// -------------- // -----Main----- // -------------- int main (int argc, char** argv) { // -------------------------------------- // -----Parse Command Line Arguments----- // -------------------------------------- if (pcl::console::find_argument (argc, argv, "-h") >= 0) { printUsage (argv[0]); return 0; } if (pcl::console::find_argument (argc, argv, "-l") >= 0) { live_update = true; std::cout << "Live update is on.\n"; } if (pcl::console::parse (argc, argv, "-rx", angular_resolution_x) >= 0) std::cout << "Setting angular resolution in x-direction to "<<angular_resolution_x<<"deg.\n"; if (pcl::console::parse (argc, argv, "-ry", angular_resolution_y) >= 0) std::cout << "Setting angular resolution in y-direction to "<<angular_resolution_y<<"deg.\n"; int tmp_coordinate_frame; if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0) { coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame); std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n"; } angular_resolution_x = pcl::deg2rad (angular_resolution_x); angular_resolution_y = pcl::deg2rad (angular_resolution_y); // ------------------------------------------------------------------ // -----Read pcd file or create example point cloud if not given----- // ------------------------------------------------------------------ pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>); pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr; Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ()); std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd"); if (!pcd_filename_indices.empty ()) { std::string filename = argv[pcd_filename_indices[0]]; if (pcl::io::loadPCDFile (filename, point_cloud) == -1) { std::cout << "Was not able to open file \""<<filename<<"\".\n"; printUsage (argv[0]); return 0; } scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0], point_cloud.sensor_origin_[1], point_cloud.sensor_origin_[2])) * Eigen::Affine3f (point_cloud.sensor_orientation_); } else { std::cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n"; for (float x=-0.5f; x<=0.5f; x+=0.01f) { for (float y=-0.5f; y<=0.5f; y+=0.01f) { PointType point; point.x = x; point.y = y; point.z = 2.0f - y; point_cloud.points.push_back (point); } } point_cloud.width = (int) point_cloud.points.size (); point_cloud.height = 1; } // ----------------------------------------------- // -----Create RangeImage from the PointCloud----- // ----------------------------------------------- float noise_level = 0.0; float min_range = 0.0f; int border_size = 1; boost::shared_ptr<pcl::RangeImage> range_image_ptr(new pcl::RangeImage); pcl::RangeImage& range_image = *range_image_ptr; range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f), scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size); // -------------------------------------------- // -----Open 3D viewer and add point cloud----- // -------------------------------------------- pcl::visualization::PCLVisualizer viewer ("3D Viewer"); viewer.setBackgroundColor (1, 1, 1); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0); viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image"); //viewer.addCoordinateSystem (1.0f, "global"); //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150); //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud"); viewer.initCameraParameters (); setViewerPose(viewer, range_image.getTransformationToWorldSystem ()); // -------------------------- // -----Show range image----- // -------------------------- pcl::visualization::RangeImageVisualizer range_image_widget ("Range image"); range_image_widget.showRangeImage (range_image); //-------------------- // -----Main loop----- //-------------------- while (!viewer.wasStopped ()) { range_image_widget.spinOnce (); viewer.spinOnce (); pcl_sleep (0.01); if (live_update) { scene_sensor_pose = viewer.getViewerPose(); range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f), scene_sensor_pose, pcl::RangeImage::LASER_FRAME, noise_level, min_range, border_size); range_image_widget.showRangeImage (range_image); } } }
