void BX_CPP_AttrRegparmN(1) BX_CPU_C::FLD_SINGLE_REAL(bxInstruction_c *i) { #if BX_SUPPORT_FPU BX_CPU_THIS_PTR prepareFPU(i); float32 load_reg = read_virtual_dword(i->seg(), RMAddr(i)); clear_C1(); if (! IS_TAG_EMPTY(-1)) { BX_CPU_THIS_PTR FPU_stack_overflow(); return; } float_status_t status = FPU_pre_exception_handling(BX_CPU_THIS_PTR the_i387.get_control_word()); // convert to floatx80 format floatx80 result = float32_to_floatx80(load_reg, status); if (BX_CPU_THIS_PTR FPU_exception(status.float_exception_flags)) return; BX_CPU_THIS_PTR the_i387.FPU_push(); BX_WRITE_FPU_REG(result, 0); #else BX_INFO(("FLD_SINGLE_REAL: required FPU, configure --enable-fpu")); #endif }
void bx_cpu_c::JMP32_Ep(BxInstruction_t *i) { Bit16u cs_raw; Bit32u op1_32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { /* far indirect must specify a memory address */ BX_PANIC(("JMP_Ep(): op1 is a register")); } /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op1_32); read_virtual_word(i->seg, i->rm_addr+4, &cs_raw); invalidate_prefetch_q(); if ( protected_mode() ) { bx_cpu. jump_protected(i, cs_raw, op1_32); goto done; } bx_cpu. eip = op1_32; load_seg_reg(&bx_cpu. sregs[BX_SEG_REG_CS], cs_raw); done: BX_INSTR_FAR_BRANCH(BX_INSTR_IS_JMP, bx_cpu. sregs[BX_SEG_REG_CS].selector.value, bx_cpu. eip); return; }
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::FLD_SINGLE_REAL(bxInstruction_c *i) { BX_CPU_THIS_PTR prepareFPU(i); RMAddr(i) = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); float32 load_reg = read_virtual_dword(i->seg(), RMAddr(i)); FPU_update_last_instruction(i); clear_C1(); if (! IS_TAG_EMPTY(-1)) { FPU_stack_overflow(); BX_NEXT_INSTR(i); } float_status_t status = FPU_pre_exception_handling(BX_CPU_THIS_PTR the_i387.get_control_word()); // convert to floatx80 format floatx80 result = float32_to_floatx80(load_reg, status); unsigned unmasked = FPU_exception(status.float_exception_flags); if (! (unmasked & FPU_CW_Invalid)) { BX_CPU_THIS_PTR the_i387.FPU_push(); BX_WRITE_FPU_REG(result, 0); } BX_NEXT_INSTR(i); }
void BX_CPU_C::BSR_GdEd(bxInstruction_c *i) { /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } if (op2_32 == 0) { assert_ZF(); /* op1_32 undefined */ return; } op1_32 = 31; while ( (op2_32 & 0x80000000) == 0 ) { op1_32--; op2_32 <<= 1; } SET_FLAGS_OSZAPC_RESULT_32(op1_32, BX_INSTR_BITSCAN32); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), op1_32); }
void bx_cpu_c::pop_32(Bit32u *value32_ptr) { Bit32u temp_ESP; /* 32 bit stack mode: use SS:ESP */ if (bx_cpu. sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; /* 16 bit stack mode: use SS:SP */ if (protected_mode()) { if ( !can_pop(4) ) { BX_PANIC(("pop_32(): can't pop from stack")); exception(BX_SS_EXCEPTION, 0, 0); return; } } /* access within limits */ read_virtual_dword(BX_SEG_REG_SS, temp_ESP, value32_ptr); if (bx_cpu. sregs[BX_SEG_REG_SS].cache.u.segment.d_b==1) ESP += 4; else SP += 4; }
void bx_cpu_c::JMP_Ed(BxInstruction_t *i) { Bit32u new_EIP; Bit32u op1_32; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op1_32); } invalidate_prefetch_q(); new_EIP = op1_32; #if BX_CPU_LEVEL >= 2 if (protected_mode()) { if (new_EIP > bx_cpu. sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_PANIC(("jmp_ev: IP out of CS limits!")); exception(BX_GP_EXCEPTION, 0, 0); } } #endif bx_cpu. eip = new_EIP; BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_JMP, new_EIP); }
/* Opcode: VEX.66.0F.38 2C (VEX.W=0) */ BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::VMASKMOVPS_VpsHpsMps(bxInstruction_c *i) { BxPackedAvxRegister mask = BX_READ_AVX_REG(i->vvv()), result; unsigned len = i->getVL(); bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); #if BX_SUPPORT_X86_64 if (i->as64L()) { for (unsigned n=0; n < (4*len); n++) { if (mask.avx32u(n) & 0x80000000) { if (! IsCanonical(get_laddr64(i->seg(), eaddr + 4*n))) exception(int_number(i->seg()), 0); } } } #endif for (int n=4*len-1; n >= 0; n--) { if (mask.avx32u(n) & 0x80000000) result.avx32u(n) = read_virtual_dword(i->seg(), (eaddr + 4*n) & i->asize_mask()); else result.avx32u(n) = 0; } BX_WRITE_AVX_REGZ(i->nnn(), result, len); BX_NEXT_INSTR(i); }
