Esempio n. 1
0
void initFlash(void) {
    initLogging(&logger, "Flash memory");
    print("initFlash()\r\n");


    addConsoleAction("readconfig", readFromFlash);
    addConsoleAction("writeconfig", writeToFlash);
    addConsoleAction("resetconfig", doResetConfiguration);

    readFromFlash();
}
Esempio n. 2
0
/***********************************************************************
	This is the main controller loop.
	sequences of operations:
		- reads from CAN bus or serial port 1.
		- reads encoders (or ADC).
		- computes the control value (a PID in this version).
		- checks limits and other errors.
		- sets PWM
		- does extra functions (e.g. communicate with neighboring cards).
 ***********************************************************************/
void main(void)
{

	Int32 PWMoutput [JN];
	Int32 PWMoutput_old [JN];
	byte i=0;
	byte wi=0;
	byte k=0;
	UInt16 *value=0;
	Int32 t1val=0;
	Int32 PID_R= 2;
	Int32 kpp=1;
	Int16 current_turn=0;
	Int16 print_number=0;
	Int16 real_pos=0;
	byte first_step=0;

#if (VERSION == 0x0351)
	#define winSizeMax 32
	#define initialWindowSize 4
#else
	#define winSizeMax 32
	#define initialWindowSize 30
#endif

	byte divJntPos[JN]=INIT_ARRAY(initialWindowSize-1);
	byte divJntVel[JN]=INIT_ARRAY(initialWindowSize-1);
	byte divMotPos[JN]=INIT_ARRAY(initialWindowSize-1);
	byte divMotVel[JN]=INIT_ARRAY(initialWindowSize-1);
	byte headJntPos[JN]=INIT_ARRAY(0);  //current joint pos
	byte tailJntPos[JN]=INIT_ARRAY(0); 
	byte headJntVel[JN]=INIT_ARRAY(0);  //current joint vel
	byte tailJntVel[JN]=INIT_ARRAY(0); 
	byte headMotPos[JN]=INIT_ARRAY(0);  //current motor pos
	byte tailMotPos[JN]=INIT_ARRAY(0); 
	byte headMotVel[JN]=INIT_ARRAY(0);  //current motor vel
	byte tailMotVel[JN]=INIT_ARRAY(0); 
	Int32 jntPosWindow[winSizeMax][JN]; //max window size = winSizeMax
	Int32 jntVelWindow[winSizeMax][JN]; //max window size = winSizeMax
	Int32 motPosWindow[winSizeMax][JN]; //max window size = winSizeMax
	Int32 motVelWindow[winSizeMax][JN]; //max window size = winSizeMax
	Int16 _safeband[JN];	//it is a value for reducing the JOINT limit of 2*_safeband [tick encoder]
#ifdef TEMPERATURE_SENSOR
	byte   TempSensCount1 = 0;
	UInt32 TempSensCount2 = 0;
	byte   temp_sens_status=0;
	overtemp[0]=0;
	overtemp[1]=0;
	errortemp[0]=0;
	errortemp[1]=0;

#endif
	
	/* gets the address of flash memory from the linker */
	_flash_addr = get_flash_addr();
		
	/* enable interrupts */
	setReg(SYS_CNTL, 0);
	
	// IPL channels from 0 to 6 enabled
	// external interrupts IRQA and IRQB disabled
	setRegBits(IPR, 0xFE00); 

	// enable FAULT
	__ENIGROUP (61, 3); 
	#if (VERSION == 0x0254)
	#else
	__ENIGROUP (60, 3);
	#endif	
	// enable SCI
	__ENIGROUP (52, 4);
	__ENIGROUP (53, 4);
	__ENIGROUP (50, 4);
	__ENIGROUP (51, 4);
	
    // enable data flash
	__ENIGROUP (13, 4);
	
	// enable CAN	
	__ENIGROUP (14, 6);
	__ENIGROUP (15, 6);
	__ENIGROUP (16, 6);
	__ENIGROUP (17, 6);
	
	// enable ADCA/ADCB
	__ENIGROUP (55, 6);
	__ENIGROUP (54, 6);
	
