/******************************************************************************* * This function invokes the PSCI library interface to initialize the * non secure cpu context and copies the relevant cpu context register values * to smc context. These registers will get programmed during `smc_exit`. ******************************************************************************/ static void sp_min_prepare_next_image_entry(void) { entry_point_info_t *next_image_info; cpu_context_t *ctx = cm_get_context(NON_SECURE); u_register_t ns_sctlr; /* Program system registers to proceed to non-secure */ next_image_info = sp_min_plat_get_bl33_ep_info(); assert(next_image_info); assert(NON_SECURE == GET_SECURITY_STATE(next_image_info->h.attr)); INFO("SP_MIN: Preparing exit to normal world\n"); psci_prepare_next_non_secure_ctx(next_image_info); smc_set_next_ctx(NON_SECURE); /* Copy r0, lr and spsr from cpu context to SMC context */ copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), smc_get_next_ctx()); /* Temporarily set the NS bit to access NS SCTLR */ write_scr(read_scr() | SCR_NS_BIT); isb(); ns_sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); write_sctlr(ns_sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/****************************************************************************** * This function is invoked during warm boot. Invoke the PSCI library * warm boot entry point which takes care of Architectural and platform setup/ * restore. Copy the relevant cpu_context register values to smc context which * will get programmed during `smc_exit`. *****************************************************************************/ void sp_min_warm_boot(void) { smc_ctx_t *next_smc_ctx; cpu_context_t *ctx = cm_get_context(NON_SECURE); u_register_t ns_sctlr; psci_warmboot_entrypoint(); smc_set_next_ctx(NON_SECURE); next_smc_ctx = smc_get_next_ctx(); zeromem(next_smc_ctx, sizeof(smc_ctx_t)); copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), next_smc_ctx); /* Temporarily set the NS bit to access NS SCTLR */ write_scr(read_scr() | SCR_NS_BIT); isb(); ns_sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); write_sctlr(ns_sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/******************************************************************************* * This function programs EL3 registers and performs other setup to enable entry * into the next image after BL31 at the next ERET. ******************************************************************************/ void bl31_prepare_next_image_entry() { el_change_info_t *next_image_info; uint32_t scr, image_type; /* Determine which image to execute next */ image_type = bl31_get_next_image_type(); /* * Setup minimal architectural state of the next highest EL to * allow execution in it immediately upon entering it. */ bl31_next_el_arch_setup(image_type); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_get_next_image_info(image_type); assert(next_image_info); scr = read_scr(); if (image_type == NON_SECURE) scr |= SCR_NS_BIT; /* * Tell the context mgmt. library to ensure that SP_EL3 points to * the right context to exit from EL3 correctly. */ cm_set_el3_eret_context(next_image_info->security_state, next_image_info->entrypoint, next_image_info->spsr, scr); /* Finally set the next context */ cm_set_next_eret_context(next_image_info->security_state); }
/******************************************************************************* * The following function initializes the cpu_context 'ctx' for * first use, and sets the initial entrypoint state as specified by the * entry_point_info structure. * * The security state to initialize is determined by the SECURE attribute * of the entry_point_info. The function returns a pointer to the initialized * context and sets this as the next context to return to. * * The EE and ST attributes are used to configure the endianness and secure * timer availability for the new execution context. * * To prepare the register state for entry call cm_prepare_el3_exit() and * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to * cm_e1_sysreg_context_restore(). ******************************************************************************/ static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) { unsigned int