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u op1_32 = read_virtual_dword(i->seg(), RMAddr(i)); push_32(op1_32); }
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVBE_GdMd(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u val32 = read_virtual_dword(i->seg(), eaddr); BX_WRITE_32BIT_REGZ(i->nnn(), bx_bswap32(val32)); BX_NEXT_INSTR(i); }
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LSS_GdMp(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u ss = read_virtual_word(i->seg(), (eaddr + 4) & i->asize_mask()); Bit32u reg_32 = read_virtual_dword(i->seg(), eaddr); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss); BX_WRITE_32BIT_REGZ(i->nnn(), reg_32); BX_NEXT_INSTR(i); }
void BX_CPU_C::CMOV_GdEd(bxInstruction_c *i) { #if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6) // Note: CMOV accesses a memory source operand (read), regardless // of whether condition is true or not. Thus, exceptions may // occur even if the MOV does not take place. bx_bool condition = 0; Bit32u op2_32; switch (i->b1()) { // CMOV opcodes: case 0x140: condition = get_OF(); break; case 0x141: condition = !get_OF(); break; case 0x142: condition = get_CF(); break; case 0x143: condition = !get_CF(); break; case 0x144: condition = get_ZF(); break; case 0x145: condition = !get_ZF(); break; case 0x146: condition = get_CF() || get_ZF(); break; case 0x147: condition = !get_CF() && !get_ZF(); break; case 0x148: condition = get_SF(); break; case 0x149: condition = !get_SF(); break; case 0x14A: condition = get_PF(); break; case 0x14B: condition = !get_PF(); break; case 0x14C: condition = getB_SF() != getB_OF(); break; case 0x14D: condition = getB_SF() == getB_OF(); break; case 0x14E: condition = get_ZF() || (getB_SF() != getB_OF()); break; case 0x14F: condition = !get_ZF() && (getB_SF() == getB_OF()); break; default: BX_PANIC(("CMOV_GdEd: default case")); } if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } if (condition) { BX_WRITE_32BIT_REGZ(i->nnn(), op2_32); } BX_CLEAR_64BIT_HIGH(i->nnn()); // always clear upper part of the register #else BX_INFO(("CMOV_GdEd: -enable-cpu-level=6 required")); UndefinedOpcode(i); #endif }
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::FCOM_SINGLE_REAL(bxInstruction_c *i) { BX_CPU_THIS_PTR prepareFPU(i); int pop_stack = i->nnn() & 1, rc; RMAddr(i) = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); float32 load_reg = read_virtual_dword(i->seg(), RMAddr(i)); BX_CPU_THIS_PTR FPU_update_last_instruction(i); clear_C1(); if (IS_TAG_EMPTY(0)) { FPU_exception(FPU_EX_Stack_Underflow); setcc(FPU_SW_C0|FPU_SW_C2|FPU_SW_C3); if(BX_CPU_THIS_PTR the_i387.is_IA_masked()) { if (pop_stack) BX_CPU_THIS_PTR the_i387.FPU_pop(); } BX_NEXT_INSTR(i); } float_status_t status = FPU_pre_exception_handling(BX_CPU_THIS_PTR the_i387.get_control_word()); floatx80 a = BX_READ_FPU_REG(0); if (floatx80_is_nan(a) || floatx80_is_unsupported(a) || float32_is_nan(load_reg)) { rc = float_relation_unordered; float_raise(status, float_flag_invalid); } else { rc = floatx80_compare(a, float32_to_floatx80(load_reg, status), status); } setcc(status_word_flags_fpu_compare(rc)); if (! FPU_exception(status.float_exception_flags)) { if (pop_stack) BX_CPU_THIS_PTR the_i387.FPU_pop(); } BX_NEXT_INSTR(i); }
void BX_CPU_C::LDS_GdMp(bxInstruction_c *i) { if (i->modC0()) { BX_DEBUG(("LDS_GdMp: invalid use of LDS, must be memory reference!")); UndefinedOpcode(i); } Bit16u ds; Bit32u reg_32; read_virtual_dword(i->seg(), RMAddr(i), ®_32); read_virtual_word(i->seg(), RMAddr(i) + 4, &ds); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds); BX_WRITE_32BIT_REGZ(i->nnn(), reg_32); }
void BX_CPU_C::XOR_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; unsigned nnn = i->nnn(); op1_32 = BX_READ_32BIT_REG(nnn); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } result_32 = op1_32 ^ op2_32; BX_WRITE_32BIT_REGZ(nnn, result_32); SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); }
