Esempio n. 1
0
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer,		/* buffer that holds one output row     */
     *obufptr;			/* column ptr in output buffer  */
    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord1, xcoord2,	/* temporary x coordinates      */
      ycoord1, ycoord2,		/* temporary y coordinates      */
      col_idx,			/* column index in input matrix */
      row_idx,			/* row index in input matrix    */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->description = _("Cache size (MiB)");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input location and exit");

    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Target");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Target");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G__create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	if (pj_do_proj(&iwest, &isouth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));
	if (pj_do_proj(&ieast, &inorth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G__switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G__switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G__switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    /**/ ycoord1 = ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);
    /**/ G_important_message(_("Projecting..."));
    G_percent(0, outcellhd.rows, 2);

    for (row = 0; row < outcellhd.rows; row++) {
	obufptr = obuffer;

	for (col = 0; col < outcellhd.cols; col++) {
	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */
		col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    &col_idx, &row_idx, &incellhd);
	    }

	    obufptr = G_incr_void_ptr(obufptr, cell_size);
	    xcoord2 += outcellhd.ew_res;
	    xcoord1 = xcoord2;
	    ycoord1 = ycoord2;
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
	ycoord1 = ycoord2;
	G_percent(row, outcellhd.rows - 1, 2);
    }

    Rast_close(fdo);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(NULL);
    exit(EXIT_SUCCESS);
}
Esempio n. 2
0
int rectify(char *name, char *mapset, struct cache *ebuffer,
            double aver_z, char *result, char *interp_method)
{
    struct Cell_head cellhd;
    int ncols, nrows;
    int row, col;
    double row_idx, col_idx;
    int infd, outfd;
    RASTER_MAP_TYPE map_type;
    int cell_size;
    void *trast, *tptr;
    double n1, e1, z1;
    double nx, ex, nx1, ex1, zx1;
    struct cache *ibuffer;

    select_current_env();
    Rast_get_cellhd(name, mapset, &cellhd);

    /* open the file to be rectified
     * set window to cellhd first to be able to read file exactly
     */
    Rast_set_input_window(&cellhd);
    infd = Rast_open_old(name, mapset);
    map_type = Rast_get_map_type(infd);
    cell_size = Rast_cell_size(map_type);

    ibuffer = readcell(infd, seg_mb_img, 0);

    Rast_close(infd);		/* (pmx) 17 april 2000 */

    G_message(_("Rectify <%s@%s> (location <%s>)"),
	      name, mapset, G_location());
    select_target_env();
    G_set_window(&target_window);
    G_message(_("into  <%s@%s> (location <%s>) ..."),
	      result, G_mapset(), G_location());

    nrows = target_window.rows;
    ncols = target_window.cols;

    if (strcmp(interp_method, "nearest") != 0) {
	map_type = DCELL_TYPE;
	cell_size = Rast_cell_size(map_type);
    }

    /* open the result file into target window
     * this open must be first since we change the window later
     * raster maps open for writing are not affected by window changes
     * but those open for reading are
     */

    outfd = Rast_open_new(result, map_type);
    trast = Rast_allocate_output_buf(map_type);

    for (row = 0; row < nrows; row++) {
	n1 = target_window.north - (row + 0.5) * target_window.ns_res;

	G_percent(row, nrows, 2);

	Rast_set_null_value(trast, ncols, map_type);
	tptr = trast;
	for (col = 0; col < ncols; col++) {
	    DCELL *zp = CPTR(ebuffer, row, col);

	    e1 = target_window.west + (col + 0.5) * target_window.ew_res;
	    
	    /* if target cell has no elevation, set to aver_z */
	    if (Rast_is_d_null_value(zp)) {
		G_warning(_("No elevation available at row = %d, col = %d"), row, col);
		z1 = aver_z;
	    }
	    else
		z1 = *zp;

	    /* target coordinates e1, n1 to photo coordinates ex1, nx1 */
	    I_ortho_ref(e1, n1, z1, &ex1, &nx1, &zx1, &group.camera_ref,
			group.XC, group.YC, group.ZC, group.M);