security_state; uint32_t scr, sctlr; regs_t *reg_ctx; assert(ctx); security_state = GET_SECURITY_STATE(ep->h.attr); /* Clear any residual register values from the context */ memset(ctx, 0, sizeof(*ctx)); reg_ctx = get_regs_ctx(ctx); /* * Base the context SCR on the current value, adjust for entry point * specific requirements */ scr = read_scr(); scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); if (security_state != SECURE) scr |= SCR_NS_BIT; /* * Set up SCTLR for the Non Secure context. * EE bit is taken from the entrypoint attributes * M, C and I bits must be zero (as required by PSCI specification) * * The target exception level is based on the spsr mode requested. * If execution is requested to hyp mode, HVC is enabled * via SCR.HCE. * * Always compute the SCTLR_EL1 value and save in the cpu_context * - the HYP registers are set up by cm_preapre_ns_entry() as they * are not part of the stored cpu_context * * TODO: In debug builds the spsr should be validated and checked * against the CPU support, security state, endianness and pc */ if (security_state != SECURE) { sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; sctlr |= SCTLR_RES1; write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); } if (GET_M32(ep->spsr) == MODE32_hyp) scr |= SCR_HCE_BIT; write_ctx_reg(reg_ctx, CTX_SCR, scr); write_ctx_reg(reg_ctx, CTX_LR, ep->pc); write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); /* * Store the r0-r3 value from the entrypoint into the context * Use memcpy as we are in control of the layout of the structures */ memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); }
void change_security_state(unsigned int target_security_state) { unsigned long scr = read_scr(); assert(sec_state_is_valid(target_security_state)); if (target_security_state == SECURE) scr &= ~SCR_NS_BIT; else scr |= SCR_NS_BIT; write_scr(scr); }
void change_security_state(unsigned int target_security_state) { unsigned long scr = read_scr(); if (target_security_state == SECURE) scr &= ~SCR_NS_BIT; else if (target_security_state == NON_SECURE) scr |= SCR_NS_BIT; else assert(0); write_scr(scr); }
/******************************************************************************* * BL31 is responsible for setting up the runtime services for the primary cpu * before passing control to the bootloader (UEFI) or Linux. This function calls * runtime_svc_init() which initializes all registered runtime services. The run * time services would setup enough context for the core to swtich to the next * exception level. When this function returns, the core will switch to the * programmed exception level via. an ERET. ******************************************************************************/ void bl31_main(void) { el_change_info *next_image_info; uint32_t scr; /* Perform remaining generic architectural setup from EL3 */ bl31_arch_setup(); /* Perform platform setup in BL1 */ bl31_platform_setup(); #if defined (__GNUC__) printf("BL31 Built : %s, %s\n\r", __TIME__, __DATE__); #endif /* Initialise helper libraries */ bl31_lib_init(); /* Initialize the runtime services e.g. psci */ runtime_svc_init(); /* Clean caches before re-entering normal world */ dcsw_op_all(DCCSW); /* * Setup minimal architectural state of the next highest EL to * allow execution in it immediately upon entering it. */ bl31_arch_next_el_setup(); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_get_next_image_info(); scr = read_scr(); if (next_image_info->security_state == NON_SECURE) scr |= SCR_NS_BIT; /* * Tell the context mgmt. library to ensure that SP_EL3 points to * the right context to exit from EL3 correctly. */ cm_set_el3_eret_context(next_image_info->security_state, next_image_info->entrypoint, next_image_info->spsr, scr); /* Finally set the next context */ cm_set_next_eret_context(next_image_info->security_state); }
//******************************************************************************* // Configure tbase and EL3 registers for intial entry static void tbase_init_eret( uint64_t entrypoint, uint32_t rw ) { uint32_t scr = read_scr(); uint32_t spsr = TBASE_INIT_SPSR; assert(rw == TBASE_AARCH32); // Set the right security state and register width for the SP scr &= ~SCR_NS_BIT; scr &= ~SCR_RW_BIT; // Also IRQ and FIQ handled in secure state scr &= ~(SCR_FIQ_BIT|SCR_IRQ_BIT); // No execution from Non-secure memory scr |= SCR_SIF_BIT; cm_set_el3_eret_context(SECURE, entrypoint, spsr, scr); entry_point_info_t *image_info = bl31_plat_get_next_image_ep_info(SECURE); assert(image_info); image_info->spsr = spsr; }