void bx_cpu_c::CALL_Ed(BxInstruction_t *i) { Bit32u temp_ESP; Bit32u op1_32; #if BX_DEBUGGER bx_cpu. show_flag |= Flag_call; #endif if (bx_cpu. sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { read_virtual_dword(i->seg, i->rm_addr, &op1_32); } invalidate_prefetch_q(); if (protected_mode()) { if (op1_32 > bx_cpu. sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_DEBUG(("call_ev: EIP out of CS limits! at %s:%d")); exception(BX_GP_EXCEPTION, 0, 0); } if ( !can_push(&bx_cpu. sregs[BX_SEG_REG_SS].cache, temp_ESP, 4) ) { BX_PANIC(("call_ev: can't push EIP")); } } push_32(bx_cpu. eip); bx_cpu. eip = op1_32; BX_INSTR_UCNEAR_BRANCH(BX_INSTR_IS_CALL, bx_cpu. eip); }
void bx_cpu_c::TEST_EdId(BxInstruction_t *i) { Bit32u op2_32, op1_32, result_32; /* op2 is imm32 */ op2_32 = i->Id; /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { op1_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op1_32); } result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_TEST32); }
/* DB /0 */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::FILD_DWORD_INTEGER(bxInstruction_c *i) { #if BX_SUPPORT_FPU BX_CPU_THIS_PTR prepareFPU(i); Bit32s load_reg = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); clear_C1(); if (! IS_TAG_EMPTY(-1)) { BX_CPU_THIS_PTR FPU_stack_overflow(); return; } floatx80 result = int32_to_floatx80(load_reg); BX_CPU_THIS_PTR the_i387.FPU_push(); BX_WRITE_FPU_REG(result, 0); #else BX_INFO(("FILD_DWORD_INTEGER: required FPU, configure --enable-fpu")); #endif }
void BX_CPU_C::TEST_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } #if defined(BX_HostAsm_Test32) Bit32u flags32; asmTest32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif }
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::FICOM_DWORD_INTEGER(bxInstruction_c *i) { BX_CPU_THIS_PTR prepareFPU(i); int pop_stack = i->nnn() & 1; RMAddr(i) = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32s load_reg = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); BX_CPU_THIS_PTR FPU_update_last_instruction(i); clear_C1(); if (IS_TAG_EMPTY(0)) { FPU_exception(FPU_EX_Stack_Underflow); setcc(FPU_SW_C0|FPU_SW_C2|FPU_SW_C3); if(BX_CPU_THIS_PTR the_i387.is_IA_masked()) { if (pop_stack) BX_CPU_THIS_PTR the_i387.FPU_pop(); } BX_NEXT_INSTR(i); } float_status_t status = FPU_pre_exception_handling(BX_CPU_THIS_PTR the_i387.get_control_word()); int rc = floatx80_compare(BX_READ_FPU_REG(0), int32_to_floatx80(load_reg), status); setcc(status_word_flags_fpu_compare(rc)); if (! FPU_exception(status.float_exception_flags)) { if (pop_stack) BX_CPU_THIS_PTR the_i387.FPU_pop(); } BX_NEXT_INSTR(i); }
/* DB /0 */ BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::FILD_DWORD_INTEGER(bxInstruction_c *i) { BX_CPU_THIS_PTR prepareFPU(i); RMAddr(i) = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32s load_reg = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); FPU_update_last_instruction(i); clear_C1(); if (! IS_TAG_EMPTY(-1)) { FPU_stack_overflow(); } else { floatx80 result = int32_to_floatx80(load_reg); BX_CPU_THIS_PTR the_i387.FPU_push(); BX_WRITE_FPU_REG(result, 0); } BX_NEXT_INSTR(i); }
void bx_cpu_c::AND_GdEd(BxInstruction_t *i) { Bit32u op1_32, op2_32, result_32; op1_32 = BX_READ_32BIT_REG(i->nnn); /* op2_32 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } result_32 = op1_32 & op2_32; /* now write result back to destination */ BX_WRITE_32BIT_REG(i->nnn, result_32); SET_FLAGS_OSZAPC_32(op1_32, op2_32, result_32, BX_INSTR_AND32); }
void bx_cpu_c::BSF_GvEv(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("BSF_GvEv(): not supported on < 386")); #else if (i->os_32) { /* 32 bit operand size mode */ /* for 32 bit operand size mode */ Bit32u op1_32, op2_32; /* op2_32 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } if (op2_32 == 0) { set_ZF(1); /* op1_32 undefined */ return; } op1_32 = 0; while ( (op2_32 & 0x01) == 0 ) { op1_32++; op2_32 >>= 1; } set_ZF(0); /* now write result back to destination */ BX_WRITE_32BIT_REG(i->nnn, op1_32); }
void BX_CPU_C::AND_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif BX_WRITE_32BIT_REGZ(i->nnn(), result_32); }