	//enable PWM reload 
	__ENIGROUP (59, 7); // PMWA
	
	#if (VERSION == 0x0254)
	#else	
	__ENIGROUP (58, 7); // PWMB
	#endif
	// enable timers
	// TIMER_A
	__ENIGROUP (45, 7); //Timer for the encoder commutation if used
    __ENIGROUP (44, 7); //
	__ENIGROUP (43, 7); //
	__ENIGROUP (42, 4); //TI1 1ms delay main loop
	// TIMER_B

	__ENIGROUP (41, 7); //
	__ENIGROUP (40, 7); //
	__ENIGROUP (39, 7); //
	__ENIGROUP (38, 7);

	// TIMER_C
	__ENIGROUP (37, 1); 
	__ENIGROUP (36, 1);
	__ENIGROUP (35, 1);
	__ENIGROUP (34, 1);
	// TIMER_D
	__ENIGROUP (33, 7); //1ms delay duty cycle
	__ENIGROUP (32, 1);
	__ENIGROUP (31, 1);
	__ENIGROUP (30, 1);

	__EI();
	
	flash_interface_init  (JN);			
	readFromFlash (_flash_addr);  
	if (_version==_flash_version)
	{
		
	}
	else
	{
		writeToFlash(_flash_addr);
	}
	__DI();
	
	#warning "debug"//   ;
	
	__EI();

	init_leds  			  ();
	
	#if (VERSION == 0x0254)
	
	Init_Brushless_Comm	  (1,HALL); 
  	
  	#else 

	Init_Brushless_Comm	  (JN,HALL); 
  	
  	#endif
	can_interface_init    (JN);	 
    init_strain ();


    init_position_abs_ssi ();
#if VERSION ==0x0257 
    init_relative_position_abs_ssi();
#endif 
 
    init_faults           (true,true,true);	 
    
    init_position_encoder ();


	TI1_init 			  ();

//variable init	
	mainLoopOVF=0;
	_count=0;
	
	for(i=0;i<JN;i++)
	{
	_received_pid[i].rec_pid=0;
	}
	
	BUS_OFF=false;
 	#warning "debug"//   ;
	
	//__EI();

	  
//	print_version ();
	
	/* initialization */
	for (i=0; i<JN; i++) _calibrated[i] = false;
	
	/* reset trajectory generation */
	for (i=0; i<JN; i++) abort_trajectory (i, 0);
	
	
	///////////////////////////////////////
	// reset of the ABS_SSI
	// this is needed because the AS5045 gives the first value wrong !!!
    for (i=0; i<JN; i++)	_position[i]=(Int32) Filter_Bit(get_position_abs_ssi(i));
    for (i=0; i<JN; i++)    _max_real_position[i]=Filter_Bit(4095);
 	
	//////////////////////////////////////
	
	/* initialize speed and acceleration to zero (useful later on) */
	for (i=0; i<JN; i++) _position_old[i] = 0;
	for (i=0; i<JN; i++) _speed[i] = 0;
	for (i=0; i<JN; i++) _accel[i] = 0;
	for (i=0; i<JN; i++) _safeband[i] =5; //5 ticks => 1 grado di AEA.
	for (i=0; i<JN; i++) PWMoutput [i] = PWMoutput_old[i] = 0;
	
	/* reset the recursive windows for storage of position and velocity data */
	/* (for velocity and position estimates) */
	for(i=0;i<JN;i++)
	{
		for(wi=0;wi<winSizeMax;wi++)
		{
			jntPosWindow[wi][i]=_position[i];	
			jntVelWindow[wi][i]=0;
			motPosWindow[wi][i]=0;	
			motVelWindow[wi][i]=0;
		}
	}
	
	//set_relative_position_abs_ssi(1,get_absolute_real_position_abs_ssi(1));
	/* main control loop */
	for(_counter = 0;; _counter ++) 
	{
		if (_counter >= CAN_SYNCHRO_STEPS) _counter = 0;
		led3_on
		while (_wait);
		_count=0;
		led3_off
		
