void receive_history_result(const data_chunk& data, blockchain::fetch_handler_history handle_fetch) { BITCOIN_ASSERT(data.size() >= 4); std::error_code ec; auto deserial = make_deserializer(data.begin(), data.end()); if (!read_error_code(deserial, data.size(), ec)) return; BITCOIN_ASSERT(deserial.iterator() == data.begin() + 4); size_t row_size = 36 + 4 + 8 + 36 + 4; if ((data.size() - 4) % row_size != 0) { log_error() << "Malformed response for *.fetch_history"; return; } size_t number_rows = (data.size() - 4) / row_size; blockchain::history_list history(number_rows); for (size_t i = 0; i < history.size(); ++i) { blockchain::history_row& row = history[i]; row.output.hash = deserial.read_hash(); row.output.index = deserial.read_4_bytes(); row.output_height = deserial.read_4_bytes(); row.value = deserial.read_8_bytes(); row.spend.hash = deserial.read_hash(); row.spend.index = deserial.read_4_bytes(); row.spend_height = deserial.read_4_bytes(); } BITCOIN_ASSERT(deserial.iterator() == data.end()); handle_fetch(ec, history); }
static void search(struct hash *h) { read_hash(h,"a"); read_hash(h,"b"); read_hash(h,"c"); int i; char buffer[10]; for (i=0;i<100;i++) { sprintf(buffer,"%d",i*2); read_hash(h,buffer); } }
hash_digest block_result::transaction_hash(size_t i) const { BITCOIN_ASSERT(slab_); BITCOIN_ASSERT(i < transactions_size()); const uint8_t* first = slab_ + 80 + 4 + 4 + i * hash_size; auto deserial = make_deserializer_unsafe(first); return deserial.read_hash(); }
static void read_next(ParseInfo pi, const char *key) { VALUE obj; if ((void*)&obj < pi->stack_min) { rb_raise(rb_eSysStackError, "JSON is too deeply nested"); } next_non_white(pi); /* skip white space */ switch (*pi->s) { case '{': read_hash(pi, key); break; case '[': read_array(pi, key); break; case '"': read_str(pi, key); break; case '+': case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': read_num(pi, key); break; case 'I': read_num(pi, key); break; case 't': read_true(pi, key); break; case 'f': read_false(pi, key); break; case 'n': read_nil(pi, key); break; case '\0': return; default: return; } }
bool leveldb_common::fetch_spend(const output_point& spent_output, input_point& input_spend) { data_chunk spent_key = create_spent_key(spent_output); std::string raw_spend; leveldb::Status status = db_.spend->Get( leveldb::ReadOptions(), slice(spent_key), &raw_spend); if (status.IsNotFound()) return false; else if (!status.ok()) { log_fatal(LOG_BLOCKCHAIN) << "fetch_spend: " << status.ToString(); return false; } const data_chunk raw_spend_data(raw_spend.begin(), raw_spend.end()); auto deserial = make_deserializer( raw_spend_data.begin(), raw_spend_data.end()); input_spend.hash = deserial.read_hash(); input_spend.index = deserial.read_4_bytes(); return true; }
bool leveldb_common::deserialize_block(leveldb_block_info& blk_info, const std::string& raw_data, bool read_header, bool read_tx_hashes) { // Read the header (if neccessary). // There is always at least one tx in a block. BITCOIN_ASSERT(raw_data.size() >= 80 + 4 + hash_digest_size); BITCOIN_ASSERT((raw_data.size() - 84) % hash_digest_size == 0); if (read_header) satoshi_load(raw_data.begin(), raw_data.begin() + 80, blk_info.header); if (!read_tx_hashes) return true; // Read the tx hashes for this block (if neccessary). auto deserial = make_deserializer(raw_data.begin() + 80, raw_data.end()); uint32_t tx_count = deserial.read_4_bytes(); for (size_t i = 0; i < tx_count; ++i) { const hash_digest& tx_hash = deserial.read_hash(); blk_info.tx_hashes.push_back(tx_hash); } return true; }