void bx_cpu_c::CALL32_Ep(BxInstruction_t *i) { Bit16u cs_raw; Bit32u op1_32; #if BX_DEBUGGER bx_cpu. show_flag |= Flag_call; #endif /* op1_32 is a register or memory reference */ if (i->mod == 0xc0) { BX_PANIC(("CALL_Ep: op1 is a register")); } /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op1_32); read_virtual_word(i->seg, i->rm_addr+4, &cs_raw); invalidate_prefetch_q(); if ( protected_mode() ) { bx_cpu. call_protected(i, cs_raw, op1_32); goto done; } push_32(bx_cpu. sregs[BX_SEG_REG_CS].selector.value); push_32(bx_cpu. eip); bx_cpu. eip = op1_32; load_seg_reg(&bx_cpu. sregs[BX_SEG_REG_CS], cs_raw); done: BX_INSTR_FAR_BRANCH(BX_INSTR_IS_CALL, bx_cpu. sregs[BX_SEG_REG_CS].selector.value, bx_cpu. eip); return; }
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp) { bx_selector_t cs_selector; Bit32u dword1, dword2; bx_descriptor_t cs_descriptor; /* new cs selector must not be null, else #GP(0) */ if ((cs_raw & 0xfffc) == 0) { BX_ERROR(("call_protected: CS selector null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(cs_raw, &cs_selector); // check new CS selector index within its descriptor limits, // else #GP(new CS selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // examine AR byte of selected descriptor for various legal values if (cs_descriptor.valid==0) { BX_ERROR(("call_protected: invalid CS descriptor")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } if (cs_descriptor.segment) // normal segment { check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL); #if BX_SUPPORT_X86_64 if (i->os64L()) { // push return address onto stack (CS padded to 64bits) push_64((Bit64u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_64(RIP); } else #endif if (i->os32L()) { // push return address onto stack (CS padded to 32bits) push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load code segment descriptor into CS cache // load CS with new code segment selector // set RPL of CS to CPL branch_far64(&cs_selector, &cs_descriptor, disp, CPL); return; } else { // gate & special segment bx_descriptor_t gate_descriptor = cs_descriptor; bx_selector_t gate_selector = cs_selector; Bit32u new_EIP; Bit16u dest_selector; Bit16u raw_tss_selector; bx_selector_t tss_selector; bx_descriptor_t tss_descriptor; Bit32u temp_eIP; // descriptor DPL must be >= CPL else #GP(gate selector) if (gate_descriptor.dpl < CPL) { BX_ERROR(("call_protected: descriptor.dpl < CPL")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } // descriptor DPL must be >= gate selector RPL else #GP(gate selector) if (gate_descriptor.dpl < gate_selector.rpl) { BX_ERROR(("call_protected: descriptor.dpl < selector.rpl")); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } #if BX_SUPPORT_X86_64 if (long_mode()) { // call gate type is higher priority than non-present bit check if (gate_descriptor.type != BX_386_CALL_GATE) { BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } else #endif { switch (gate_descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_AVAIL_386_TSS: case BX_TASK_GATE: case BX_286_CALL_GATE: case BX_386_CALL_GATE: break; default: BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } // gate descriptor must be present else #NP(gate selector) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("call_protected: gate not present")); exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0); } #if BX_SUPPORT_X86_64 if (long_mode()) { call_gate64(&gate_selector); return; } #endif switch (gate_descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_AVAIL_386_TSS: if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS) BX_DEBUG(("call_protected: 16bit available TSS")); else BX_DEBUG(("call_protected: 32bit available TSS")); // SWITCH_TASKS _without_ nesting to TSS task_switch(&gate_selector, &gate_descriptor, BX_TASK_FROM_CALL_OR_INT, dword1, dword2); // EIP must be in code seg limit, else #GP(0) if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } return; case BX_TASK_GATE: // examine selector to TSS, given in Task Gate descriptor // must specify global in the local/global bit else #TS(TSS selector) raw_tss_selector = gate_descriptor.u.taskgate.tss_selector; parse_selector(raw_tss_selector, &tss_selector); if (tss_selector.ti) { BX_ERROR(("call_protected: tss_selector.ti=1")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // index must be within GDT limits else #TS(TSS selector) fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &tss_descriptor); // descriptor AR byte must specify available TSS // else #GP(TSS selector) if (tss_descriptor.valid==0 || tss_descriptor.segment) { BX_ERROR(("call_protected: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS && tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS) { BX_ERROR(("call_protected: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // task state segment must be present, else #NP(tss selector) if (! IS_PRESENT(tss_descriptor)) { BX_ERROR(("call_protected: task descriptor.p == 0")); exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // SWITCH_TASKS without nesting to TSS task_switch(&tss_selector, &tss_descriptor, BX_TASK_FROM_CALL_OR_INT, dword1, dword2); // EIP must be within code segment limit, else #TS(0) if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) temp_eIP = EIP; else temp_eIP = IP; if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0, 0); } return; case BX_286_CALL_GATE: case BX_386_CALL_GATE: // examine code segment selector in call gate descriptor BX_DEBUG(("call_protected: call gate")); dest_selector = gate_descriptor.u.gate.dest_selector; new_EIP = gate_descriptor.u.gate.dest_offset; // selector must not be null else #GP(0) if ((dest_selector & 0xfffc) == 0) { BX_ERROR(("call_protected: selector in gate null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(dest_selector, &cs_selector); // selector must be within its descriptor table limits, // else #GP(code segment selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // AR byte of selected descriptor must indicate code segment, // else #GP(code segment selector) // DPL of selected descriptor must be <= CPL, // else #GP(code segment selector) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL) { BX_ERROR(("call_protected: selected descriptor is not code")); exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0); } // code segment must be present else #NP(selector) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("call_protected: code segment not present !")); exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0); } // CALL GATE TO MORE PRIVILEGE // if non-conforming code segment and DPL < CPL then if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { Bit16u SS_for_cpl_x; Bit32u ESP_for_cpl_x; bx_selector_t ss_selector; bx_descriptor_t ss_descriptor; Bit16u return_SS, return_CS; Bit32u return_ESP, return_EIP; Bit16u parameter_word[32]; Bit32u parameter_dword[32]; BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL")); // get new SS selector for new privilege level from TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); // check selector & descriptor for new SS: // selector must not be null, else #TS(0) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("call_protected: new SS null")); exception(BX_TS_EXCEPTION, 0, 0); } // selector index must be within its descriptor table limits, // else #TS(SS selector) parse_selector(SS_for_cpl_x, &ss_selector); fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector's RPL must equal DPL of code segment, // else #TS(SS selector) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // stack segment DPL must equal DPL of code segment, // else #TS(SS selector) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // descriptor must indicate writable data segment, // else #TS(SS selector) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("call_protected: ss descriptor is not writable data seg")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // segment must be present, else #SS(SS selector) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("call_protected: ss descriptor