// BUS_OFF check
		if (getCanBusOffstatus() )
		{
			#ifdef DEBUG_CAN_MSG
				can_printf("DISABLE BUS OFF");
			#endif	
			for (i=0; i<JN; i++) put_motor_in_fault(i);
			led1_off
		}
		else
			led1_on

// READING CAN MESSAGES
		can_interface();

		for (i=0; i<JN; i++)
		if (_pad_enabled[i]==false && _control_mode[i]!=MODE_HW_FAULT) _control_mode[i]=MODE_IDLE;		
	
	
	    //Position calculation
	    // This is used to have a shift of the zero-cross out of the 
	    // joint workspace
	    //
	    // max_real_position is the limit of the joint starting from 
	    // 4095 and going to decrease this number without zero-cross
	    // untill the joint limit is reached
#if    VERSION == 0x0257 
		_position_old[0]=_position[0]; 
		if(get_error_abs_ssi(0)==ERR_OK)
			_position[0]=Filter_Bit (get_position_abs_ssi(0));
    	_position_old[1]=_position[1];
		if(get_error_abs_ssi(1)==ERR_OK) 
			_position[1]=Filter_Bit (get_position_abs_ssi(1));		 
#else
	 	for (i=0; i<JN; i++) 
		{
		_position_old[i]=_position[i];
		if(get_error_abs_ssi(i)==ERR_OK)
		_position[i]=Filter_Bit (get_position_abs_ssi(i));
		
		}
#endif 

		// get_commutations() is used to read the incremental encoder of the motors.
		// the variable _motor_position is then used to estimate the rotor speed and
		// compensate the back-EMF of the motor.
		for (i=0; i<JN; i++) _motor_position[i]=get_position_encoder(i);//get_commutations(i);


///////////////////////////////////////////DEBUG////////////
#if (VERSION !=0x0254)
	    for (i=0; i<JN; i++) 
		{		
		   if (get_error_abs_ssi(i)==ERR_ABS_SSI)
		   {
				put_motor_in_fault(i);	
				#ifdef DEBUG_CAN_MSG
		    	can_printf("ABS error %d",i);	
				#endif
		   }				
		}  
#endif
	
#if (VERSION ==0x0254)
		   if (get_error_abs_ssi(0)==ERR_ABS_SSI)
		   {
				put_motor_in_fault(0);
				#ifdef DEBUG_CAN_MSG
		    	can_printf("ABS error %d",0);	
				#endif
		   }	
					 
#endif	


 //DO NOTHING


		// decoupling the position	 	
		decouple_positions();
		

				/* velocity and acceleration estimators */
		{	
			for (i=0; i<JN; i++)
			{	
				//joint velocity estimator
				tailJntPos[i]=headJntPos[i]+(winSizeMax-divJntPos[i]); if(tailJntPos[i]>=winSizeMax) tailJntPos[i]=tailJntPos[i]%winSizeMax;			
				_speed_old[i] = _speed[i];
				jntPosWindow[headJntPos[i]][i]=_position[i];
				_speed[i] = (Int32) (((jntPosWindow[headJntPos[i]][i] - jntPosWindow[tailJntPos[i]][i] ))<<_jntVel_est_shift[i]);
			//	_speed[i] <<= _jntVel_est_shift[i];
				_speed[i] = (Int32)(_speed[i]) / divJntPos[i];
				headJntPos[i]=headJntPos[i]+1; if(headJntPos[i]>=winSizeMax) headJntPos[i]=0;
/*
				//joint acceleration estimator
				tailJntVel[i]=headJntVel[i]+(winSizeMax-divJntVel[i]); if(tailJntVel[i]>=winSizeMax) tailJntVel[i]=tailJntVel[i]%winSizeMax;			
				_accel_old[i] = _accel[i];
				jntVelWindow[headJntVel[i]][i]=_speed[i];
				_accel[i] = ((jntVelWindow[headJntVel[i]][i] - jntVelWindow[tailJntVel[i]][i] ));
				_accel[i] << _jntAcc_est_shift[i];
				_accel[i] = (Int32)(_accel[i]) / divJntVel[i];
				headJntVel[i]=headJntVel[i]+1; if(headJntVel[i]>=winSizeMax) headJntVel[i]=0;
*/				
				//motor velocity estimator
				tailMotPos[i]=headMotPos[i]+(winSizeMax-divMotPos[i]); if(tailMotPos[i]>=winSizeMax) tailMotPos[i]=tailMotPos[i]%winSizeMax;			
				_motor_speed_old[i] = _motor_speed[i];
				motPosWindow[headMotPos[i]][i]=_motor_position[i];
				_motor_speed[i] = ((motPosWindow[headMotPos[i]][i] - motPosWindow[tailMotPos[i]][i] ));
				_motor_speed[i] <<= _motVel_est_shift[i];
				_motor_speed[i] = (_motor_speed[i]) / divMotPos[i];
				headMotPos[i]=headMotPos[i]+1; if(headMotPos[i]>=winSizeMax) headMotPos[i]=0;				
			}
		}
		


