
		return 1;
	}
	if (fsize == -1LL) {
		eprintf ("Unknown file size\n");
		return 1;
	}
	buf = malloc (bsize+1);
	ctx = r_hash_new (R_TRUE, algobit);

	if (incremental) {
		for (i=1; i<0x800000; i<<=1) {
			if (algobit & i) {
				int hashbit = i & algobit;
				int dlen = r_hash_size (hashbit);
				r_hash_do_begin (ctx, i);
				for (j=from; j<to; j+=bsize) {
					r_io_read_at (io, j, buf, bsize);
					do_hash_internal (ctx,
						hashbit, buf, ((j+bsize)<fsize)?
						bsize: (fsize-j), rad, 0);
				}
				r_hash_do_end (ctx, i);
				do_hash_print (ctx, i, dlen, rad);
			}
		}
	} else {
		/* iterate over all algorithm bits */
		for (i=1; i<0x800000; i<<=1) {
			ut64 f, t, ofrom, oto;
			if (algobit & i) {
				int hashbit = i & algobit;
				ofrom = from;
				oto = to;
				f = from;
				t = to;
				for (j=f; j<t; j+=bsize) {
					int nsize = (j+bsize<fsize)? bsize: (fsize-j);
					r_io_read_at (io, j, buf, bsize);
					from = j;
					to = j+bsize;
					do_hash_internal (ctx, hashbit, buf, nsize, rad, 1);
				}
				from = ofrom;
				to = oto;
			}
		}
	}
	r_hash_free (ctx);
	free (buf);
	return 0;
}
Esempio n. 28
0
/* TODO: simplify using r_write */
static int cmd_write(void *data, const char *input) {
	ut64 off;
	ut8 *buf;
	const char *arg;
	int wseek, i, size, len = strlen (input);
	char *tmp, *str, *ostr;
	RCore *core = (RCore *)data;
	#define WSEEK(x,y) if (wseek)r_core_seek_delta (x,y)
	wseek = r_config_get_i (core->config, "cfg.wseek");
	str = ostr = strdup (input+1);

	switch (*input) {
	case 'h':
		{
		char *p = strchr (input, ' ');
		if (p) {
			while (*p==' ') p++;
			p = r_file_path (p);
			if (p) {
				r_cons_printf ("%s\n", p);
				free (p);
			}
		}
		}
		break;
	case 'e':
		{
		ut64 addr = 0, len = 0, b_size = 0;
		st64 dist = 0;
		ut8* bytes = NULL;
		int cmd_suc = R_FALSE;
		char *input_shadow = NULL, *p = NULL;

		switch (input[1]) {
			case 'n':
				if (input[2] == ' ') {
					len = *input ? r_num_math (core->num, input+3) : 0;
					if (len > 0){
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, core->offset, len);
						core->offset = cur_off;
						r_core_block_read (core, 0);
					}
				}
				break;
			case 'N':
				if (input[2] == ' ') {
					input += 3;
					while (*input && *input == ' ') input++;
					addr = r_num_math (core->num, input);
					while (*input && *input != ' ') input++;
					input++;
					len = *input ? r_num_math (core->num, input) : 0;
					if (len > 0){
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, addr, len);
						cmd_suc = r_core_seek (core, cur_off, 1);
						core->offset = addr;
						r_core_block_read (core, 0);
					}
				}
				break;
			case 'x':
				if (input[2] == ' ') {
					input+=2;
					len = *input ? strlen (input) : 0;
					bytes = len > 1? malloc (len+1) : NULL;
					len = bytes ? r_hex_str2bin (input, bytes) : 0;
					if (len > 0) {
						ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, cur_off, len);
						if (cmd_suc) {
							r_core_write_at (core, cur_off, bytes, len);
						}
						core->offset = cur_off;
						r_core_block_read (core, 0);
					}
					free (bytes);
				}
				break;
			case 'X':
				if (input[2] == ' ') {
					addr = r_num_math (core->num, input+3);
					input += 3;
					while (*input && *input != ' ') input++;