not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // get word count from call gate, mask to 5 bits unsigned param_count = gate_descriptor.u.gate.param_count & 0x1f; // save return SS:eSP to be pushed on new stack return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) return_ESP = ESP; else return_ESP = SP; // save return CS:eIP to be pushed on new stack return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; if (cs_descriptor.u.segment.d_b) return_EIP = EIP; else return_EIP = IP; if (gate_descriptor.type==BX_286_CALL_GATE) { for (unsigned i=0; i<param_count; i++) { parameter_word[i] = read_virtual_word(BX_SEG_REG_SS, return_ESP + i*2); } } else { for (unsigned i=0; i<param_count; i++) { parameter_dword[i] = read_virtual_dword(BX_SEG_REG_SS, return_ESP + i*4); } } // Prepare new stack segment bx_segment_reg_t new_stack; new_stack.selector = ss_selector; new_stack.cache = ss_descriptor; new_stack.selector.rpl = cs_descriptor.dpl; // add cpl to the selector value new_stack.selector.value = (0xfffc & new_stack.selector.value) | new_stack.selector.rpl; /* load new SS:SP value from TSS */ if (ss_descriptor.u.segment.d_b) { Bit32u temp_ESP = ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor.type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP); temp_ESP -= 8; for (unsigned i=param_count; i>0; i--) { temp_ESP -= 4; write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_dword[i-1]); } // push return address onto new stack write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP); temp_ESP -= 8; } else { write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP); temp_ESP -= 4; for (unsigned i=param_count; i>0; i--) { temp_ESP -= 2; write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_word[i-1]); } // push return address onto new stack write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP); temp_ESP -= 4; } ESP = temp_ESP; } else { Bit16u temp_SP = (Bit16u) ESP_for_cpl_x; // push pointer of old stack onto new stack if (gate_descriptor.type==BX_386_CALL_GATE) { write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP); temp_SP -= 8; for (unsigned i=param_count; i>0; i--) { temp_SP -= 4; write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_dword[i-1]); } // push return address onto new stack write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS); write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP); temp_SP -= 8; } else { write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP); temp_SP -= 4; for (unsigned i=param_count; i>0; i--) { temp_SP -= 2; write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_word[i-1]); } // push return address onto new stack write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS); write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP); temp_SP -= 4; } SP = temp_SP; } // new eIP must be in code segment limit else #GP(0) if (new_EIP > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("call_protected: EIP not within CS limits")); exception(BX_GP_EXCEPTION, 0, 0); } /* load SS descriptor */ load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); /* load new CS:IP value from gate */ /* load CS descriptor */ /* set CPL to stack segment DPL */ /* set RPL of CS to CPL */ load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); EIP = new_EIP; } else // CALL GATE TO SAME PRIVILEGE { BX_DEBUG(("CALL GATE TO SAME PRIVILEGE")); if (gate_descriptor.type == BX_386_CALL_GATE) { // call gate 32bit, push return address onto stack push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); } else { // call gate 16bit, push return address onto stack push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); } // load CS:EIP from gate // load code segment descriptor into CS register // set RPL of CS to CPL branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL); } return; default: // can't get here BX_PANIC(("call_protected: gate type %u unsupported", (unsigned) cs_descriptor.type)); exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0); } } }