	    G_debug(5, "\t\tAfter ortho ref (photo cords): ex = %f \t nx =  %f",
		    ex1, nx1);

	    /* photo coordinates ex1, nx1 to image coordinates ex, nx */
	    I_georef(ex1, nx1, &ex, &nx, group.E21, group.N21, 1);

	    G_debug(5, "\t\tAfter geo ref: ex = %f \t nx =  %f", ex, nx);

	    /* convert to row/column indices of source raster */
	    row_idx = (cellhd.north - nx) / cellhd.ns_res;
	    col_idx = (ex - cellhd.west) / cellhd.ew_res;

	    /* resample data point */
	    interpolate(ibuffer, tptr, map_type, &row_idx, &col_idx, &cellhd);

	    tptr = G_incr_void_ptr(tptr, cell_size);
	}
	Rast_put_row(outfd, trast, map_type);
    }
    G_percent(1, 1, 1);

    Rast_close(outfd);		/* (pmx) 17 april 2000 */
    G_free(trast);

    close(ibuffer->fd);
    release_cache(ibuffer);

    Rast_get_cellhd(result, G_mapset(), &cellhd);

    if (cellhd.proj == 0) {	/* x,y imagery */
	cellhd.proj = target_window.proj;
	cellhd.zone = target_window.zone;
    }

    if (target_window.proj != cellhd.proj) {
	cellhd.proj = target_window.proj;
	G_warning(_("Raster map <%s@%s>: projection don't match current settings"),
		  name, mapset);
    }

    if (target_window.zone != cellhd.zone) {
	cellhd.zone = target_window.zone;
	G_warning(_("Raster map <%s@%s>: zone don't match current settings"),
		  name, mapset);
    }

    select_current_env();

    return 1;
}
Esempio n. 3
0
int main(int argc, char *argv[])
{
    char *p;
    int method;
    int in_fd;
    int selection_fd;
    int out_fd;
    DCELL *result;
    char *selection;
    RASTER_MAP_TYPE map_type;
    int row, col;
    int readrow;
    int nrows, ncols;
    int n;
    int copycolr;
    int half;
    stat_func *newvalue;
    stat_func_w *newvalue_w;
    ifunc cat_names;
    double quantile;
    const void *closure;
    struct Colors colr;
    struct Cell_head cellhd;
    struct Cell_head window;
    struct History history;
    struct GModule *module;
    struct
    {
	struct Option *input, *output, *selection;
	struct Option *method, *size;
	struct Option *title;
	struct Option *weight;
	struct Option *gauss;
	struct Option *quantile;
    } parm;
    struct
    {
	struct Flag *align, *circle;
    } flag;

    DCELL *values;		/* list of neighborhood values */

    DCELL(*values_w)[2];	/* list of neighborhood values and weights */

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("algebra"));
    G_add_keyword(_("statistics"));
    module->description =
	_("Makes each cell category value a "
	  "function of the category values assigned to the cells "
	  "around it, and stores new cell values in an output raster "
	  "map layer.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.selection = G_define_standard_option(G_OPT_R_INPUT);
    parm.selection->key = "selection";
    parm.selection->required = NO;
    parm.selection->description = _("Name of an input raster map to select the cells which should be processed");

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.method = G_define_option();
    parm.method->key = "method";
    parm.method->type = TYPE_STRING;
    parm.method->required = NO;
    parm.method->answer = "average";
    p = G_malloc(1024);
    for (n = 0; menu[n].name; n++) {
	if (n)
	    strcat(p, ",");
	else
	    *p = 0;
	strcat(p, menu[n].name);
    }
    parm.method->options = p;
    parm.method->description = _("Neighborhood operation");
    parm.method->guisection = _("Neighborhood");

    parm.size = G_define_option();
    parm.size->key = "size";
    parm.size->type = TYPE_INTEGER;
    parm.size->required = NO;
    parm.size->description = _("Neighborhood size");
    parm.size->answer = "3";
    parm.size->guisection = _("Neighborhood");

    parm.title = G_define_option();
    parm.title->key = "title";
    parm.title->key_desc = "phrase";
    parm.title->type = TYPE_STRING;
    parm.title->required = NO;
    parm.title->description = _("Title of the output raster map");