/******************************************************************************* * This function programs EL3 registers and performs other setup to enable entry * into the next image after BL31 at the next ERET. ******************************************************************************/ void bl31_prepare_next_image_entry() { entry_point_info_t *next_image_info; uint32_t scr, image_type; cpu_context_t *ctx; gp_regs_t *gp_regs; /* Determine which image to execute next */ image_type = bl31_get_next_image_type(); /* * Setup minimal architectural state of the next highest EL to * allow execution in it immediately upon entering it. */ bl31_next_el_arch_setup(image_type); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_plat_get_next_image_ep_info(image_type); assert(next_image_info); assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr)); scr = read_scr(); scr &= ~SCR_NS_BIT; if (image_type == NON_SECURE) scr |= SCR_NS_BIT; scr &= ~SCR_RW_BIT; if ((next_image_info->spsr & (1 << MODE_RW_SHIFT)) == (MODE_RW_64 << MODE_RW_SHIFT)) { scr |= SCR_RW_BIT; scr |= SCR_HCE_BIT; } else { scr &= ~(SCR_HCE_BIT); } /* * FIXME: Need a configurable flag when we have hypervisor installed * This is for PSCI CPU_UP api to work correctly * PSCI uses scr.hce to determine the target CPU of CPU_UP * returns to NS world with HYP mode(HCE is set) or SVC mode(HCE is not set) * (refer to psci_set_ns_entry_info() in psci_common.c) * since we don't have hypervisor installed for now, we need to * enter linux with SVC mode. */ // FIXME: For 64bit kernel, we need return to normal world with EL2 // Temporary comment out this to enable 64bit kernel smp. // Need a method to configure this for 32bit/64bit kernel //scr &= ~(SCR_HCE_BIT); /* * Tell the context mgmt. library to ensure that SP_EL3 points to * the right context to exit from EL3 correctly. */ cm_set_el3_eret_context(image_type, next_image_info->pc, next_image_info->spsr, scr); /* * Save the args generated in BL2 for the image in the right context * used on its entry */ ctx = cm_get_context(read_mpidr(), image_type); gp_regs = get_gpregs_ctx(ctx); memcpy(gp_regs, (void *)&next_image_info->args, sizeof(aapcs64_params_t)); /* Finally set the next context */ cm_set_next_eret_context(image_type); }
void bl31_prepare_k64_entry(void) { entry_point_info_t *next_image_info; uint32_t scr, image_type; cpu_context_t *ctx; gp_regs_t *gp_regs; /* Determine which image to execute next */ image_type = NON_SECURE; //bl31_get_next_image_type(); /* * Setup minimal architectural state of the next highest EL to * allow execution in it immediately upon entering it. */ bl31_next_el_arch_setup(image_type); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_plat_get_next_kernel_ep_info(image_type); assert(next_image_info); assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr)); /* check is set 64bit kernel*/ printf("next_image_info->spsr = 0x%llx\n", next_image_info->spsr); scr = read_scr(); scr &= ~SCR_NS_BIT; if (image_type == NON_SECURE) scr |= SCR_NS_BIT; scr &= ~SCR_RW_BIT; if ((next_image_info->spsr & (1 << MODE_RW_SHIFT)) == (MODE_RW_64 << MODE_RW_SHIFT)) { scr |= SCR_RW_BIT; printf("spsr is 64 bit\n"); } scr |= SCR_HCE_BIT; /* * Tell the context mgmt. library to ensure that SP_EL3 points to * the right context to exit from EL3 correctly. */ cm_set_el3_eret_context(image_type, next_image_info->pc, next_image_info->spsr, scr); /* * Save the args generated in BL2 for the image in the right context * used on its entry */ ctx = cm_get_context(read_mpidr(), image_type); gp_regs = get_gpregs_ctx(ctx); memcpy(gp_regs, (void *)&next_image_info->args, sizeof(aapcs64_params_t)); printf("Finally set the next context\n"); /* Finally set the next context */ cm_set_next_eret_context(image_type); }
