Esempio n. 1
0
int main(int argc, char* argv[]) {
	struct reb_simulation* r = reb_create_simulation();
	// Setup constants
	r->opening_angle2	= .5;					// This determines the precission of the tree code gravity calculation.
	r->integrator			= REB_INTEGRATOR_SEI;
	r->boundary			= REB_BOUNDARY_SHEAR;
	r->gravity			= REB_GRAVITY_TREE;
	r->collision			= REB_COLLISION_TREE;
	double OMEGA 			= 0.00013143527;	// 1/s
	r->ri_sei.OMEGA 		= OMEGA;
	r->G 				= 6.67428e-11;		// N / (1e-5 kg)^2 m^2
	r->softening 			= 0.1;			// m
	r->dt 				= 1e-3*2.*M_PI/OMEGA;	// s
	// This example uses two root boxes in the x and y direction. 
	// Although not necessary in this case, it allows for the parallelization using MPI. 
	// See Rein & Liu for a description of what a root box is in this context.
	double surfacedensity 		= 600; 			// kg/m^2
	double particle_density		= 400;			// kg/m^3
	double particle_radius_min 	= 1;			// m
	double particle_radius_max 	= 4;			// m
	double particle_radius_slope 	= -3;	
	double boxsize 			= 100;			// m
	if (argc>1){						// Try to read boxsize from command line
		boxsize = atof(argv[1]);
	}
	reb_configure_box(r, boxsize, 2, 2, 1);
	r->nghostx = 2;
	r->nghosty = 2;
	r->nghostz = 0;
	
	// Use Bridges et al coefficient of restitution.
	r->coefficient_of_restitution = coefficient_of_restitution_bridges;
	// When two particles collide and the relative velocity is zero, the might sink into each other in the next time step.
	// By adding a small repulsive velocity to each collision, we prevent this from happening.
	r->minimum_collision_velocity = particle_radius_min*OMEGA*0.001;  // small fraction of the shear accross a particle


	// Add all ring paricles
	double total_mass = surfacedensity*r->boxsize.x*r->boxsize.y;
	double mass = 0;
	while(mass<total_mass){
		struct reb_particle pt = {0.};
		pt.x 		= reb_random_uniform(-r->boxsize.x/2.,r->boxsize.x/2.);
		pt.y 		= reb_random_uniform(-r->boxsize.y/2.,r->boxsize.y/2.);
		pt.z 		= reb_random_normal(1.);					// m
		pt.vx 		= 0;
		pt.vy 		= -1.5*pt.x*OMEGA;
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		double radius 	= reb_random_powerlaw(particle_radius_min,particle_radius_max,particle_radius_slope);
		pt.r 		= radius;						// m
		double		particle_mass = particle_density*4./3.*M_PI*radius*radius*radius;
		pt.m 		= particle_mass; 	// kg
		reb_add(r, pt);
		mass += particle_mass;
	}
	reb_integrate(r, 2./OMEGA);
}
Esempio n. 2
0
int main(int argc, char* argv[]){
	// Setup constants
	G 		= 1;		
	integrator	= LEAPFROG;
	softening 	= 0.01;		
	dt 		= 3e-3;
	boxsize 	= 1.2;
	root_nx = 1; root_ny = 1; root_nz = 1;
	nghostx = 0; nghosty = 0; nghostz = 0; 		
	init_box();