    parm.weight = G_define_standard_option(G_OPT_F_INPUT);
    parm.weight->key = "weight";
    parm.weight->required = NO;
    parm.weight->description = _("Text file containing weights");

    parm.gauss = G_define_option();
    parm.gauss->key = "gauss";
    parm.gauss->type = TYPE_DOUBLE;
    parm.gauss->required = NO;
    parm.gauss->description = _("Sigma (in cells) for Gaussian filter");

    parm.quantile = G_define_option();
    parm.quantile->key = "quantile";
    parm.quantile->type = TYPE_DOUBLE;
    parm.quantile->required = NO;
    parm.quantile->description = _("Quantile to calculate for method=quantile");
    parm.quantile->options = "0.0-1.0";
    parm.quantile->answer = "0.5";

    flag.align = G_define_flag();
    flag.align->key = 'a';
    flag.align->description = _("Do not align output with the input");

    flag.circle = G_define_flag();
    flag.circle->key = 'c';
    flag.circle->description = _("Use circular neighborhood");
    flag.circle->guisection = _("Neighborhood");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    sscanf(parm.size->answer, "%d", &ncb.nsize);
    if (ncb.nsize <= 0)
	G_fatal_error(_("Neighborhood size must be positive"));
    if (ncb.nsize % 2 == 0)
	G_fatal_error(_("Neighborhood size must be odd"));
    ncb.dist = ncb.nsize / 2;

    if (parm.weight->answer && flag.circle->answer)
	G_fatal_error(_("weight= and -c are mutually exclusive"));

    if (parm.weight->answer && parm.gauss->answer)
	G_fatal_error(_("weight= and gauss= are mutually exclusive"));

    ncb.oldcell = parm.input->answer;
    ncb.newcell = parm.output->answer;

    if (!flag.align->answer) {
	Rast_get_cellhd(ncb.oldcell, "", &cellhd);
	G_get_window(&window);
	Rast_align_window(&window, &cellhd);
	Rast_set_window(&window);
    }

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* open raster maps */
    in_fd = Rast_open_old(ncb.oldcell, "");
    map_type = Rast_get_map_type(in_fd);

    /* get the method */
    for (method = 0; (p = menu[method].name); method++)
	if ((strcmp(p, parm.method->answer) == 0))
	    break;
    if (!p) {
	G_warning(_("<%s=%s> unknown %s"),
		  parm.method->key, parm.method->answer, parm.method->key);
	G_usage();
	exit(EXIT_FAILURE);
    }

    if (menu[method].method == c_quant) {
	quantile = atoi(parm.quantile->answer);
	closure = &quantile;
    }

    half = (map_type == CELL_TYPE) ? menu[method].half : 0;

    /* establish the newvalue routine */
    newvalue = menu[method].method;
    newvalue_w = menu[method].method_w;

    /* copy color table? */
    copycolr = menu[method].copycolr;
    if (copycolr) {
	G_suppress_warnings(1);
	copycolr =
	    (Rast_read_colors(ncb.oldcell, "", &colr) > 0);
	G_suppress_warnings(0);
    }

    /* read the weights */
    if (parm.weight->answer) {
	read_weights(parm.weight->answer);
	if (!newvalue_w)
	    weights_mask();
    }
    else if (parm.gauss->answer) {
	if (!newvalue_w)
	    G_fatal_error(_("Method %s not compatible with Gaussian filter"), parm.method->answer);
	gaussian_weights(atof(parm.gauss->answer));
    }
    else
	newvalue_w = NULL;

    /* allocate the cell buffers */
    allocate_bufs();
    result = Rast_allocate_d_buf();

    /* get title, initialize the category and stat info */
    if (parm.title->answer)
	strcpy(ncb.title, parm.title->answer);
    else
	sprintf(ncb.title, "%dx%d neighborhood: %s of %s",
		ncb.nsize, ncb.nsize, menu[method].name, ncb.oldcell);