/******************************************************************************* * Prepare the CPU system registers for first entry into secure or normal world * * If execution is requested to hyp mode, HSCTLR is initialized * If execution is requested to non-secure PL1, and the CPU supports * HYP mode then HYP mode is disabled by configuring all necessary HYP mode * registers. ******************************************************************************/ void cm_prepare_el3_exit(uint32_t security_state) { uint32_t sctlr, scr, hcptr; cpu_context_t *ctx = cm_get_context(security_state); assert(ctx); if (security_state == NON_SECURE) { scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); if (scr & SCR_HCE_BIT) { /* Use SCTLR value to initialize HSCTLR */ sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); sctlr |= HSCTLR_RES1; /* Temporarily set the NS bit to access HSCTLR */ write_scr(read_scr() | SCR_NS_BIT); /* * Make sure the write to SCR is complete so that * we can access HSCTLR */ isb(); write_hsctlr(sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } else if (read_id_pfr1() & (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { /* * Set the NS bit to access NS copies of certain banked * registers */ write_scr(read_scr() | SCR_NS_BIT); isb(); /* PL2 present but unused, need to disable safely */ write_hcr(0); /* HSCTLR : can be ignored when bypassing */ /* HCPTR : disable all traps TCPAC, TTA, TCP */ hcptr = read_hcptr(); hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); write_hcptr(hcptr); /* Enable EL1 access to timer */ write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); /* Reset CNTVOFF_EL2 */ write64_cntvoff(0); /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ write_vpidr(read_midr()); write_vmpidr(read_mpidr()); /* * Reset VTTBR. * Needed because cache maintenance operations depend on * the VMID even when non-secure EL1&0 stage 2 address * translation are disabled. */ write64_vttbr(0); /* * Avoid unexpected debug traps in case where HDCR * is not completely reset by the hardware - set * HDCR.HPMN to PMCR.N and zero the remaining bits. * The HDCR.HPMN and PMCR.N fields are the same size * (5 bits) and HPMN is at offset zero within HDCR. */ write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT); /* * Reset CNTHP_CTL to disable the EL2 physical timer and * therefore prevent timer interrupts. */ write_cnthp_ctl(0); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/******************************************************************************* * Prepare the CPU system registers for first entry into secure or normal world * * If execution is requested to hyp mode, HSCTLR is initialized * If execution is requested to non-secure PL1, and the CPU supports * HYP mode then HYP mode is disabled by configuring all necessary HYP mode * registers. ******************************************************************************/ void cm_prepare_el3_exit(uint32_t security_state) { uint32_t sctlr, scr, hcptr; cpu_context_t *ctx = cm_get_context(security_state); assert(ctx); if (security_state == NON_SECURE) { scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); if (scr & SCR_HCE_BIT) { /* Use SCTLR value to initialize HSCTLR */ sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); sctlr |= HSCTLR_RES1; /* Temporarily set the NS bit to access HSCTLR */ write_scr(read_scr() | SCR_NS_BIT); /* * Make sure the write to SCR is complete so that * we can access HSCTLR */ isb(); write_hsctlr(sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } else if (read_id_pfr1() & (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { /* Set the NS bit to access HCR, HCPTR, CNTHCTL, VPIDR, VMPIDR */ write_scr(read_scr() | SCR_NS_BIT); isb(); /* PL2 present but unused, need to disable safely */ write_hcr(0); /* HSCTLR : can be ignored when bypassing */ /* HCPTR : disable all traps TCPAC, TTA, TCP */ hcptr = read_hcptr(); hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); write_hcptr(hcptr); /* Enable EL1 access to timer */ write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); /* Reset CNTVOFF_EL2 */ write64_cntvoff(0); /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ write_vpidr(read_midr()); write_vmpidr(read_mpidr()); /* * Reset VTTBR. * Needed because cache maintenance operations depend on * the VMID even when non-secure EL1&0 stage 2 address * translation are disabled. */ write64_vttbr(0); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } } }