// If there is no 'into' filter (e.g. 0,1:in.ctx 0,1 is 'into filter'), // load into `into_offset..into_offset+N-1` void file_filter_set_cols(FileFilter *fltr, size_t filencols, size_t into_offset) { size_t i; const char *path_start_c, *path_end_c; file_filter_deconstruct_path(fltr->input.b, &path_start_c, &path_end_c); // This is a hack to get non-const pointer size_t offset_start = path_start_c - fltr->input.b; size_t offset_end = path_end_c - fltr->input.b; char *path_start = fltr->input.b + offset_start; char *path_end = fltr->input.b + offset_end; char *from_fltr = (*path_end == ':' ? path_end+1 : NULL); char *into_fltr = (path_start > fltr->input.b ? fltr->input.b : NULL); size_t ncols; if(from_fltr) { int s = range_get_num(from_fltr, filencols-1); if(s < 0) die("Invalid filter path: %s (file cols: %zu)", fltr->input.b, filencols); ncols = s; } else { ncols = filencols; } if(into_fltr) { *(path_start-1) = '\0'; int s = range_get_num(into_fltr, SIZE_MAX); *(path_start-1) = ':'; if(s < 0 || (s != 1 && (size_t)s != ncols)) die("Invalid filter path: %s (s:%i ncols:%zu)", fltr->input.b, s, ncols); } fltr->filencols = filencols; filter_buf_capacity(&fltr->filter, ncols); file_filter_num(fltr) = ncols; size_t *tmp = ctx_calloc(ncols, sizeof(size_t)); if(from_fltr) { if(range_parse_array(from_fltr, tmp, filencols-1) == -1) die("Invalid filter path: %s", fltr->input.b); for(i = 0; i < ncols; i++) file_filter_fromcol(fltr, i) = tmp[i]; } else { for(i = 0; i < ncols; i++) file_filter_fromcol(fltr, i) = i; } if(into_fltr) { *(path_start-1) = '\0'; int s = range_parse_array_fill(into_fltr, tmp, SIZE_MAX, ncols); *(path_start-1) = ':'; if(s < 0 || (size_t)s != ncols) die("Invalid filter path: %s (s:%i ncols:%zu)", fltr->input.b, s, ncols); for(i = 0; i < ncols; i++) file_filter_intocol(fltr, i) = tmp[i]; } else { for(i = 0; i < ncols; i++) file_filter_intocol(fltr, i) = into_offset + i; } ctx_free(tmp); file_filter_update(fltr); // for(i = 0; i < file_filter_num(fltr); i++) // status("%u -> %u", file_filter_fromcol(fltr,i), file_filter_intocol(fltr,i)); }
int ctx_bubbles(int argc, char **argv) { size_t nthreads = 0; struct MemArgs memargs = MEM_ARGS_INIT; const char *out_path = NULL; size_t max_allele_len = 0, max_flank_len = 0; bool remove_serial_bubbles = true; // List of haploid colours size_t *hapcols = NULL; int nhapcols = 0; char *hapcols_arg = NULL; GPathReader tmp_gpfile; GPathFileBuffer gpfiles; gpfile_buf_alloc(&gpfiles, 8); // Arg parsing char cmd[100]; char shortopts[300]; cmd_long_opts_to_short(longopts, shortopts, sizeof(shortopts)); int c; // silence error messages from getopt_long // opterr = 0; while((c = getopt_long_only(argc, argv, shortopts, longopts, NULL)) != -1) { cmd_get_longopt_str(longopts, c, cmd, sizeof(cmd)); switch(c) { case 0: /* flag set */ break; case 'h': cmd_print_usage(NULL); break; case 'o': cmd_check(!out_path, cmd); out_path = optarg; break; case 'f': cmd_check(!futil_get_force(), cmd); futil_set_force(true); break; case 'p': memset(&tmp_gpfile, 0, sizeof(GPathReader)); gpath_reader_open(&tmp_gpfile, optarg); gpfile_buf_push(&gpfiles, &tmp_gpfile, 1); break; case 't': cmd_check(!nthreads, cmd); nthreads = cmd_uint32_nonzero(cmd, optarg); break; case 'm': cmd_mem_args_set_memory(&memargs, optarg); break; case 'n': cmd_mem_args_set_nkmers(&memargs, optarg); break; case 'H': cmd_check(!hapcols_arg, cmd); hapcols_arg = optarg; break; case 'A': cmd_check(!max_allele_len, cmd); max_allele_len = cmd_uint32_nonzero(cmd, optarg); break; case 'F': cmd_check(!max_flank_len, cmd); max_flank_len = cmd_uint32_nonzero(cmd, optarg); break; case 'S': cmd_check(remove_serial_bubbles,cmd); remove_serial_bubbles = false; break; case ':': /* BADARG */ case '?': /* BADCH getopt_long has already printed error */ // cmd_print_usage(NULL); die("`"CMD" "SUBCMD" -h` for help. Bad