					
		/* in position? */
#if (VERSION != 0x0254)
		for (i=0; i<JN; i++) _in_position[i] = check_in_position(i); 
#else
		_in_position[0] = check_in_position(0);
#endif
				
		/* in reference configuration for calibration? */
		//for (i=0; i<JN; i++) check_in_position_calib(i); 

	
//******************************************* POSITION LIMIT CHECK ***************************/
		for (i=0; i<JN; i++)  check_range(i, _safeband[i], PWMoutput);

//******************************************* COMPUTES CONTROLS *****************************/

		//FT sensor watchdog update 
		for (i=0; i<STRAIN_MAX; i++) 
			if (_strain_wtd[i]>0) _strain_wtd[i]--;
			
		for (i=0; i<JN; i++) 
		{
			//computing the PWM value (PID)
			PWMoutput[i] = compute_pwm(i);

			// PWM filtering in torque control if there is no bemf compensation
			#if (VERSION != 0x0351)
			if (_control_mode[i] == MODE_TORQUE ||
			 	_control_mode[i] == MODE_IMPEDANCE_POS ||
			 	_control_mode[i] == MODE_IMPEDANCE_VEL)
				{
					if (_useFilter[i] == 3) PWMoutput[i] = lpf_ord1_3hz (PWMoutput[i], i);
				}	
			// saving the PWM value before the decoupling					
			_bfc_PWMoutput[i] = PWMoutput_old[i] = PWMoutput[i];

			// applying the saturation to the PWM
			if      (_bfc_PWMoutput[i] < -MAX_DUTY) _bfc_PWMoutput[i]=-MAX_DUTY;
			else if (_bfc_PWMoutput[i] > MAX_DUTY)  _bfc_PWMoutput[i]= MAX_DUTY;
			#endif //(VERSION != 0x0351)			
		}

        //decouple PWM	
		decouple_dutycycle(PWMoutput);
		
//******************************************* SATURATES CONTROLS ***************************/                
		/* back emf compensation + controls saturation (if necessary) */
		for (i=0; i<JN; i++)
		{
			if (_control_mode[i] == MODE_TORQUE ||
				_control_mode[i] == MODE_IMPEDANCE_POS ||
				_control_mode[i] == MODE_IMPEDANCE_VEL)
			{
				#if (VERSION != 0x0351)
				// Back emf compensation			
			
				//PWMoutput[i]+=compensate_bemf(i, _comm_speed[i]); //use the motor speed
				PWMoutput[i]+=compensate_bemf(i, _speed[i]); //use the joint speed
				
				//add the coulomb friction compensation term
				if (_kstp_torque[i] != 0 ||
				    _kstn_torque[i] != 0)
				//PWMoutput[i]+=compensate_friction(i, _comm_speed[i]); //use the motor speed
				PWMoutput[i]+=compensate_friction(i, _speed[i]); //use the joint speed
				