					input++;
					len = *input ? strlen (input) : 0;
					bytes = len > 1? malloc (len+1) : NULL;
					len = bytes ? r_hex_str2bin (input, bytes) : 0;
					if (len > 0) {
						//ut64 cur_off = core->offset;
						cmd_suc = r_core_extend_at (core, addr, len);
						if (cmd_suc) {
							r_core_write_at (core, addr, bytes, len);
						}
						core->offset = addr;
						r_core_block_read (core, 0);
					}
					free (bytes);
				}
				break;
			case 's':
				input +=  3;
				while (*input && *input == ' ') input++;
				len = strlen (input);
				input_shadow = len > 0? malloc (len+1): 0;

				// since the distance can be negative,
				// the r_num_math will perform an unwanted operation
				// the solution is to tokenize the string :/
				if (input_shadow) {
					strncpy (input_shadow, input, len+1);
					p = strtok (input_shadow, " ");
					addr = p && *p ? r_num_math (core->num, p) : 0;

					p = strtok (NULL, " ");
					dist = p && *p ? r_num_math (core->num, p) : 0;

					p = strtok (NULL, " ");
					b_size = p && *p ? r_num_math (core->num, p) : 0;
					if (dist != 0){
						r_core_shift_block (core, addr, b_size, dist);
						r_core_seek (core, addr, 1);
						cmd_suc = R_TRUE;
					}
				}
				free (input_shadow);
				break;
			case '?':
			default:
				cmd_suc = R_FALSE;
		}


		if (cmd_suc == R_FALSE) {
			r_cons_printf ("|Usage: write extend\n"
			"wen <num>               insert num null bytes at current offset\n"
			"wex <hex_bytes>         insert bytes at current offset\n"
			"weN <addr> <len>        insert bytes at address\n"
			"weX <addr> <hex_bytes>  insert bytes at address\n"
			"wes <addr>  <dist> <block_size>   shift a blocksize left or write in the editor\n"
			);
		}
		}
		break;
	case 'p':
		if (input[1]=='-' || (input[1]==' '&&input[2]=='-')) {
			const char *tmpfile = ".tmp";
			char *out = r_core_editor (core, NULL);
			if (out) {
				// XXX hacky .. patch should support str, not only file
				r_file_dump (tmpfile, (ut8*)out, strlen (out));
				r_core_patch (core, tmpfile);
				r_file_rm (tmpfile);
				free (out);
			}
		} else {
			if (input[1]==' ' && input[2]) {
				r_core_patch (core, input+2);
			} else {
				eprintf ("Usage: wp [-|r2patch-file]\n"
			         "TODO: rapatch format documentation here\n");
			}
		}
		break;
	case 'u':
		// TODO: implement it in an API RCore.write_unified_hexpatch() is ETOOLONG
		if (input[1]==' ') {
			char *data = r_file_slurp (input+2, NULL);
			if (data) {
				char sign = ' ';
				int line = 0, offs = 0, hexa = 0;
				int newline = 1;
				for (i=0; data[i]; i++) {
					switch (data[i]) {
					case '+':
						if (newline)
							sign = 1;
						break;
					case '-':
						if (newline) {
							sign = 0;
							offs = i + ((data[i+1]==' ')?2:1);
						}
						break;
					case ' ':
						data[i] = 0;
						if (sign) {
							if (!line) line = i+1;
							else
							if (!hexa) hexa = i+1;
						}
						break;
					case '\r':
						break;
					case '\n':
						newline = 1;
						if (sign == -1) {
							offs = 0;
							line = 0;
							hexa = 0;
						} else if (sign) {
							if (offs && hexa) {
								r_cons_printf ("wx %s @ %s\n", data+hexa, data+offs);
							} else eprintf ("food\n");
							offs = 0;
							line = 0;