const hashtable_database_reader::get_result hashtable_database_reader::get( const hash_digest& key_hash) const { uint64_t bucket_index = remainder(key_hash.data(), writer_.buckets()); BITCOIN_ASSERT(bucket_index < writer_.buckets()); uint64_t record_offset = read_record_offset(file_.data(), bucket_index); const uint64_t header_size = 24 + writer_.buckets() * 8; const uint8_t* all_records_begin = file_.data() + header_size; const uint8_t* all_records_end = all_records_begin + writer_.records_size(); const uint8_t* record_begin = all_records_begin + record_offset; // We don't know the end of a record, so we use the end of all records // for the deserializer. // We will be jumping around the records since it's a chained // list per bucket. // Begin iterating the list. while (true) { auto deserial = make_deserializer(record_begin, all_records_end); const hash_digest current_hash = deserial.read_hash(); uint64_t value_size = deserial.read_variable_uint(); if (current_hash != key_hash) { // Move to next record in bucket. // Skip the transaction data. deserial.set_iterator(deserial.iterator() + value_size); uint64_t next_record = deserial.read_8_bytes(); if (next_record == record_doesnt_exist) return {nullptr, nullptr}; record_begin = all_records_begin + next_record; continue; } // We have the record! return {deserial.iterator(), deserial.iterator() + value_size}; } BITCOIN_ASSERT_MSG(false, "Broke out of unbreakable loop!"); return {nullptr, nullptr}; }
void history_scan_database::scan(const address_bitset& key, read_function read_func, size_t from_height) const { BITCOIN_ASSERT(key.size() >= settings_.sharded_bitsize); const hsdb_shard& shard = lookup(key); address_bitset sub_key = drop_prefix(key); auto read_wrapped = [&read_func](const uint8_t* data) { auto deserial = make_deserializer_unsafe(data); history_row row{ // output or spend? marker_to_id(deserial.read_byte()), // point deserial.read_hash(), deserial.read_4_bytes(), // height deserial.read_4_bytes(), // value or checksum deserial.read_8_bytes()}; read_func(row); }; shard.scan(sub_key, read_wrapped, from_height); }
static GwyContainer* shimadzu_load(const gchar *filename, G_GNUC_UNUSED GwyRunType mode, GError **error) { GwyContainer *meta, *container = NULL; GwyDataField *dfield = NULL; GError *err = NULL; gchar *buffer = NULL; GHashTable *hash; gchar *head; gsize size = 0; gboolean ok; gint text_data_start; if (!g_file_get_contents(filename, &buffer, &size, &err)) { err_GET_FILE_CONTENTS(error, &err); return NULL; } if (size < HEADER_SIZE + 2) { err_TOO_SHORT(error); return NULL; } if (memcmp(buffer, MAGIC, MAGIC_SIZE) != 0 && !