				// Protection for joints out of the admissible range during force control
				check_range_torque(i, _safeband[i], PWMoutput);
				// PWM saturation
				ENFORCE_LIMITS	(i,PWMoutput[i], _pid_limit_torque[i] );
				#else  //(VERSION != 0x0351)
				ENFORCE_LIMITS	(i,PWMoutput[i], _pid_limit[i] );
				#endif //(VERSION != 0x0351)
			}
			else
			{
				ENFORCE_LIMITS	(i,PWMoutput[i], _pid_limit[i] );
			}			
			if      (_pid[i] < -MAX_DUTY) _pid[i]=-MAX_DUTY;
			else if (_pid[i] > MAX_DUTY)  _pid[i]= MAX_DUTY;
		}
				
		/* generate PWM */		
		for (i=0; i<JN; i++)
		{
			if (!mode_is_idle(i)) {PWM_generate(i,_pid[i]);}			
		}
	
		/* Check Current done in T1 */

		/* do extra functions, communicate, etc. */
		//send broadcast data	
		can_send_broadcast();

		//send additional debug information
		//can_send_broadcast_debug(1,1);
	 
/***********************************************************************
// Check Current is made here
/***********************************************************************/

#if (VERSION != 0x0254)
		for (i=0; i<JN; i++)
#else
		for (i=0; i<1; i++)
#endif  
		{
			if ((get_current(i)>=25000) || (get_current(i)<=-25000))
			{
				put_motor_in_fault(i);	
				highcurrent[i]=true;
				#ifdef DEBUG_CAN_MSG
				can_printf("j%d curr %f",i,get_current(i));
				#endif
			}
			check_current(i, (_pid[i] > 0));		
			compute_i2t(i);
			if (_filt_current[i] > MAX_I2T_CURRENT)
			{
				put_motor_in_fault(i);	
				highcurrent[i]=true;
				#ifdef DEBUG_CAN_MSG
				can_printf("j%d filtcurr %f",i,_filt_current[i]);
				#endif	
			}			
		}

//	Check for the MAIN LOOP duration
 
			
//		t1val= (UInt16) TI1_getCounter(); 	
		if (	_count>0)
		{	
			mainLoopOVF=1;
			_count=0;
		}


		
		/* tells that the control cycle is completed */
		
		_wait = true;		
		
	} /* end for(;;) */
Esempio n. 3
0
void initHardware(Logging *logger, Engine *engine) {
	engine_configuration_s *engineConfiguration = engine->engineConfiguration;
	efiAssertVoid(engineConfiguration!=NULL, "engineConfiguration");
	board_configuration_s *boardConfiguration = &engineConfiguration->bc;

	printMsg(logger, "initHardware()");
	// todo: enable protection. it's disabled because it takes
	// 10 extra seconds to re-flash the chip
	//flashProtect();

	chMtxInit(&spiMtx);

#if EFI_HISTOGRAMS
	/**
	 * histograms is a data structure for CPU monitor, it does not depend on configuration
	 */
	initHistogramsModule();
#endif /* EFI_HISTOGRAMS */

	/**
	 * This is so early because we want to init logger
	 * which would be used while finding trigger synch index
	 * while config read
	 */
	initTriggerDecoder();

	/**
	 * We need the LED_ERROR pin even before we read configuration
	 */
	initPrimaryPins();

	if (hasFirmwareError()) {
		return;
	}

	initDataStructures(PASS_ENGINE_PARAMETER_F);

#if EFI_INTERNAL_FLASH

	palSetPadMode(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN, PAL_MODE_INPUT_PULLUP);

	initFlash(engine);
	/**
	 * this call reads configuration from flash memory or sets default configuration
	 * if flash state does not look right.
	 */
	if (SHOULD_INGORE_FLASH()) {
		engineConfiguration->engineType = FORD_ASPIRE_1996;
		resetConfigurationExt(logger, engineConfiguration->engineType, engine);
		writeToFlash();
	} else {
		readFromFlash();
	}
#else
	engineConfiguration->engineType = FORD_ASPIRE_1996;
	resetConfigurationExt(logger, engineConfiguration->engineType, engineConfiguration, engineConfiguration2, boardConfiguration);
#endif /* EFI_INTERNAL_FLASH */

	if (hasFirmwareError()) {
		return;
	}

	mySetPadMode2("board test", boardConfiguration->boardTestModeJumperPin, PAL_MODE_INPUT_PULLUP);
	bool isBoardTestMode_b = GET_BOARD_TEST_MODE_VALUE();

	initAdcInputs(isBoardTestMode_b);

	if (isBoardTestMode_b) {
		// this method never returns
		initBoardTest();
	}

	initRtc();

	initOutputPins();