						} else hexa = 0;
						sign = -1;
						continue;
					}
					newline = 0;
				}
				free (data);
			}
		} else {
			eprintf ("|Usage: wu [unified-diff-patch]    # see 'cu'\n");
		}
		break;
	case 'r':
		off = r_num_math (core->num, input+1);
		len = (int)off;
		if (len>0) {
			buf = malloc (len);
			if (buf != NULL) {
				r_num_irand ();
				for (i=0; i<len; i++)
					buf[i] = r_num_rand (256);
				r_core_write_at (core, core->offset, buf, len);
				WSEEK (core, len);
				free (buf);
			} else eprintf ("Cannot allocate %d bytes\n", len);
		}
		break;
	case 'A':
		switch (input[1]) {
		case ' ':
			if (input[2] && input[3]==' ') {
				r_asm_set_pc (core->assembler, core->offset);
				eprintf ("modify (%c)=%s\n", input[2], input+4);
				len = r_asm_modify (core->assembler, core->block, input[2],
					r_num_math (core->num, input+4));
				eprintf ("len=%d\n", len);
				if (len>0) {
					r_core_write_at (core, core->offset, core->block, len);
					WSEEK (core, len);
				} else eprintf ("r_asm_modify = %d\n", len);
			} else eprintf ("Usage: wA [type] [value]\n");
			break;
		case '?':
		default:
			r_cons_printf ("|Usage: wA [type] [value]\n"
			"|Types:\n"
			"| r   raw write value\n"
			"| v   set value (taking care of current address)\n"
			"| d   destination register\n"
			"| 0   1st src register\n"
			"| 1   2nd src register\n"
			"|Example: wA r 0 # e800000000\n");
			break;
		}
		break;
	case 'c':
		switch (input[1]) {
		case 'i':
			r_io_cache_commit (core->io);
			r_core_block_read (core, 0);
			break;
		case 'r':
			r_io_cache_reset (core->io, R_TRUE);
			/* Before loading the core block we have to make sure that if
			 * the cache wrote past the original EOF these changes are no
			 * longer displayed. */
			memset (core->block, 0xff, core->blocksize);
			r_core_block_read (core, 0);
			break;
		case '-':
			if (input[2]=='*') {
				r_io_cache_reset (core->io, R_TRUE);
			} else if (input[2]==' ') {
				char *p = strchr (input+3, ' ');
				ut64 to, from = core->offset;
				if (p) {
					*p = 0;
					from = r_num_math (core->num, input+3);
					to = r_num_math (core->num, input+3);
					if (to<from) {
						eprintf ("Invalid range (from>to)\n");
						return 0;
					}
				} else {
					from = r_num_math (core->num, input+3);
					to = from + core->blocksize;
				}
				r_io_cache_invalidate (core->io, from, to);
			} else {
				eprintf ("Invalidate write cache at 0x%08"PFMT64x"\n", core->offset);
				r_io_cache_invalidate (core->io, core->offset, core->offset+core->blocksize);
			}
			/* See 'r' above. */
			memset (core->block, 0xff, core->blocksize);
			r_core_block_read (core, 0);
			break;
		case '?':
			r_cons_printf (
			"|Usage: wc[ir*?]\n"
			"| wc           list all write changes\n"
			"| wc- [a] [b]  remove write op at curseek or given addr\n"
			"| wc*          \"\" in radare commands\n"
			"| wcr          reset all write changes in cache\n"
			"| wci          commit write cache\n"
			"|NOTE: Requires 'e io.cache=true'\n");
			break;
		case '*':
			r_io_cache_list (core->io, R_TRUE);
			break;
		case '\0':
			if (!r_config_get_i (core->config, "io.cache"))
				eprintf ("[warning] e io.cache must be true\n");
			r_io_cache_list (core->io, R_FALSE);
			break;
		}
		break;
	case ' ':
		/* write string */
		len = r_str_unescape (str);
		r_core_write_at (core, core->offset, (const ut8*)str, len);
#if 0
		r_io_use_desc (core->io, core->file->desc);
		r_io_write_at (core->io, core->offset, (const ut8*)str, len);
#endif
		WSEEK (core, len);
		r_core_block_read (core, 0);
		break;
	case 't':
		if (*str != ' ') {
			eprintf ("Usage: wt file [size]\n");
		} else {
			tmp = strchr (str+1, ' ');
			if (tmp) {
				st64 sz = (st64) r_num_math (core->num, tmp+1);
				*tmp = 0;
				if (sz<1) eprintf ("Invalid length\n");
				else r_core_dump (core, str+1, core->offset, (ut64)sz);
			} else r_file_dump (str+1, core->block, core->blocksize);
		}
		break;
	case 'T':
		eprintf ("TODO: wT // why?\n");
		break;
	case 'f':
		arg = (const char *)(input+((input[1]==' ')?2:1));
		if (!strcmp (arg, "-")) {
			char *out = r_core_editor (core, NULL);
			if (out) {
				r_io_write_at (core->io, core->offset,
					(ut8*)out, strlen (out));
				free (out);
			}
		} else
		if ((buf = (ut8*) r_file_slurp (arg, &size))) {
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, buf, size);
			WSEEK (core, size);
			free (buf);
			r_core_block_read (core, 0);
		} else eprintf ("Cannot open file '%s'\n", arg);
		break;
	case 'F':
		arg = (const char *)(input+((input[1]==' ')?2:1));
		if (!strcmp (arg, "-")) {
			int len;
			ut8 *out;
			char *in = r_core_editor (core, NULL);
			if (in) {
				out = (ut8 *)strdup (in);
				if (out) {
					len = r_hex_str2bin (in, out);
					if (len>0)
						r_io_write_at (core->io, core->offset, out, len);
					free (out);
				}
				free (in);
			}
		} else
		if ((buf = r_file_slurp_hexpairs (arg, &size))) {
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, buf, size);
			WSEEK (core, size);
			free (buf);
			r_core_block_read (core, 0);
		} else eprintf ("Cannot open file '%s'\n", arg);
		break;
	case 'w':
		str++;
		len = (len-1)<<1;
		if (len>0) tmp = malloc (len+1);
		else tmp = NULL;
		if (tmp) {
			for (i=0; i<len; i++) {
				if (i%2) tmp[i] = 0;
				else tmp[i] = str[i>>1];
			}
			str = tmp;
			r_io_use_desc (core->io, core->file->desc);
			r_io_write_at (core->io, core->offset, (const ut8*)str, len);
			WSEEK (core, len);
			r_core_block_read (core, 0);
			free (tmp);
		} else eprintf ("Cannot malloc %d\n", len);
		break;
	case 'x':
		{
		int b, len = strlen (input);
		ut8 *buf = malloc (len+1);
		len = r_hex_str2bin (input+1, buf);
		if (len != 0) {
			if (len<0) len = -len+1;
			if (len<core->blocksize) {
				b = core->block[len]&0xf;
				b |= (buf[len]&0xf0);
			} else b = buf[len];
			buf[len] = b;
			r_core_write_at (core, core->offset, buf, len);
			WSEEK (core, len);
			r_core_block_read (core, 0);
		} else eprintf ("Error: invalid hexpair string\n");
		free (buf);
		}
		break;
	case 'a':
		switch (input[1]) {
		case 'o':
			if (input[2] == ' ')
				r_core_hack (core, input+3);
			else r_core_hack_help (core);
			break;
		case ' ':
		case '*':
			{ const char *file = input[1]=='*'? input+2: input+1;
			RAsmCode *acode;
			r_asm_set_pc (core->assembler, core->offset);
			acode = r_asm_massemble (core->assembler, file);
			if (acode) {
				if (input[1]=='*') {
					r_cons_printf ("wx %s\n", acode->buf_hex);
				} else {