    /* initialize the cell bufs with 'dist' rows of the old cellfile */

    readrow = 0;
    for (row = 0; row < ncb.dist; row++)
	readcell(in_fd, readrow++, nrows, ncols);

    /* open the selection raster map */
    if (parm.selection->answer) {
	G_message(_("Opening selection map <%s>"), parm.selection->answer);
	selection_fd = Rast_open_old(parm.selection->answer, "");
        selection = Rast_allocate_null_buf();
    } else {
        selection_fd = -1;
        selection = NULL;
    }

    /*open the new raster map */
    out_fd = Rast_open_new(ncb.newcell, map_type);

    if (flag.circle->answer)
	circle_mask();

    if (newvalue_w)
	values_w =
	    (DCELL(*)[2]) G_malloc(ncb.nsize * ncb.nsize * 2 * sizeof(DCELL));
    else
	values = (DCELL *) G_malloc(ncb.nsize * ncb.nsize * sizeof(DCELL));

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	readcell(in_fd, readrow++, nrows, ncols);

	if (selection)
            Rast_get_null_value_row(selection_fd, selection, row);

	for (col = 0; col < ncols; col++) {
	    DCELL *rp = &result[col];

            if (selection && selection[col]) {
		*rp = ncb.buf[ncb.dist][col];
		continue;
	    }

	    if (newvalue_w)
		n = gather_w(values_w, col);
	    else
		n = gather(values, col);

	    if (n < 0)
		Rast_set_d_null_value(rp, 1);
	    else {
		if (newvalue_w)
		    newvalue_w(rp, values_w, n, closure);
		else
		    newvalue(rp, values, n, closure);

		if (half && !Rast_is_d_null_value(rp))
		    *rp += 0.5;
	    }
	}

	Rast_put_d_row(out_fd, result);
    }
    G_percent(row, nrows, 2);

    Rast_close(out_fd);
    Rast_close(in_fd);

    if (selection)
        Rast_close(selection_fd);

    /* put out category info */
    null_cats();
    if ((cat_names = menu[method].cat_names))
	cat_names();

    Rast_write_cats(ncb.newcell, &ncb.cats);

    if (copycolr)
	Rast_write_colors(ncb.newcell, G_mapset(), &colr);

    Rast_short_history(ncb.newcell, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ncb.newcell, &history);


    exit(EXIT_SUCCESS);
}
Esempio n. 4
0
int main(int argc, char *argv[]) {

  // initialize new seed for random number generator
  srand((unsigned) time(NULL));

  // allocate memory to store data loaded for each neuron
  double celldirs[40], cellspks[40];

  // number of cell files to read
  int ncells = 100;
  if (argc > 1) ncells = atoi(argv[1]);

  // number of bootstrap iterations
  int nboot = 100000;

  // allocate strings to construct filenames
  char fnum[4];
  char fname[128];

  // allocate memory to store various things
  double PD[ncells], PDboot[ncells], PDr[ncells], PDr_boot,
    boot_spks[40], plate_out[9];
	
  // allocate and initialize vector of indices
  int boot_ind[40];
  for (int i=0; i<40; i++) boot_ind[i]=i;

  // loop through each cell
  int i, j, k, bootcount;
  for (i=1; i<=ncells; i++) {

    // construct the filename
    if (i<10) sprintf(fnum, "00%d", i);
    else if (i<100) sprintf(fnum, "0%d", i);
    else sprintf(fnum, "%d", i);
		
    // read in the dirs file
    sprintf(fname, "data/cell_dirs_%s.txt", fnum);
    readcell(fname, celldirs, 40, 0);

    // read in the spks file
    sprintf(fname, "data/cell_spks_%s.txt", fnum);
    readcell(fname, cellspks, 40, 1);
		
    // compute overall PD and PDr
    platemethod(celldirs, cellspks, 40, plate_out);
    PD[i-1] = plate_out[0];
    PDr[i-1] = compute_PDr(celldirs, cellspks, 5, 8);
		
    // bootstrap to compute prob(PDr_boot >= PDr) given shuffled data
    bootcount = 0;
#pragma omp parallel for private(j,k,boot_spks,PDr_boot) reduction(+: bootcount)
    for (j=0; j<nboot; j++) {
      // randomly sample from cellspks into boot_spks with replacement
      for (k=0; k<40; k++) boot_spks[k]=cellspks[rand()%40];
			