#if EFI_HIP_9011
	initHip9011();
#endif /* EFI_HIP_9011 */

#if EFI_MAX_31855
	initMax31855(boardConfiguration);
#endif /* EFI_MAX_31855 */

#if EFI_CAN_SUPPORT
	initCan();
#endif /* EFI_CAN_SUPPORT */

//	init_adc_mcp3208(&adcState, &SPID2);
//	requestAdcValue(&adcState, 0);

	// todo: figure out better startup logic
	initTriggerCentral(engine);

#if EFI_SHAFT_POSITION_INPUT
	initShaftPositionInputCapture();
#endif /* EFI_SHAFT_POSITION_INPUT */

	initSpiModules(boardConfiguration);

#if EFI_FILE_LOGGING
	initMmcCard();
#endif /* EFI_FILE_LOGGING */

//	initFixedLeds();

	//	initBooleanInputs();

#if EFI_UART_GPS
	initGps();
#endif

#if ADC_SNIFFER
	initAdcDriver();
#endif

#if EFI_HD44780_LCD
//	initI2Cmodule();
	lcd_HD44780_init();
	if (hasFirmwareError())
		return;

	lcd_HD44780_print_string(VCS_VERSION);

#endif /* EFI_HD44780_LCD */

	addConsoleActionII("i2c", sendI2Cbyte);

//	while (true) {
//		for (int addr = 0x20; addr < 0x28; addr++) {
//			sendI2Cbyte(addr, 0);
//			int err = i2cGetErrors(&I2CD1);
//			print("I2C: err=%x from %d\r\n", err, addr);
//			chThdSleepMilliseconds(5);
//			sendI2Cbyte(addr, 255);
//			chThdSleepMilliseconds(5);
//		}
//	}

	printMsg(logger, "initHardware() OK!");
}
Esempio n. 4
0
void initHardware(Logging *l) {
	efiAssertVoid(CUSTOM_IH_STACK, getRemainingStack(chThdGetSelfX()) > 256, "init h");
	sharedLogger = l;
	engine_configuration_s *engineConfiguration = engine->engineConfigurationPtr;
	efiAssertVoid(CUSTOM_EC_NULL, engineConfiguration!=NULL, "engineConfiguration");
	board_configuration_s *boardConfiguration = &engineConfiguration->bc;

	printMsg(sharedLogger, "initHardware()");
	// todo: enable protection. it's disabled because it takes
	// 10 extra seconds to re-flash the chip
	//flashProtect();

	chMtxObjectInit(&spiMtx);

#if EFI_HISTOGRAMS
	/**
	 * histograms is a data structure for CPU monitor, it does not depend on configuration
	 */
	initHistogramsModule();
#endif /* EFI_HISTOGRAMS */

	/**
	 * We need the LED_ERROR pin even before we read configuration
	 */
	initPrimaryPins();

	if (hasFirmwareError()) {
		return;
	}

#if EFI_INTERNAL_FLASH

	palSetPadMode(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN, PAL_MODE_INPUT_PULLUP);

	initFlash(sharedLogger);
	/**
	 * this call reads configuration from flash memory or sets default configuration
	 * if flash state does not look right.
	 */
	if (SHOULD_INGORE_FLASH()) {
		engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
		resetConfigurationExt(sharedLogger, engineConfiguration->engineType PASS_ENGINE_PARAMETER_SUFFIX);
		writeToFlashNow();
	} else {
		readFromFlash();
	}
#else
	engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
	resetConfigurationExt(sharedLogger, engineConfiguration->engineType PASS_ENGINE_PARAMETER_SUFFIX);
#endif /* EFI_INTERNAL_FLASH */