	// Setup particles
	double disc_mass = 2e-1;
	int _N = 10000;
	// Initial conditions
	struct reb_particle star;
	star.x 		= 0; star.y 	= 0; star.z	= 0;
	star.vx 	= 0; star.vy 	= 0; star.vz 	= 0;
	star.ax 	= 0; star.ay 	= 0; star.az 	= 0;
	star.m 		= 1;
	reb_add(r, star);
	while(N<_N){
		struct reb_particle pt;
		double a	= reb_random_powerlaw(boxsize/10.,boxsize/2./1.2,-1.5);
		double phi 	= reb_random_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*reb_random_normal(0.001);
		double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/10.,-3./2.))/(pow(boxsize/2./1.2,-3./2.)-pow(boxsize/10.,-3./2.));
		double vkep 	= sqrt(G*mu/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.ax 		= 0;
		pt.ay 		= 0;
		pt.az 		= 0;
		pt.m 		= disc_mass/(double)_N;
		reb_add(r, pt);
	}
}
Esempio n. 3
0
void run_sim(){
	struct reb_simulation* const r = reb_create_simulation();
	// Setup constants
	r->integrator	= REB_INTEGRATOR_LEAPFROG;
	r->gravity	= REB_GRAVITY_BASIC;
	r->boundary	= REB_BOUNDARY_OPEN;
	r->opening_angle2	= 1.5;	// This constant determines the accuracy of the tree code gravity estimate.
	r->G 		= 1;		
	r->softening 	= 0.02;		// Gravitational softening length
	r->dt 		= 3e-2;		// Timestep
	const double boxsize = 10.2;
	reb_configure_box(r,boxsize,1,1,1);

	// Setup particles
	double disc_mass = 2e-1;	// Total disc mass
	int N = 2000;			// Number of particles
	// Initial conditions
	struct reb_particle star = {0};
	star.m 		= 1;
	reb_add(r, star);
	for (int i=0;i<N;i++){
		struct reb_particle pt = {0};
		double a	= reb_random_powerlaw(boxsize/10.,boxsize/2./1.2,-1.5);
		double phi 	= reb_random_uniform(0,2.*M_PI);
		pt.x 		= a*cos(phi);
		pt.y 		= a*sin(phi);
		pt.z 		= a*reb_random_normal(0.001);
		double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/10.,-3./2.))/(pow(boxsize/2./1.2,-3./2.)-pow(boxsize/10.,-3./2.));
		double vkep 	= sqrt(r->G*mu/a);
		pt.vx 		=  vkep * sin(phi);
		pt.vy 		= -vkep * cos(phi);
		pt.vz 		= 0;
		pt.m 		= disc_mass/(double)N;
		reb_add(r, pt);
	}

	reb_integrate(r, 1.0);
	reb_free_simulation(r);
}
Esempio n. 4
0
int main(int argc, char* argv[]){
	struct reb_simulation* const r = reb_create_simulation();
	// Setup constants
	r->integrator	= REB_INTEGRATOR_LEAPFROG;
	r->gravity	= REB_GRAVITY_TREE;
	r->boundary	= REB_BOUNDARY_OPEN;
	r->opening_angle2	= 1.5;		// This constant determines the accuracy of the tree code gravity estimate.
	r->G 		= 1;		
	r->softening 	= 0.02;		// Gravitational softening length
	r->dt 		= 3e-2;		// Timestep
	const double boxsize = 10.2;
    // Setup root boxes for gravity tree.
    // Here, we use 2x2=4 root boxes (each with length 'boxsize')
    // This allows you to use up to 4 MPI nodes.
	reb_configure_box(r,boxsize,2,2,1);

    // Initialize MPI
    // This can only be done after reb_configure_box.
    reb_mpi_init(r);

	// Setup particles only on master node
    // In the first timestep, the master node will 
    // distribute particles to other nodes. 
    // Note that this is not the most efficient method
    // for very large particle numbers.
    double disc_mass = 2e-1/r->mpi_num;	// Total disc mass
    int N = 10000/r->mpi_num;			// Number of particles
    // Initial conditions
    struct reb_particle star = {0};
    star.m 		= 1;
    if (r->mpi_id==0){
        reb_add(r, star);
    }
    for (int i=0;i<N;i++){
        struct reb_particle pt = {0};
        double a	= reb_random_powerlaw(boxsize/10.,boxsize/2./1.2,-1.5);
        double phi 	= reb_random_uniform(0,2.*M_PI);
        pt.x 		= a*cos(phi);
        pt.y 		= a*sin(phi);
        pt.z 		= a*reb_random_normal(0.001);
        double mu 	= star.m + disc_mass * (pow(a,-3./2.)-pow(boxsize/10.,-3./2.))/(pow(boxsize/2./1.2,-3./2.)-pow(boxsize/10.,-3./2.));
        double vkep 	= sqrt(r->G*mu/a);
        pt.vx 		=  vkep * sin(phi);
        pt.vy 		= -vkep * cos(phi);
        pt.vz 		= 0;
        pt.m 		= disc_mass/(double)N;
        reb_add(r, pt);
    }
	r->heartbeat = heartbeat;

#ifdef OPENGL
    // Hack to artificially increase particle array.
    // This cannot be done once OpenGL is activated. 
    r->allocatedN *=8;
    r->particles = realloc(r->particles,sizeof(struct reb_particle)*r->allocatedN);
#endif // OPENGL
    
	// Start the integration
    reb_integrate(r, INFINITY);

    // Cleanup
    reb_mpi_finalize(r);
    reb_free_simulation(r); 
}
Esempio n. 5
0
File: tools.c Progetto: qshu/rebound
void reb_tools_megno_init(struct reb_simulation* const r, double delta){
	int N_var = r->N;
	r->calculate_megno = 1;
	r->megno_Ys = 0.;
	r->megno_Yss = 0.;
	r->megno_cov_Yt = 0.;
	r->megno_var_t = 0.;
	r->megno_n = 0;
	r->megno_mean_Y = 0;
	r->megno_mean_t = 0;
        for (int i=0;i<N_var;i++){ 
                struct reb_particle megno = {
			.m  = r->particles[i].m,
			.x  = reb_random_normal(1.),
			.y  = reb_random_normal(1.),
			.z  = reb_random_normal(1.),
			.vx = reb_random_normal(1.),
			.vy = reb_random_normal(1.),
			.vz = reb_random_normal(1.) };
		double deltad = delta/sqrt(megno.x*megno.x + megno.y*megno.y + megno.z*megno.z + megno.vx*megno.vx + megno.vy*megno.vy + megno.vz*megno.vz); // rescale
		megno.x *= deltad;
		megno.y *= deltad;
		megno.z *= deltad;
		megno.vx *= deltad;
		megno.vy *= deltad;
		megno.vz *= deltad;

                reb_add(r, megno);
        }
	r->N_var = N_var;
}
double reb_tools_calculate_megno(struct reb_simulation* r){ // Returns the MEGNO <Y>
	if (r->t==0.) return 0.;
	return r->megno_Yss/r->t;
}
double reb_tools_calculate_lyapunov(struct reb_simulation* r){ // Returns the largest Lyapunov characteristic number (LCN), or maximal Lyapunov exponent
	if (r->t==0.) return 0.;
	return r->megno_cov_Yt/r->megno_var_t;
}
double reb_tools_megno_deltad_delta(struct reb_simulation* const r){
	const struct reb_particle* restrict const particles = r->particles;
	const int N = r->N;
	const int N_var = r->N_var;
        double deltad = 0;
        double delta2 = 0;
        for (int i=N-N_var;i<N;i++){
                deltad += particles[i].vx * particles[i].x; 
                deltad += particles[i].vy * particles[i].y; 
                deltad += particles[i].vz * particles[i].z; 
                deltad += particles[i].ax * particles[i].vx; 
                deltad += particles[i].ay * particles[i].vy; 
                deltad += particles[i].az * particles[i].vz; 
                delta2 += particles[i].x  * particles[i].x; 
                delta2 += particles[i].y  * particles[i].y;
                delta2 += particles[i].z  * particles[i].z;
                delta2 += particles[i].vx * particles[i].vx; 
                delta2 += particles[i].vy * particles[i].vy;
                delta2 += particles[i].vz * particles[i].vz;
        }
        return deltad/delta2;
}

void reb_tools_megno_update(struct reb_simulation* r, double dY){
	// Calculate running Y(t)
	r->megno_Ys += dY;
	double Y = r->megno_Ys/r->t;
	// Calculate averge <Y> 
	r->megno_Yss += Y * r->dt;
	// Update covariance of (Y,t) and variance of t
	r->megno_n++;
	double _d_t = r->t - r->megno_mean_t;
	r->megno_mean_t += _d_t/(double)r->megno_n;
	double _d_Y = reb_tools_calculate_megno(r) - r->megno_mean_Y;
	r->megno_mean_Y += _d_Y/(double)r->megno_n;
	r->megno_cov_Yt += ((double)r->megno_n-1.)/(double)r->megno_n 
					*(r->t-r->megno_mean_t)
					*(reb_tools_calculate_megno(r)-r->megno_mean_Y);
	r->megno_var_t  += ((double)r->megno_n-1.)/(double)r->megno_n 
					*(r->t-r->megno_mean_t)
					*(r->t-r->megno_mean_t);
}
Esempio n. 6
0
int main(int argc, char* argv[]){
	struct reb_simulation* r = reb_create_simulation();
	// Setup constants
	r->dt 			= 1e-1;	
	r->gravity		= REB_GRAVITY_NONE;
	r->integrator		= REB_INTEGRATOR_LEAPFROG;
	r->collision		= REB_COLLISION_TREE;
	r->boundary		= REB_BOUNDARY_PERIODIC;
	// Override default collision handling to account for border particles
	r->collision_resolve	 = collision_resolve_hardsphere_withborder;
	r->heartbeat		= heartbeat;
	reb_configure_box(r, 20., 1, 1, 4);
	
	r->nghostx = 1; r->nghosty = 1; r->nghostz = 0; 	
	
	double N_part 	= 0.00937*r->boxsize.x*r->boxsize.y*r->boxsize.z;

	// Add Border Particles
	double radius 		= 1;
	double mass		= 1;
	double border_spacing_x = r->boxsize.x/(floor(r->boxsize.x/radius/2.)-1.);
	double border_spacing_y = r->boxsize.y/(floor(r->boxsize.y/radius/2.)-1.);
	struct reb_particle pt = {0};
	pt.r 		= radius;
	pt.m 		= mass;
	pt.id		= 1;
	for(double x = -r->boxsize.x/2.; x<r->boxsize.x/2.-border_spacing_x/2.;x+=border_spacing_x){
		for(double y = -r->boxsize.y/2.; y<r->boxsize.y/2.-border_spacing_y/2.;y+=border_spacing_y){
			pt.x 		= x;
			pt.y 		= y;
			
			// Add particle to bottom
			pt.z 		= -r->boxsize.z/2.+radius;
			pt.vy 		= 1;
			reb_add(r, pt);

			// Add particle to top
			pt.z 		= r->boxsize.z/2.-radius;
			pt.vy 		= -1;
			reb_add(r, pt);
		}
	}

	N_border = r->N;
	
	// Add real particles
	while(r->N-N_border<N_part){
		struct reb_particle pt = {0};
		pt.x 		= reb_random_uniform(-r->boxsize.x/2.,r->boxsize.x/2.);
		pt.y 		= reb_random_uniform(-r->boxsize.y/2.,r->boxsize.y/2.);
		pt.z 		= 0.758*reb_random_uniform(-r->boxsize.z/2.,r->boxsize.z/2.);
		pt.vx 		= reb_random_normal(0.001);
		pt.vy 		= reb_random_normal(0.001);
		pt.vz 		= reb_random_normal(0.001);
		pt.r 		= radius;						// m
		pt.m 		= 1;
		pt.id		= 2;
		reb_add(r, pt);
	}

	reb_integrate(r, INFINITY);
}