void BX_CPU_C::MOV_GdEEd(bxInstruction_c *i) { // 2nd modRM operand Ex, is known to be a memory operand, Ed. read_virtual_dword(i->seg(), RMAddr(i), &BX_READ_32BIT_REG(i->nnn())); BX_CLEAR_64BIT_HIGH(i->nnn()); }
void BX_CPU_C::MOV_EAXOd(bxInstruction_c *i) { read_virtual_dword(i->seg(), i->Id(), &EAX); BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RAX); }
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i) { Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; push_32(EBP); Bit32u frame_ptr32 = ESP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u ebp = EBP; // Use temp copy for case of exception. if (level > 0) { /* do level-1 times */ while (--level) { ebp -= 4; Bit32u temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp); push_32(temp32); } /* push(frame pointer) */ push_32(frame_ptr32); } ESP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:ESP read_RMW_virtual_dword(BX_SEG_REG_SS, ESP); } else { Bit16u bp = BP; if (level > 0) { /* do level-1 times */ while (--level) { bp -= 4; Bit32u temp32 = read_virtual_dword(BX_SEG_REG_SS, bp); push_32(temp32); } /* push(frame pointer) */ push_32(frame_ptr32); } SP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:SP read_RMW_virtual_dword(BX_SEG_REG_SS, SP); } EBP = frame_ptr32; BX_CPU_THIS_PTR speculative_rsp = 0; }
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD32(bxInstruction_c *i) { Bit32u edi, esi, ebp, ebx, edx, ecx, eax, dummy; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; edi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0)); esi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4)); ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8)); dummy = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 12)); ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 16)); edx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 20)); ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 24)); eax = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 28)); ESP += 32; } else { Bit16u temp_SP = SP; edi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0)); esi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4)); ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8)); dummy = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 12)); ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 16)); edx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 20)); ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 24)); eax = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 28)); SP += 32; } EDI = edi; ESI = esi; EBP = ebp; EBX = ebx; EDX = edx; ECX = ecx; EAX = eax; }
BX_CPU_C::return_protected(bxInstruction_c *i, Bit16u pop_bytes) { Bit16u raw_cs_selector, raw_ss_selector; bx_selector_t cs_selector, ss_selector; bx_descriptor_t cs_descriptor, ss_descriptor; Bit32u stack_param_offset; bx_address return_RIP, return_RSP, temp_RSP; Bit32u dword1, dword2; /* + 6+N*2: SS | +12+N*4: SS | +24+N*8 SS */ /* + 4+N*2: SP | + 8+N*4: ESP | +16+N*8 RSP */ /* parm N | + parm N | + parm N */ /* parm 3 | + parm 3 | + parm 3 */ /* parm 2 | + parm 2 | + parm 2 */ /* + 4: parm 1 | + 8: parm 1 | +16: parm 1 */ /* + 2: CS | + 4: CS | + 8: CS */ /* + 0: IP | + 0: EIP | + 0: RIP */ #if BX_SUPPORT_X86_64 if (StackAddrSize64()) temp_RSP = RSP; else #endif { if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP; else temp_RSP = SP; } #if BX_SUPPORT_X86_64 if (i->os64L()) { raw_cs_selector = (Bit16u) read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP + 8); return_RIP = read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP); stack_param_offset = 16; } else #endif if (i->os32L()) { raw_cs_selector = (Bit16u) read_virtual_dword(BX_SEG_REG_SS, temp_RSP + 4); return_RIP = read_virtual_dword(BX_SEG_REG_SS, temp_RSP); stack_param_offset = 8; } else { raw_cs_selector = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 2); return_RIP = read_virtual_word(BX_SEG_REG_SS, temp_RSP); stack_param_offset = 4; } // selector must be non-null else #GP(0) if ((raw_cs_selector & 0xfffc) == 0) { BX_ERROR(("return_protected: CS selector