#if EFI_HD44780_LCD
//	initI2Cmodule();
	lcd_HD44780_init(sharedLogger);
	if (hasFirmwareError())
		return;

	lcd_HD44780_print_string(VCS_VERSION);

#endif /* EFI_HD44780_LCD */

	if (hasFirmwareError()) {
		return;
	}

#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
	initTriggerDecoder();
#endif

	bool isBoardTestMode_b;
	if (CONFIGB(boardTestModeJumperPin) != GPIO_UNASSIGNED) {
		efiSetPadMode("board test", CONFIGB(boardTestModeJumperPin),
		PAL_MODE_INPUT_PULLUP);
		isBoardTestMode_b = (!efiReadPin(CONFIGB(boardTestModeJumperPin)));

		// we can now relese this pin, it is actually used as output sometimes
		unmarkPin(CONFIGB(boardTestModeJumperPin));
	} else {
		isBoardTestMode_b = false;
	}

#if HAL_USE_ADC || defined(__DOXYGEN__)
	initAdcInputs(isBoardTestMode_b);
#endif

	if (isBoardTestMode_b) {
		// this method never returns
		initBoardTest();
	}

	initRtc();

	initOutputPins();

#if EFI_MAX_31855
	initMax31855(sharedLogger, getSpiDevice(CONFIGB(max31855spiDevice)), CONFIGB(max31855_cs));
#endif /* EFI_MAX_31855 */

#if EFI_CAN_SUPPORT
	initCan();
#endif /* EFI_CAN_SUPPORT */

//	init_adc_mcp3208(&adcState, &SPID2);
//	requestAdcValue(&adcState, 0);

#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
	// todo: figure out better startup logic
	initTriggerCentral(sharedLogger);
#endif /* EFI_SHAFT_POSITION_INPUT */

	turnOnHardware(sharedLogger);


#if HAL_USE_SPI || defined(__DOXYGEN__)
	initSpiModules(boardConfiguration);
#endif

#if EFI_HIP_9011 || defined(__DOXYGEN__)
	initHip9011(sharedLogger);
#endif /* EFI_HIP_9011 */

#if EFI_FILE_LOGGING || defined(__DOXYGEN__)
	initMmcCard();
#endif /* EFI_FILE_LOGGING */

#if EFI_MEMS || defined(__DOXYGEN__)
	initAccelerometer(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
//	initFixedLeds();


#if EFI_BOSCH_YAW || defined(__DOXYGEN__)
	initBoschYawRateSensor();
#endif /* EFI_BOSCH_YAW */

	//	initBooleanInputs();

#if EFI_UART_GPS || defined(__DOXYGEN__)
	initGps();
#endif

#if EFI_SERVO
	initServo();
#endif

#if ADC_SNIFFER || defined(__DOXYGEN__)
	initAdcDriver();
#endif

#if HAL_USE_I2C || defined(__DOXYGEN__)
	addConsoleActionII("i2c", sendI2Cbyte);
#endif


//	USBMassStorageDriver UMSD1;

//	while (true) {
//		for (int addr = 0x20; addr < 0x28; addr++) {
//			sendI2Cbyte(addr, 0);
//			int err = i2cGetErrors(&I2CD1);
//			print("I2C: err=%x from %d\r\n", err, addr);
//			chThdSleepMilliseconds(5);
//			sendI2Cbyte(addr, 255);
//			chThdSleepMilliseconds(5);
//		}
//	}

#if EFI_VEHICLE_SPEED || defined(__DOXYGEN__)
	initVehicleSpeed(sharedLogger);
#endif

#if EFI_CDM_INTEGRATION
	cdmIonInit();
#endif

#if HAL_USE_EXT || defined(__DOXYGEN__)
	initJoystick(sharedLogger);
#endif

	calcFastAdcIndexes();

	printMsg(sharedLogger, "initHardware() OK!");
}