      // compute PDr_boot for shuffled spike data
      PDr_boot = compute_PDr(celldirs, boot_spks, 5, 8);
			
      // if PDr_boot is greater than observed PDr then increment counter
      if (PDr_boot >= PDr[i-1]) bootcount = bootcount + 1;
    }
    // compute proportion of times we simulated PDr_boot >= PDr observed
    PDboot[i-1] = (double) bootcount / nboot;
  }
	
  // show vector of PDs and PDboot values
  show_double_vec(PD, ncells);
  show_double_vec(PDboot, ncells);
  write_double_vec(PD, ncells, "PD.txt");
  write_double_vec(PDboot, ncells, "PDboot.txt");
	
  return 0;
}
Esempio n. 5
0
int exec_rectify(char *extension, char *interp_method, char *angle_map)
{
    char *name;
    char *mapset;
    char *result;
    char *type = "raster";
    int n;
    struct Colors colr;
    struct Categories cats;
    struct History hist;
    int colr_ok, cats_ok;
    long start_time, rectify_time;
    double aver_z;
    int elevfd;
    struct cache *ebuffer;

    G_debug(1, "Open elevation raster: ");

    /* open elevation raster */
    select_target_env();
    G_set_window(&target_window);
    G_debug(1, "target window: rs=%d cs=%d n=%f s=%f w=%f e=%f\n",
	    target_window.rows, target_window.cols, target_window.north,
	    target_window.south, target_window.west, target_window.east);

    elevfd = Rast_open_old(elev_name, elev_mapset);
    if (elevfd < 0) {
	G_fatal_error(_("Could not open elevation raster"));
	return 1;
    }
    ebuffer = readcell(elevfd, seg_mb_elev, 1);
    select_target_env();
    Rast_close(elevfd);

    /* get an average elevation of the control points */
    /* this is used only if target cells have no elevation */
    get_aver_elev(&group.control_points, &aver_z);

    G_message("-----------------------------------------------");

    /* rectify each file */
    for (n = 0; n < group.group_ref.nfiles; n++) {
	if (!ref_list[n])
	    continue;

	name = group.group_ref.file[n].name;
	mapset = group.group_ref.file[n].mapset;
	result =
	    G_malloc(strlen(group.group_ref.file[n].name) + strlen(extension) + 1);
	strcpy(result, group.group_ref.file[n].name);
	strcat(result, extension);

	G_debug(2, "ORTHO RECTIFYING:");
	G_debug(2, "NAME %s", name);
	G_debug(2, "MAPSET %s", mapset);
	G_debug(2, "RESULT %s", result);
	G_debug(2, "select_current_env...");

	select_current_env();

	cats_ok = Rast_read_cats(name, mapset, &cats) >= 0;
	colr_ok = Rast_read_colors(name, mapset, &colr) > 0;

	/* Initialze History */
	if (Rast_read_history(name, mapset, &hist) < 0)
	    Rast_short_history(result, type, &hist);
	G_debug(2, "reading was fine...");

	time(&start_time);

	G_debug(2, "Starting the rectification...");

	if (rectify(name, mapset, ebuffer, aver_z, result, interp_method)) {
	    G_debug(2, "Done. Writing results...");
	    select_target_env();
	    if (cats_ok) {
		Rast_write_cats(result, &cats);
		Rast_free_cats(&cats);
	    }
	    if (colr_ok) {
		Rast_write_colors(result, G_mapset(), &colr);
		Rast_free_colors(&colr);
	    }
	    /* Write out History */
	    Rast_command_history(&hist);
	    Rast_write_history(result, &hist);

	    select_current_env();
	    time(&rectify_time);
	    report(rectify_time - start_time, 1);
	}
	else
	    report((long)0, 0);

	G_free(result);
    }
    
    close(ebuffer->fd);
    release_cache(ebuffer);

    if (angle_map) {
	camera_angle(angle_map);
    }
    
    return 0;
}