					if (r_config_get_i (core->config, "scr.prompt"))
						eprintf ("Written %d bytes (%s) = wx %s\n", acode->len, input+2, acode->buf_hex);
					r_core_write_at (core, core->offset, acode->buf, acode->len);
					WSEEK (core, acode->len);
					r_core_block_read (core, 0);
				}
				r_asm_code_free (acode);
			}
			} break;
		case 'f':
			if ((input[2]==' '||input[2]=='*')) {
				const char *file = input[2]=='*'? input+4: input+3;
				RAsmCode *acode;
				r_asm_set_pc (core->assembler, core->offset);
				acode = r_asm_assemble_file (core->assembler, file);
				if (acode) {
					if (input[2]=='*') {
						r_cons_printf ("wx %s\n", acode->buf_hex);
					} else {
						if (r_config_get_i (core->config, "scr.prompt"))
						eprintf ("Written %d bytes (%s)=wx %s\n", acode->len, input+1, acode->buf_hex);
						r_core_write_at (core, core->offset, acode->buf, acode->len);
						WSEEK (core, acode->len);
						r_core_block_read (core, 0);
					}
					r_asm_code_free (acode);
				} else eprintf ("Cannot assemble file\n");
			} else eprintf ("Wrong argument\n");
			break;
		default:
			r_cons_printf ("|Usage: wa[of*] [arg]\n"
				"| wa nop           : write nopcode using asm.arch and asm.bits\n"
				"| wa* mov eax, 33  : show 'wx' op with hexpair bytes of sassembled opcode\n"
				"| \"wa nop;nop\"     : assemble more than one instruction (note the quotes)\n"
				"| waf foo.asm      : assemble file and write bytes\n"
				"| wao nop          : convert current opcode into nops\n"
				"| wao?             : show help for assembler operation on current opcode (hack)\n");
			break;
		}
		break;
	case 'b':
		{
		int len = strlen (input);
		ut8 *buf = malloc (len+1);
		if (buf) {
			len = r_hex_str2bin (input+1, buf);
			if (len > 0) {
				r_mem_copyloop (core->block, buf, core->blocksize, len);
				r_core_write_at (core, core->offset, core->block, core->blocksize);
				WSEEK (core, core->blocksize);
				r_core_block_read (core, 0);
			} else eprintf ("Wrong argument\n");
			free (buf);
		} else eprintf ("Cannot malloc %d\n", len+1);
		}
		break;
	case 'm':
		size = r_hex_str2bin (input+1, (ut8*)str);
		switch (input[1]) {
		case '\0':
			eprintf ("Current write mask: TODO\n");
			// TODO
			break;
		case '?':
			break;
		case '-':
			r_io_set_write_mask (core->io, 0, 0);
			eprintf ("Write mask disabled\n");
			break;
		case ' ':
			if (size>0) {
				r_io_use_desc (core->io, core->file->desc);
				r_io_set_write_mask (core->io, (const ut8*)str, size);
				WSEEK (core, size);
				eprintf ("Write mask set to '");
				for (i=0; i<size; i++)
					eprintf ("%02x", str[i]);
				eprintf ("'\n");
			} else eprintf ("Invalid string\n");
			break;
		}
		break;
	case 'v':
		{
			int type = 0;
			ut8 addr1;
			ut16 addr2;
			ut32 addr4, addr4_;
			ut64 addr8;

			switch (input[1]) {
			case '?':
				r_cons_printf ("|Usage: wv[size] [value]    # write value of given size\n"
					"|  wv1 234      # write one byte with this value\n"
					"|  wv 0x834002  # write dword with this value\n"
					"|Supported sizes are: 1, 2, 4, 8\n");
				return 0;
			case '1': type = 1; break;
			case '2': type = 2; break;
			case '4': type = 4; break;
			case '8': type = 8; break;
			}
			off = r_num_math (core->num, input+2);
			r_io_use_desc (core->io, core->file->desc);
			r_io_seek (core->io, core->offset, R_IO_SEEK_SET);
			if (type == 0)
				type = (off&UT64_32U)? 8: 4;
			switch (type) {
			case 1:
				addr1 = (ut8)off;
				r_io_write (core->io, (const ut8 *)&addr1, 1);
				WSEEK (core, 1);
				break;
			case 2:
				addr2 = (ut16)off;
				r_io_write (core->io, (const ut8 *)&addr2, 2);
				WSEEK (core, 2);
				break;
			case 4:
				addr4_ = (ut32)off;
				//drop_endian((ut8*)&addr4_, (ut8*)&addr4, 4); /* addr4_ = addr4 */
				//endian_memcpy((ut8*)&addr4, (ut8*)&addr4_, 4); /* addr4 = addr4_ */
				memcpy ((ut8*)&addr4, (ut8*)&addr4_, 4); // XXX needs endian here too
				r_io_write (core->io, (const ut8 *)&addr4, 4);
				WSEEK (core, 4);
				break;
			case 8:
				/* 8 byte addr */
				memcpy ((ut8*)&addr8, (ut8*)&off, 8); // XXX needs endian here
			//	endian_memcpy((ut8*)&addr8, (ut8*)&off, 8);
				r_io_write (core->io, (const ut8 *)&addr8, 8);
				WSEEK (core, 8);
				break;
			}
			r_core_block_read (core, 0);
		}
		break;
	case 'o':
		switch (input[1]) {
			case 'a':
			case 's':
			case 'e':
			case 'A':
			case 'x':
			case 'r':
			case 'l':
			case 'm':
			case 'd':
			case 'o':
			case 'w':
				if (input[2]!=' ') {
					if (input[1]=='e') r_cons_printf (
						"Usage: 'woe from-to step'\n");
					else r_cons_printf (
						"Usage: 'wo%c 00 11 22'\n", input[1]);
					free (ostr);
					return 0;
				}
			case '2':
			case '4':
				r_core_write_op (core, input+3, input[1]);
				r_core_block_read (core, 0);
				break;
			case 'R':
				r_core_cmd0 (core, "wr $b");
				break;
			case 'n':
				r_core_write_op (core, "ff", 'x');
				r_core_block_read (core, 0);
				break;
			case '\0':
			case '?':
			default:
				r_cons_printf (
					"|Usage: wo[asmdxoArl24] [hexpairs] @ addr[:bsize]\n"
					"|Example:\n"
					"|  wox 0x90   ; xor cur block with 0x90\n"
					"|  wox 90     ; xor cur block with 0x90\n"
					"|  wox 0x0203 ; xor cur block with 0203\n"
					"|  woa 02 03  ; add [0203][0203][...] to curblk\n"
					"|  woe 02 03  \n"
					"|Supported operations:\n"
					"|  wow  ==  write looped value (alias for 'wb')\n"
					"|  woa  +=  addition\n"
					"|  wos  -=  substraction\n"
					"|  wom  *=  multiply\n"
					"|  wod  /=  divide\n"
					"|  wox  ^=  xor\n"
					"|  woo  |=  or\n"
					"|  woA  &=  and\n"
					"|  woR  random bytes (alias for 'wr $b'\n"
					"|  wor  >>= shift right\n"
					"|  wol  <<= shift left\n"
					"|  wo2  2=  2 byte endian swap\n"
					"|  wo4  4=  4 byte endian swap\n"
						);
				break;
		}
		break;
	case 'd':
		if (input[1]==' ') {
			char *arg, *inp = strdup (input+2);
			arg = strchr (inp, ' ');
			if (arg) {
				*arg = 0;
				ut64 addr = r_num_math (core->num, input+2);
				ut64 len = r_num_math (core->num, arg+1);
				ut8 *data = malloc (len);
				r_io_read_at (core->io, addr, data, len);
				r_io_write_at (core->io, core->offset, data, len);
				free (data);
			} else eprintf ("See wd?\n");
			free (inp);
		} else eprintf ("Usage: wd [source-offset] [length] @ [dest-offset]\n");
		break;
	case 's':
		{
			ut8 ulen;
			len = r_str_unescape (str+1);
			if (len>255) {
				eprintf ("Too large\n");
			} else {
				ulen = (ut8)len;
				r_core_write_at (core, core->offset, &ulen, 1);
				r_core_write_at (core, core->offset+1, (const ut8*)str+1, len);
				WSEEK (core, len);
				r_core_block_read (core, 0);
			}
		}
		break;
	default:
	case '?':
		if (core->oobi) {
			eprintf ("Writing oobi buffer!\n");
			r_io_use_desc (core->io, core->file->desc);
			r_io_write (core->io, core->oobi, core->oobi_len);
			WSEEK (core, core->oobi_len);
			r_core_block_read (core, 0);
		} else r_cons_printf (
			"|Usage: w[x] [str] [<file] [<<EOF] [@addr]\n"
			"| w foobar     write string 'foobar'\n"
			"| wh r2        whereis/which shell command\n"
			"| wr 10        write 10 random bytes\n"
			"| ww foobar    write wide string 'f\\x00o\\x00o\\x00b\\x00a\\x00r\\x00'\n"
			"| wa push ebp  write opcode, separated by ';' (use '\"' around the command)\n"
			"| waf file     assemble file and write bytes\n"
			"| wA r 0       alter/modify opcode at current seek (see wA?)\n"
			"| wb 010203    fill current block with cyclic hexpairs\n"
			"| wc[ir*?]     write cache undo/commit/reset/list (io.cache)\n"
			"| wd [off] [n] duplicate N bytes from offset at current seek (memcpy) (see y?)\n"
			"| wx 9090      write two intel nops\n"
			"| wv eip+34    write 32-64 bit value\n"
			"| wo? hex      write in block with operation. 'wo?' fmi\n"
			"| wm f0ff      set binary mask hexpair to be used as cyclic write mask\n"
			"| ws pstring   write 1 byte for length and then the string\n"
			"| wf -|file    write contents of file at current offset\n"
			"| wF -|file    write contents of hexpairs file here\n"
			"| wp -|file    apply radare patch file. See wp? fmi\n"
			"| wt file [sz] write to file (from current seek, blocksize or sz bytes)\n"
			);
			//TODO: add support for offset+seek
			// " wf file o s ; write contents of file from optional offset 'o' and size 's'.\n"
		break;
	}
Esempio n. 29
0
File: core.c Progetto: 0x2F/radare2
static ut64 num_callback(RNum *userptr, const char *str, int *ok) {
	RCore *core = (RCore *)userptr; // XXX ?
	RAnalFunction *fcn;
	char *ptr, *bptr, *out;
	RFlagItem *flag;
	RIOSection *s;
	RAnalOp op;
	ut64 ret = 0;

	if (ok) *ok = R_FALSE;
	switch (*str) {
	case '[':
{
		ut64 n = 0LL;
		int refsz = (core->assembler->bits & R_SYS_BITS_64)? 8: 4;
		const char *p = NULL;
		if (strlen (str)>5)
			p = strchr (str+5, ':');
		// TODO: honor LE
		if (p) {
			refsz = atoi (str+1);
			str = p;
		}
		// push state
		{
			if (str[0] && str[1]) {
				const char *q;
				char *o = strdup (str+1);
				if (o) {
					q = r_num_calc_index (core->num, NULL);
					if (q) {
						if (r_str_replace_char (o, ']', 0)>0) {
							n = r_num_math (core->num, o);
							r_num_calc_index (core->num, q);
						}
					}
					free (o);
				}
			}
		}
		// pop state
		if (ok) *ok = 1;
		ut32 num = 0;
		switch (refsz) {
		case 8:
		case 4:
		case 2:
		case 1:
			(void)r_io_read_at (core->io, n, (ut8*)&num, refsz);
			r_mem_copyendian ((ut8*)&num, (ut8*)&num, refsz, !core->assembler->big_endian);
			return num;
		default:
			eprintf ("Invalid reference size: %d (%s)\n", refsz, str);
			return 0LL;
		}
}
		break;
	case '$':
		if (ok) *ok = 1;
		// TODO: group analop-dependant vars after a char, so i can filter
		r_anal_op (core->anal, &op, core->offset,
			core->block, core->blocksize);
		switch (str[1]) {
		case '.': // can use pc, sp, a0, a1, ...