// -------------- // -----Main----- // -------------- int main (int argc, char** argv) { // -------------------------------------- // -----Parse Command Line Arguments----- // -------------------------------------- if (pcl::console::find_argument (argc, argv, "-h") >= 0) { printUsage (argv[0]); return 0; } if (pcl::console::find_argument (argc, argv, "-m") >= 0) { setUnseenToMaxRange = true; cout << "Setting unseen values in range image to maximum range readings.\n"; } if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0) cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n"; int tmp_coordinate_frame; if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0) { coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame); cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n"; } if (pcl::console::parse (argc, argv, "-s", support_size) >= 0) cout << "Setting support size to "<<support_size<<".\n"; if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0) cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n"; angular_resolution = pcl::deg2rad (angular_resolution); // ------------------------------------------------------------------ // -----Read pcd file or create example point cloud if not given----- // ------------------------------------------------------------------ pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>); pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr; pcl::PointCloud<pcl::PointWithViewpoint> far_ranges; Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ()); std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd"); if (!pcd_filename_indices.empty ()) { std::string filename = argv[pcd_filename_indices[0]]; if (pcl::io::loadPCDFile (filename, point_cloud) == -1) { cerr << "Was not able to open file \""<<filename<<"\".\n"; printUsage (argv[0]); return 0; } scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0], point_cloud.sensor_origin_[1], point_cloud.sensor_origin_[2])) * Eigen::Affine3f (point_cloud.sensor_orientation_); std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd"; if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1) std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n"; } else { setUnseenToMaxRange = true; cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n"; for (float x=-0.5f; x<=0.5f; x+=0.01f) { for (float y=-0.5f; y<=0.5f; y+=0.01f) { PointType point; point.x = x; point.y = y; point.z = 2.0f - y; point_cloud.points.push_back (point); } } point_cloud.width = (int) point_cloud.points.size (); point_cloud.height = 1; } // ----------------------------------------------- // -----Create RangeImage from the PointCloud----- // ----------------------------------------------- float noise_level = 0.0; float min_range = 0.0f; int border_size = 1; boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage); pcl::RangeImage& range_image = *range_image_ptr; range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f), scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size); range_image.integrateFarRanges (far_ranges); if (setUnseenToMaxRange) range_image.setUnseenToMaxRange (); // -------------------------------------------- // -----Open 3D viewer and add point cloud----- // -------------------------------------------- pcl::visualization::PCLVisualizer viewer ("3D Viewer"); viewer.setBackgroundColor (1, 1, 1); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0); viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image"); //viewer.addCoordinateSystem (1.0f); //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150); //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud"); viewer.initCameraParameters (); setViewerPose (viewer, range_image.getTransformationToWorldSystem ()); // -------------------------- // -----Show range image----- // -------------------------- pcl::visualization::RangeImageVisualizer range_image_widget ("Range image"); range_image_widget.showRangeImage (range_image); // -------------------------------- // -----Extract NARF keypoints----- // -------------------------------- pcl::RangeImageBorderExtractor range_image_border_extractor; pcl::NarfKeypoint narf_keypoint_detector; narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor); narf_keypoint_detector.setRangeImage (&range_image); narf_keypoint_detector.getParameters ().support_size = support_size; pcl::PointCloud<int> keypoint_indices; narf_keypoint_detector.compute (keypoint_indices); std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n"; // ---------------------------------------------- // -----Show keypoints in range image widget----- // ---------------------------------------------- //for (size_t i=0; i<keypoint_indices.points.size (); ++i) //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width, //keypoint_indices.points[i]/range_image.width); // ------------------------------------- // -----Show keypoints in 3D viewer----- // ------------------------------------- pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr; keypoints.points.resize (keypoint_indices.points.size ()); for (size_t i=0; i<keypoint_indices.points.size (); ++i) keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap (); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0); viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints"); viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints"); // ------------------------------------------------------ // -----Extract NARF descriptors for interest points----- // ------------------------------------------------------ std::vector<int> keypoint_indices2; keypoint_indices2.resize (keypoint_indices.points.size ()); for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type keypoint_indices2[i]=keypoint_indices.points[i]; pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2); narf_descriptor.getParameters ().support_size = support_size; narf_descriptor.getParameters ().rotation_invariant = rotation_invariant; pcl::PointCloud<pcl::Narf36> narf_descriptors; narf_descriptor.compute (narf_descriptors); cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for " <<keypoint_indices.points.size ()<< " keypoints.\n"; //-------------------- // -----Main loop----- //-------------------- while (!viewer.wasStopped ()) { range_image_widget.spinOnce (); // process GUI events viewer.spinOnce (); pcl_sleep(0.01); } }
int main (int argc, char** argv) { // -------------------------------------- // -----Parse Command Line Arguments----- // -------------------------------------- if (pcl::console::find_argument (argc, argv, "-h") >= 0) { printUsage (argv[0]); return 0; } if (pcl::console::find_argument (argc, argv, "-m") >= 0) { setUnseenToMaxRange = true; std::cout << "Setting unseen values in range image to maximum range readings.\n"; } if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0) std::cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n"; int tmp_coordinate_frame; if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0) { coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame); std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n"; } if (pcl::console::parse (argc, argv, "-s", support_size) >= 0) std::cout << "Setting support size to "<<support_size<<".\n"; if (pcl::console::parse (argc, argv, "-d", descriptor_size) >= 0) std::cout << "Setting descriptor size to "<<descriptor_size<<".\n"; if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0) std::cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n"; angular_resolution = pcl::deg2rad (angular_resolution); // ----------------------- // -----Read pcd file----- // ----------------------- pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>); pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr; pcl::PointCloud<pcl::PointWithViewpoint> far_ranges; Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ()); std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd"); if (!pcd_filename_indices.empty ()) { std::string filename = argv[pcd_filename_indices[0]]; if (pcl::io::loadPCDFile (filename, point_cloud) == -1) { std::cout << "Was not able to open file \""<<filename<<"\".\n"; printUsage (argv[0]); return 0; } scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0], point_cloud.sensor_origin_[1], point_cloud.sensor_origin_[2])) * Eigen::Affine3f (point_cloud.sensor_orientation_); std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd"; if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1) std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n"; } else { std::cout << "\nNo *.pcd file for scene given.\n\n"; printUsage (argv[0]); return 1; } // ----------------------------------------------- // -----Create RangeImage from the PointCloud----- // ----------------------------------------------- float noise_level = 0.0; float min_range = 0.0f; int border_size = 1; pcl::RangeImage::Ptr range_image_ptr (new pcl::RangeImage); pcl::RangeImage& range_image = *range_image_ptr; range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f), scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size); range_image.integrateFarRanges (far_ranges); if (setUnseenToMaxRange) range_image.setUnseenToMaxRange (); // Extract NARF features: std::cout << "Now extracting NARFs in every image point.\n"; std::vector<std::vector<pcl::Narf*> > narfs; narfs.resize (range_image.points.size ()); int last_percentage=-1; for (unsigned int y=0; y<range_image.height; ++y) { for (unsigned int x=0; x<range_image.width; ++x) { int index = y*range_image.width+x; int percentage = (int) ((100*index) / range_image.points.size ()); if (percentage > last_percentage) { std::cout << percentage<<"% "<<std::flush; last_percentage = percentage; } pcl::Narf::extractFromRangeImageAndAddToList (range_image, x, y, descriptor_size, support_size, rotation_invariant != 0, narfs[index]); //std::cout << "Extracted "<<narfs[index].size ()<<" features for pixel "<<x<<","<<y<<".