option: %s", argv[optind-1]); default: abort(); } } // Defaults for unset values if(out_path == NULL) out_path = "-"; if(nthreads == 0) nthreads = DEFAULT_NTHREADS; if(max_allele_len == 0) max_allele_len = DEFAULT_MAX_ALLELE; if(max_flank_len == 0) max_flank_len = DEFAULT_MAX_FLANK; if(optind >= argc) cmd_print_usage("Require input graph files (.ctx)"); // // Open graph files // const size_t num_gfiles = argc - optind; char **graph_paths = argv + optind; ctx_assert(num_gfiles > 0); GraphFileReader *gfiles = ctx_calloc(num_gfiles, sizeof(GraphFileReader)); size_t i, ncols, ctx_max_kmers = 0, ctx_sum_kmers = 0; ncols = graph_files_open(graph_paths, gfiles, num_gfiles, &ctx_max_kmers, &ctx_sum_kmers); // Check graph + paths are compatible graphs_gpaths_compatible(gfiles, num_gfiles, gpfiles.b, gpfiles.len, -1); // // Check haploid colours are valid // if(hapcols_arg != NULL) { if((nhapcols = range_get_num(hapcols_arg, ncols)) < 0) die("Invalid haploid colour list: %s", hapcols_arg); hapcols = ctx_calloc(nhapcols, sizeof(hapcols[0])); if(range_parse_array(hapcols_arg, hapcols, ncols) < 0) die("Invalid haploid colour list: %s", hapcols_arg); } // // Decide on memory // size_t bits_per_kmer, kmers_in_hash, graph_mem, path_mem, thread_mem; char thread_mem_str[100]; // edges(1bytes) + kmer_paths(8bytes) + in_colour(1bit/col) + // visitedfw/rv(2bits/thread) bits_per_kmer = sizeof(BinaryKmer)*8 + sizeof(Edges)*8 + (gpfiles.len > 0 ? sizeof(GPath*)*8 : 0) + ncols + 2*nthreads; kmers_in_hash = cmd_get_kmers_in_hash(memargs.mem_to_use, memargs.mem_to_use_set, memargs.num_kmers, memargs.num_kmers_set, bits_per_kmer, ctx_max_kmers, ctx_sum_kmers, false, &graph_mem); // Thread memory thread_mem = roundup_bits2bytes(kmers_in_hash) * 2; bytes_to_str(thread_mem * nthreads, 1, thread_mem_str); status("[memory] (of which threads: %zu x %zu = %s)\n", nthreads, thread_mem, thread_mem_str); // Paths memory size_t rem_mem = memargs.mem_to_use - MIN2(memargs.mem_to_use, graph_mem+thread_mem); path_mem = gpath_reader_mem_req(gpfiles.b, gpfiles.len, ncols, rem_mem, false, kmers_in_hash, false); // Shift path store memory from graphs->paths graph_mem -= sizeof(GPath*)*kmers_in_hash; path_mem += sizeof(GPath*)*kmers_in_hash; cmd_print_mem(path_mem, "paths"); size_t total_mem = graph_mem + thread_mem + path_mem; cmd_check_mem_limit(memargs.mem_to_use, total_mem); // // Open output file // gzFile gzout = futil_gzopen_create(out_path, "w"); // Allocate memory dBGraph db_graph; db_graph_alloc(&db_graph, gfiles[0].hdr.kmer_size, ncols, 1, kmers_in_hash, DBG_ALLOC_EDGES | DBG_ALLOC_NODE_IN_COL); // Paths gpath_reader_alloc_gpstore(gpfiles.b, gpfiles.len, path_mem, false, &db_graph); // // Load graphs // GraphLoadingPrefs gprefs = graph_loading_prefs(&db_graph); gprefs.empty_colours = true; for(i = 0; i < num_gfiles; i++) { graph_load(&gfiles[i], gprefs, NULL); graph_file_close(&gfiles[i]); gprefs.empty_colours = false; } ctx_free(gfiles); hash_table_print_stats(&db_graph.ht); // Load link files for(i = 0; i < gpfiles.len; i++) gpath_reader_load(&gpfiles.b[i], GPATH_DIE_MISSING_KMERS, &db_graph); // Create array of cJSON** from input files cJSON **hdrs = ctx_malloc(gpfiles.len * sizeof(cJSON*)); for(i = 0; i < gpfiles.len; i++) hdrs[i] = gpfiles.b[i].json; // Now call variants BubbleCallingPrefs call_prefs = {.max_allele_len = max_allele_len, .max_flank_len = max_flank_len, .haploid_cols = hapcols, .nhaploid_cols = nhapcols, .remove_serial_bubbles = remove_serial_bubbles}; invoke_bubble_caller(nthreads, &call_prefs, gzout, out_path, hdrs, gpfiles.len, &db_graph); status(" saved to: %s\n", out_path); gzclose(gzout); ctx_free(hdrs); // Close input link files for(i = 0; i < gpfiles.len; i++) gpath_reader_close(&gpfiles.b[i]); gpfile_buf_dealloc(&gpfiles); ctx_free(hapcols); db_graph_dealloc(&db_graph); return EXIT_SUCCESS; }