			return r_debug_reg_get (core->dbg, str+2);
		case 'k':
			if (str[2]!='{') {
				eprintf ("Expected '{' after 'k'.\n");
				break;
			}
			bptr = strdup (str+3);
			ptr = strchr (bptr, '}');
			if (ptr == NULL) {
				// invalid json
				free (bptr);
				break;
			}
			*ptr = '\0';
			ret = 0LL;
			out = sdb_querys (core->sdb, NULL, 0, bptr);
			if (out && *out) {
				if (strstr (out, "$k{")) {
					eprintf ("Recursivity is not permitted here\n");
				} else {
					ret = r_num_math (core->num, out);
				}
			}
			free (bptr);
			free (out);
			return ret;
			break;
		case '{':
			bptr = strdup (str+2);
			ptr = strchr (bptr, '}');
			if (ptr != NULL) {
				ut64 ret;
				ptr[0] = '\0';
				ret = r_config_get_i (core->config, bptr);
				free (bptr);
				return ret;
			}
			free (bptr);
			break;
		case 'c': return r_cons_get_size (NULL);
		case 'r': { int rows; r_cons_get_size (&rows); return rows; }
		case 'e': return r_anal_op_is_eob (&op);
		case 'j': return op.jump;
		case 'p': return r_sys_getpid ();
		case 'P': return (core->dbg->pid>0)? core->dbg->pid: 0;
		case 'f': return op.fail;
		case 'm': return op.ptr; // memref
		case 'v': return op.val; // immediate value
		case 'l': return op.size;
		case 'b': return core->blocksize;
		case 's':
			if (core->file) {
				return r_io_desc_size (core->io, core->file->desc);
			}
			return 0LL;
		case 'w': return r_config_get_i (core->config, "asm.bits") / 8;
		case 'S':
			s = r_io_section_vget (core->io, core->offset);
			return s? (str[2]=='S'? s->size: s->vaddr): 3;
		case '?': return core->num->value;
		case '$': return core->offset;
		case 'o': return r_io_section_vaddr_to_offset (core->io,
				core->offset);
		case 'C': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_CALL);
		case 'J': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_CODE);
		case 'D': return getref (core, atoi (str+2), 'r',
				R_ANAL_REF_TYPE_DATA);
		case 'X': return getref (core, atoi (str+2), 'x',
				R_ANAL_REF_TYPE_CALL);
		case 'I':
			fcn = r_anal_get_fcn_in (core->anal, core->offset, 0);
			return fcn? fcn->ninstr: 0;
		case 'F':
			fcn = r_anal_get_fcn_in (core->anal, core->offset, 0);
			return fcn? fcn->size: 0;
		}
		break;
	default:
		if (*str>'A') {
			// NOTE: functions override flags
			RAnalFunction *fcn = r_anal_fcn_find_name (core->anal, str);
			if (fcn) {
				if (ok) *ok = R_TRUE;
				return fcn->addr;
			}
#if 0
			ut64 addr = r_anal_fcn_label_get (core->anal, core->offset, str);
			if (addr != 0) {
				ret = addr;
			} else {
				...
			}
#endif
			if ((flag = r_flag_get (core->flags, str))) {
				ret = flag->offset;
				if (ok) *ok = R_TRUE;
			}
		}
		break;
	}
Esempio n. 30
0
static ut32 readDword (RCoreObjc *objc, ut64 addr) {
	ut8 buf[4];
	(void)r_io_read_at (objc->core->io, addr, buf, sizeof (buf));
	return r_read_le32 (buf);
}