null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(raw_cs_selector, &cs_selector); // selector index must be within its descriptor table limits, // else #GP(selector) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); // descriptor AR byte must indicate code segment, else #GP(selector) parse_descriptor(dword1, dword2, &cs_descriptor); // return selector RPL must be >= CPL, else #GP(return selector) if (cs_selector.rpl < CPL) { BX_ERROR(("return_protected: CS.rpl < CPL")); exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0); } // check code-segment descriptor check_cs(&cs_descriptor, raw_cs_selector, 0, cs_selector.rpl); // if return selector RPL == CPL then // RETURN TO SAME PRIVILEGE LEVEL if (cs_selector.rpl == CPL) { BX_DEBUG(("return_protected: return to SAME PRIVILEGE LEVEL")); branch_far64(&cs_selector, &cs_descriptor, return_RIP, CPL); #if BX_SUPPORT_X86_64 if (StackAddrSize64()) RSP += stack_param_offset + pop_bytes; else #endif { if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) RSP = ESP + stack_param_offset + pop_bytes; else SP += stack_param_offset + pop_bytes; } return; } /* RETURN TO OUTER PRIVILEGE LEVEL */ else { /* + 6+N*2: SS | +12+N*4: SS | +24+N*8 SS */ /* + 4+N*2: SP | + 8+N*4: ESP | +16+N*8 RSP */ /* parm N | + parm N | + parm N */ /* parm 3 | + parm 3 | + parm 3 */ /* parm 2 | + parm 2 | + parm 2 */ /* + 4: parm 1 | + 8: parm 1 | +16: parm 1 */ /* + 2: CS | + 4: CS | + 8: CS */ /* + 0: IP | + 0: EIP | + 0: RIP */ BX_DEBUG(("return_protected: return to OUTER PRIVILEGE LEVEL")); #if BX_SUPPORT_X86_64 if (i->os64L()) { raw_ss_selector = read_virtual_word_64 (BX_SEG_REG_SS, temp_RSP + 24 + pop_bytes); return_RSP = read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP + 16 + pop_bytes); } else #endif if (i->os32L()) { raw_ss_selector = read_virtual_word (BX_SEG_REG_SS, temp_RSP + 12 + pop_bytes); return_RSP = read_virtual_dword(BX_SEG_REG_SS, temp_RSP + 8 + pop_bytes); } else { raw_ss_selector = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 6 + pop_bytes); return_RSP = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 4 + pop_bytes); } /* selector index must be within its descriptor table limits, * else #GP(selector) */ parse_selector(raw_ss_selector, &ss_selector); if ((raw_ss_selector & 0xfffc) == 0) { if (long_mode()) { if (! IS_LONG64_SEGMENT(cs_descriptor) || (cs_selector.rpl == 3)) { BX_ERROR(("return_protected: SS selector null")); exception(BX_GP_EXCEPTION, 0, 0); } } else // not in long or compatibility mode { BX_ERROR(("return_protected: SS selector null")); exception(BX_GP_EXCEPTION, 0, 0); } } fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); /* selector RPL must = RPL of the return CS selector, * else #GP(selector) */ if (ss_selector.rpl != cs_selector.rpl) { BX_ERROR(("return_protected: ss.rpl != cs.rpl")); exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0); } /* descriptor AR byte must indicate a writable data segment, * else #GP(selector) */ if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("return_protected: SS.AR byte not writable data")); exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0); } /* descriptor dpl must = RPL of the return CS selector, * else #GP(selector) */ if (ss_descriptor.dpl != cs_selector.rpl) { BX_ERROR(("return_protected: SS.dpl != cs.rpl")); exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0); } /* segment must be present else #SS(selector) */ if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("return_protected: ss.present == 0")); exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } branch_far64(&cs_selector, &cs_descriptor, return_RIP, cs_selector.rpl); /* load SS:SP from stack */ /* load SS-cache with return SS descriptor */ load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl); #if BX_SUPPORT_X86_64 if (StackAddrSize64()) RSP = return_RSP + pop_bytes; else #endif if (ss_descriptor.u.segment.d_b) RSP = (Bit32u) return_RSP + pop_bytes; else SP = (Bit16u) return_RSP + pop_bytes; /* check ES, DS, FS, GS for validity */ validate_seg_regs(); } }