(memcmp(buffer, MAGIC_ASCII, MAGIC_ASCII_SIZE) == 0 && (memcmp(buffer + MAGIC_ASCII_SIZE+1, MAGIC, MAGIC_SIZE) == 0 || memcmp(buffer + MAGIC_ASCII_SIZE+2, MAGIC, MAGIC_SIZE) == 0))) { err_FILE_TYPE(error, "Shimadzu"); g_free(buffer); return NULL; } head = g_memdup(buffer, HEADER_SIZE+1); head[HEADER_SIZE] = '\0'; /* text_data_start is set to nonzero if data are text */ hash = read_hash(head, &text_data_start, error); ok = !!hash; if (ok) { if (text_data_start) dfield = read_text_data(buffer, text_data_start, hash, error); else dfield = read_binary_data(buffer, size, hash, error); ok = !!dfield; } if (ok) { GQuark quark; const gchar *title; container = gwy_container_new(); quark = gwy_app_get_data_key_for_id(0); gwy_container_set_object(container, quark, dfield); g_object_unref(dfield); meta = shimadzu_get_metadata(hash); gwy_container_set_object_by_name(container, "/0/meta", meta); g_object_unref(meta); title = g_hash_table_lookup(hash, "Channel"); if (title && *title) gwy_container_set_string_by_name(container, "/0/data/title", g_strdup(title)); else gwy_app_channel_title_fall_back(container, 0); gwy_file_channel_import_log_add(container, 0, NULL, filename); } g_free(head); g_free(buffer); g_hash_table_destroy(hash); return container; }
static GwyContainer* nanoscope_load(const gchar *filename, G_GNUC_UNUSED GwyRunType mode, GError **error) { GwyContainer *meta, *container = NULL; GError *err = NULL; gchar *buffer = NULL; gchar *p; const gchar *self; gsize size = 0; NanoscopeFileType file_type; NanoscopeData *ndata; NanoscopeValue *val; GHashTable *hash, *scannerlist = NULL, *scanlist = NULL; GList *l, *list = NULL; gint i, xres = 0, yres = 0; gboolean ok, has_version = FALSE; if (!g_file_get_contents(filename, &buffer, &size, &err)) { err_GET_FILE_CONTENTS(error, &err); return NULL; } file_type = NANOSCOPE_FILE_TYPE_NONE; if (size > MAGIC_SIZE) { if (!memcmp(buffer, MAGIC_TXT, MAGIC_SIZE)) file_type = NANOSCOPE_FILE_TYPE_TXT; else if (!memcmp(buffer, MAGIC_BIN, MAGIC_SIZE)) file_type = NANOSCOPE_FILE_TYPE_BIN; } if (!file_type) { g_set_error(error, GWY_MODULE_FILE_ERROR, GWY_MODULE_FILE_ERROR_DATA, _("File is not a Nanoscope file, " "or it is a unknown subtype.")); g_free(buffer); return NULL; } gwy_debug("File type: %d", file_type); /* as already know file_type, fix the first char for hash reading */ *buffer = '\\'; p = buffer; while ((hash = read_hash(&p, &err))) { ndata = g_new0(NanoscopeData, 1); ndata->hash = hash; list = g_list_append(list, ndata); } if (err) { g_propagate_error(error, err); ok = FALSE; } else ok = TRUE; for (l = list; ok && l; l = g_list_next(l)) { ndata = (NanoscopeData*)l->data; hash = ndata->hash; self = g_hash_table_lookup(hash, "#self"); /* The alternate names were found in files written by some beast * called Nanoscope E software */ if (gwy_strequal(self, "Scanner list") || gwy_strequal(self, "Microscope list")) { scannerlist = hash; continue; } if (gwy_strequal(self, "File list")) { has_version = !!g_hash_table_lookup(hash, "Version"); gwy_debug("has Version: %d", has_version); continue; } if (gwy_strequal(self, "Ciao scan list") || gwy_strequal(self, "Afm list") || gwy_strequal(self, "NC Afm list")) { get_scan_list_res(hash, &xres, &yres); scanlist = hash; } if (!gwy_strequal(self, "Ciao image list") && !gwy_strequal(self, "AFM image list") && !gwy_strequal(self, "NCAFM image list")) continue; ndata->data_field = hash_to_data_field(hash, scannerlist, scanlist, file_type, has_version, size, buffer, xres, yres, &p, error); ok = ok && ndata->data_field; } if (ok) { gchar key[40]; i = 0; container = gwy_container_new(); for (l = list; l; l = g_list_next(l)) { ndata = (NanoscopeData*)l->data; if (ndata->data_field) { g_snprintf(key, sizeof(key), "/%d/data", i); gwy_container_set_object_by_name(container, key, ndata->data_field); if ((val = g_hash_table_lookup(ndata->hash, "@2:Image Data")) && val->soft_scale) { g_snprintf(key, sizeof(key), "/%d/data/title", i); gwy_container_set_string_by_name(container, key, g_strdup(val->soft_scale)); } meta = nanoscope_get_metadata(ndata->hash, list); g_snprintf(key, sizeof(key), "/%d/meta", i); gwy_container_set_object_by_name(container, key, meta); g_object_unref(meta); gwy_app_channel_check_nonsquare(container, i); i++; } } if (!i) gwy_object_unref(container); } for (l = list; l; l = g_list_next(l)) { ndata = (NanoscopeData*)l->data; gwy_object_unref(ndata->data_field); if (ndata->hash) g_hash_table_destroy(ndata->hash); g_free(ndata); } g_free(buffer); g_list_free(list); if (!container && ok) err_NO_DATA(error); return container; }
int main(int argc, char* argv[]) { TEST_PARAS myparas = parse_test_paras(argc, argv, testfile, embeddingfile, trainfile); printf("Predicting...\n"); if(!myparas.allow_self_transition) printf("Do not allow self-transtion.\n"); if (!myparas.underflow_correction) printf("Underflow correction disabled\n"); int new_test_song_exp = (myparas.train_test_hash_file[0] != '\0'); if(myparas.tagfile[0] == '\0' && new_test_song_exp) { printf("Have to support with a tag file if you want to test on unseen songs.\n"); exit(1); } int d; int m; int l; int i; int j; int s; int fr; int to; double* bias_terms = 0; double** X = read_matrix_file(embeddingfile, &l, &d, &bias_terms); double** realX; PDATA pd = read_playlists_data(testfile); //int k = pd.num_songs; int k; double llhood = 0.0; double uniform_llhood = 0.0; double realn = 0.0; double not_realn= 0.0; int* train_test_hash; int k_train; int k_test; TDATA td; if(!new_test_song_exp) { k = pd.num_songs; if(myparas.tagfile[0] != '\0') { td = read_tag_data(myparas.tagfile); m = td.num_tags; myparas.num_points = l / (k + m); realX = zerosarray(k * myparas.num_points, d); calculate_realX(X, realX, td, k, m, d, myparas.num_points); free_tag_data(td); if(myparas.tag_ebd_filename[0] != '\0') write_embedding_to_file(X + k * myparas.num_points, m * myparas.num_points, d, myparas.tag_ebd_filename, 0); } else { myparas.num_points = l / k; realX = zerosarray(k * myparas.num_points, d); Array2Dcopy(X, realX, l, d); } Array2Dfree(X, l, d); } else { printf("Prediction on unseen songs.\n"); td = read_tag_data(myparas.tagfile); m = td.num_tags; k = td.num_songs; train_test_hash = read_hash(myparas.train_test_hash_file, &k_train); k_test = k - k_train; printf("Number of new songs %d.\n", k_test); myparas.num_points = l / (k_train + m); realX = zerosarray(k * myparas.num_points, d); calculate_realX_with_hash(X, realX, td, k, m, d, myparas.num_points, k_train, train_test_hash); free_tag_data(td); Array2Dfree(X, l, d); } if(myparas.song_ebd_filename[0] != '\0') write_embedding_to_file(realX, k * myparas.num_points, d, myparas.song_ebd_filename, 0); if(myparas.bias_ebd_filename[0] != '\0') { FILE* fp = fopen(myparas.bias_ebd_filename, "w"); for( i = 0; i < k ;i++) { fprintf(fp, "%f", bias_terms[i]); if ( i != k - 1) fputc('\n', fp); } fclose(fp); } double** square_dist; if(myparas.square_dist_filename[0] != '\0') square_dist = zerosarray(k, k); int n = 0; for(i = 0; i < pd.num_playlists; i ++) if(pd.playlists_length[i] > 0) n += pd.playlists_length[i] - 1; printf("Altogether %d transitions.\n", n);fflush(stdout); PHASH* tcount; PHASH* tcount_train; double** tcount_full; double** tcount_full_train; if(myparas.use_hash_TTable) tcount = create_empty_hash(2 * n); else tcount_full = zerosarray(k, k); HELEM temp_elem; TPAIR temp_pair; int idx; double temp_val; for(i = 0; i < pd.num_playlists; i ++) { if(pd.playlists_length[i] > myparas.range) { for(j = 0; j < pd.playlists_length[i] - 1; j++) { temp_pair.fr = pd.playlists[i][j]; temp_pair.to = pd.playlists[i][j + myparas.range]; //printf("(%d, %d)\n", temp_pair.fr, temp_pair.to); if(temp_pair.fr >= 0 && temp_pair.to >= 0) { if(myparas.use_hash_TTable) { idx = exist_in_hash(tcount, temp_pair); if(idx < 0) { temp_elem.key = temp_pair; temp_elem.val = 1.0; add_entry(tcount, temp_elem); } else update_with(tcount, idx, 1.0); } else tcount_full[temp_pair.fr][temp_pair.to] += 1.0; } } } } TRANSITIONTABLE ttable; TRANSITIONTABLE BFStable; //Need to use the training file if(myparas.output_distr) { PDATA pd_train = read_playlists_data(trainfile); if(myparas.use_hash_TTable) tcount_train = create_empty_hash(2 * n); else tcount_full_train = zerosarray(k, k); for(i = 0; i < pd_train.num_playlists; i ++) { if(pd_train.playlists_length[i] > 1) { for(j = 0; j < pd_train.playlists_length[i] - 1; j++) { temp_pair.fr = pd_train.playlists[i][j]; temp_pair.to = pd_train.playlists[i][j + 1]; if(myparas.use_hash_TTable) { idx = exist_in_hash(tcount_train, temp_pair); if(idx < 0) { temp_elem.key = temp_pair; temp_elem.val = 1.0; add_entry(tcount_train, temp_elem); } else update_with(tcount_train, idx, 1.0); } else tcount_full_train[temp_pair.fr][temp_pair.to] += 1.0; } } } } FILE* song_distr_file; FILE* trans_distr_file; double* song_sep_ll; if(myparas.output_distr) { printf("Output likelihood distribution file turned on.\n"); if(myparas.output_distr) { song_distr_file = fopen(songdistrfile, "w"); trans_distr_file = fopen(transdistrfile, "w"); song_sep_ll = (double*)calloc(k, sizeof(double)); } } int* test_ids_for_new_songs; if(new_test_song_exp) test_ids_for_new_songs = get_test_ids(k, k_train, train_test_hash); for(fr = 0; fr < k; fr++) { int collection_size; int* collection_idx; if(myparas.fast_collection) { collection_size = (BFStable.parray)[fr].length; if (collection_size == 0) continue; collection_idx = (int*)malloc(collection_size * sizeof(int)); LINKEDELEM* tempp = (BFStable.parray)[fr].head; for(i = 0; i < collection_size; i++) { collection_idx[i] = tempp -> idx; tempp = tempp -> pnext; } } else if(new_test_song_exp) { collection_size = k_test; collection_idx = (int*)malloc(collection_size * sizeof(int)); int_list_copy(test_ids_for_new_songs, collection_idx, k_test); } else collection_size = k; double** delta = zerosarray(collection_size, d); double* p = (double*)calloc(collection_size, sizeof(double)); double** tempkd = zerosarray(collection_size, d); double* tempk = (double*)calloc(collection_size, sizeof(double)); double** mid_delta = 0; double* mid_p = 0; double** mid_tempkd = 0; // I get a seg fault when these get freed. Don't understand. if (myparas.num_points == 3) { mid_delta = zerosarray(collection_size, d); mid_p = (double*)calloc(collection_size, sizeof(double)); mid_tempkd = zerosarray(collection_size, d); } for(j = 0; j < collection_size; j++) { for(i = 0; i < d; i++) { if(myparas.fast_collection || new_test_song_exp) delta[j][i] = realX[fr][i] - realX[(myparas.num_points - 1) * k + collection_idx[j]][i]; else delta[j][i] = realX[fr][i] - realX[(myparas.num_points - 1) * k + j][i]; } if(myparas.num_points == 3) { if(myparas.fast_collection || new_test_song_exp) mid_delta[j][i] = realX[k + fr][i] - realX[k + collection_idx[j]][i]; else mid_delta[j][i] = realX[k + fr][i] - realX[k + j][i]; } } mat_mult(delta, delta, tempkd, collection_size, d); scale_mat(tempkd, collection_size, d, -1.0); sum_along_direct(tempkd, p, collection_size, d, 1); if(myparas.square_dist_filename[0] != '\0') for(i = 0; i < k; i++) square_dist[fr][i] = -p[i]; if (bias_terms != 0) add_vec(p, bias_terms, collection_size, 1.0); if (myparas.num_points == 3) { // Just use the mid_deltas (midpoint differences): square them, // then sum and add to the p vector directly, then the midpoint // probability is incorporated mat_mult(mid_delta, mid_delta, mid_tempkd, collection_size, d); scale_mat(mid_tempkd, collection_size, d, -1.0); sum_along_direct(mid_tempkd, mid_p, collection_size, d, 1); add_vec(p, mid_p, collection_size, 1.0); } if (myparas.underflow_correction == 1) { double max_val = p[0]; for(i = 0; i < collection_size; i++) max_val = p[i] > max_val? p[i] : max_val; vec_scalar_sum(p, -max_val, collection_size); } Veccopy(p, tempk, collection_size); exp_on_vec(tempk, collection_size); //exp_on_vec(p, collection_size); // underflow checking: // for (i = 0; i < collection_size; i++) // if (p[i] < 0.000001) // p[i] = 0.000001; double temp_sum; if(myparas.allow_self_transition) temp_sum = sum_vec(tempk, collection_size); else { temp_sum = 0.0; for(i = 0; i < collection_size; i++) if(!myparas.fast_collection || new_test_song_exp) temp_sum += (i != fr)? tempk[i] : 0.0; else temp_sum += (collection_idx[i] != fr)? tempk[i] : 0.0; } vec_scalar_sum(p, -log(temp_sum), collection_size); //scale_vec(p, collection_size, 1.0 / temp_sum); //printf("done...\n"); for(to = 0; to < k; to++) { if(myparas.allow_self_transition || (!myparas.allow_self_transition && fr != to)) { temp_pair.fr = fr; temp_pair.to = to; //printf("(%d, %d)\n", fr, to); if(myparas.use_hash_TTable) idx = exist_in_hash(tcount, temp_pair); else idx = tcount_full[fr][to] > 0.0? 1 : -1; //printf("%d\n", idx);fflush(stdout); int idx_train; //printf("done...\n");fflush(stdout); if(myparas.output_distr) { if(myparas.use_hash_TTable) idx_train = exist_in_hash(tcount_train, temp_pair); else idx_train = tcount_full_train[fr][to] > 0.0? 1 : -1; } if(idx >= 0) { if(myparas.fast_collection || new_test_song_exp) { s = -1; for(i = 0; i < collection_size; i++) { if(collection_idx[i] == to) { s = i; break; } } } else s = to; //printf("%d\n", idx);fflush(stdout); if(myparas.use_hash_TTable) temp_val = retrieve_value_with_idx(tcount, idx); else temp_val = tcount_full[fr][to]; if(s < 0) not_realn += temp_val; else { //printf("s = %d\n", s); llhood += temp_val * p[s]; if(new_test_song_exp) uniform_llhood += temp_val * log(1.0 / (double) k_test); realn += temp_val; if(myparas.output_distr) { //double temp_val_train = idx_train >= 0? retrieve_value_with_idx(tcount_train, idx_train): 0.0; double temp_val_train; if(idx_train < 0) temp_val_train = 0.0; else temp_val_train = myparas.use_hash_TTable ? retrieve_value_with_idx(tcount_train, idx_train) : tcount_full_train[fr][to]; song_sep_ll[fr] += temp_val * p[s]; song_sep_ll[to] += temp_val * p[s]; fprintf(trans_distr_file, "%d %d %f\n", (int)temp_val_train, (int)temp_val, temp_val * p[s]); } } } } } Array2Dfree(delta, collection_size, d); free(p); Array2Dfree(tempkd, collection_size, d); free(tempk); if (myparas.num_points == 3) { Array2Dfree(mid_delta, collection_size, d); free(mid_p); Array2Dfree(mid_tempkd, collection_size, d); } if(myparas.fast_collection || new_test_song_exp) free(collection_idx); } if(myparas.output_distr) { printf("Writing song distr.\n"); for(i = 0; i < k; i++) fprintf(song_distr_file, "%d %f\n", (int)(pd.id_counts[i]), song_sep_ll[i]); fclose(song_distr_file); fclose(trans_distr_file); free(song_sep_ll); } llhood /= realn; printf("Avg log-likelihood on test: %f\n", llhood); if(myparas.fast_collection) printf("Ratio of transitions that do not appear in the training set: %f\n", not_realn / (realn + not_realn)); if(new_test_song_exp) { uniform_llhood /= realn; printf("Avg log-likelihood for uniform baseline: %f\n", uniform_llhood); } if(myparas.use_hash_TTable) free_hash(tcount); else Array2Dfree(tcount_full, k, k); free_playlists_data(pd); if(myparas.output_distr) { if(myparas.use_hash_TTable) free_hash(tcount_train); else Array2Dfree(tcount_full_train, k, k); } Array2Dfree(realX, k * myparas.num_points, d); if(new_test_song_exp) { free(train_test_hash); free(test_ids_for_new_songs); } if(myparas.square_dist_filename[0] != '\0') { write_embedding_to_file(square_dist, k, k, myparas.square_dist_filename, 0); Array2Dfree(square_dist, k, k); } }
static mrb_value read_value(MarshalContext *ctx) { mrb_state *mrb = ctx->mrb; char type = ctx->readByte(); mrb_value value; if (mrb->arena_idx > maxArena) maxArena = mrb->arena_idx; int arena = mrb_gc_arena_save(mrb); switch (type) { case TYPE_NIL : value = mrb_nil_value(); break; case TYPE_TRUE : value = mrb_true_value(); break; case TYPE_FALSE : value = mrb_false_value(); break; case TYPE_FIXNUM : value = mrb_fixnum_value(read_fixnum(ctx)); break; case TYPE_BIGNUM : value = mrb_fixnum_value(read_bignum(ctx)); break; case TYPE_FLOAT : value = mrb_float_value(mrb, read_float(ctx)); ctx->objects.add(value); break; case TYPE_STRING : value = read_string_value(ctx); ctx->objects.add(value); break; case TYPE_ARRAY : value = read_array(ctx); break; case TYPE_HASH : value = read_hash(ctx); break; case TYPE_SYMBOL : value = mrb_symbol_value(read_symbol(ctx)); break; case TYPE_SYMLINK : value = mrb_symbol_value(read_symlink(ctx)); break; case TYPE_OBJECT : value = read_object(ctx); break; case TYPE_IVAR : value = read_instance_var(ctx); break; case TYPE_LINK : value = read_link(ctx); break; case TYPE_USERDEF : value = read_userdef(ctx); ctx->objects.add(value); break; default : CCLOG( "Marshal.load: unsupported value type '%c',gbufsize %d",type,g_buf_size); CCAssert(false,"f**k"); //exit(0); } mrb_gc_arena_restore(mrb, arena); return value; }