\n"; } } std::cout << "100%\n"; std::cout << "Done.\n\n Now you can click on points in the image to visualize how the descriptor is " << "extracted and see the descriptor distances to every other point..\n"; //--------------------- // -----Show image----- // -------------------- pcl::visualization::RangeImageVisualizer range_image_widget ("Scene range image"), surface_patch_widget("Descriptor's surface patch"), descriptor_widget("Descriptor"), descriptor_distances_widget("descriptor distances"); range_image_widget.showRangeImage (range_image); //range_image_widget.visualize_selected_point = true; //-------------------- // -----Main loop----- //-------------------- while (true) { range_image_widget.spinOnce (); // process GUI events surface_patch_widget.spinOnce (); // process GUI events descriptor_widget.spinOnce (); // process GUI events pcl_sleep(0.01); //if (!range_image_widget.mouse_click_happened) continue; //range_image_widget.mouse_click_happened = false; //float clicked_pixel_x_f = range_image_widget.last_clicked_point_x, //clicked_pixel_y_f = range_image_widget.last_clicked_point_y; int clicked_pixel_x, clicked_pixel_y; //range_image.real2DToInt2D (clicked_pixel_x_f, clicked_pixel_y_f, clicked_pixel_x, clicked_pixel_y); if (!range_image.isValid (clicked_pixel_x, clicked_pixel_y)) continue; //Vector3f clicked_3d_point; //range_image.getPoint (clicked_pixel_x, clicked_pixel_y, clicked_3d_point); //surface_patch_widget.show (false); //descriptor_widget.show (false);" int selected_index = clicked_pixel_y*range_image.width + clicked_pixel_x; pcl::Narf narf; if (!narf.extractFromRangeImage (range_image, clicked_pixel_x, clicked_pixel_y, descriptor_size, support_size)) { continue; } int surface_patch_pixel_size = narf.getSurfacePatchPixelSize (); float surface_patch_world_size = narf.getSurfacePatchWorldSize (); surface_patch_widget.showFloatImage (narf.getSurfacePatch (), surface_patch_pixel_size, surface_patch_pixel_size, -0.5f*surface_patch_world_size, 0.5f*surface_patch_world_size, true); float surface_patch_rotation = narf.getSurfacePatchRotation (); float patch_middle = 0.5f* (float (surface_patch_pixel_size-1)); float angle_step_size = pcl::deg2rad (360.0f)/narf.getDescriptorSize (); float cell_size = surface_patch_world_size/float (surface_patch_pixel_size), cell_factor = 1.0f/cell_size, max_dist = 0.5f*surface_patch_world_size, line_length = cell_factor* (max_dist-0.5f*cell_size); for (int descriptor_value_idx=0; descriptor_value_idx<narf.getDescriptorSize (); ++descriptor_value_idx) { float angle = descriptor_value_idx*angle_step_size + surface_patch_rotation; //surface_patch_widget.markLine (patch_middle, patch_middle, patch_middle+line_length*sinf (angle), //patch_middle+line_length*-cosf (angle), pcl::visualization::Vector3ub (0,255,0)); } std::vector<float> rotations, strengths; narf.getRotations (rotations, strengths); float radius = 0.5f*surface_patch_pixel_size; for (unsigned int i=0; i<rotations.size (); ++i) { //surface_patch_widget.markLine (radius-0.5, radius-0.5, radius-0.5f + 2.0f*radius*sinf (rotations[i]), //radius-0.5f - 2.0f*radius*cosf (rotations[i]), pcl::visualization::Vector3ub (255,0,0)); } descriptor_widget.showFloatImage (narf.getDescriptor (), narf.getDescriptorSize (), 1, -0.1f, 0.3f, true); //=================================== //=====Compare with all features===== //=================================== const std::vector<pcl::Narf*>& narfs_of_selected_point = narfs[selected_index]; if (narfs_of_selected_point.empty ()) continue; //descriptor_distances_widget.show (false); float* descriptor_distance_image = new float[range_image.points.size ()]; for (unsigned int point_index=0; point_index<range_image.points.size (); ++point_index) { float& descriptor_distance = descriptor_distance_image[point_index]; descriptor_distance = std::numeric_limits<float>::infinity (); std::vector<pcl::Narf*>& narfs_of_current_point = narfs[point_index]; if (narfs_of_current_point.empty ()) continue; for (unsigned int i=0; i<narfs_of_selected_point.size (); ++i) { for (unsigned int j=0; j<narfs_of_current_point.size (); ++j) { descriptor_distance = (std::min)(descriptor_distance, narfs_of_selected_point[i]->getDescriptorDistance (*narfs_of_current_point[j])); } } } descriptor_distances_widget.showFloatImage (descriptor_distance_image, range_image.width, range_image.height, -std::numeric_limits<float>::infinity (), std::numeric_limits<float>::infinity (), true); delete[] descriptor_distance_image; } }