Esempio n. 1
0
  // We create packets and directly fill each zBuffer tile. Note that we
  // really store t values
  void TaskRayTraceHiZ::run(size_t taskID)
  {
    const uint32 taskX = taskID % this->taskXNum;
    const uint32 taskY = taskID / this->taskXNum;
    const uint32 startX = taskX * this->width;
    const uint32 startY = taskY * this->height;
    const uint32 endX = startX + this->width;
    const uint32 endY = startY + this->height;
    uint32 tileY = startY / HiZ::Tile::height;

    for (uint32 y = startY; y < endY; y += RayPacket::height, ++tileY) {
      uint32 tileX = startX / HiZ::Tile::width;
      for (uint32 x = startX; x < endX; x += RayPacket::width, ++tileX) {
        RayPacket pckt;
        PacketHit hit;
        gen.generate(pckt, x, y);
        intersector->traverse(pckt, hit);
        ssef zmin(inf), zmax(neg_inf);
        const uint32 tileID = tileX + tileY * zBuffer->tileXNum;
        PF_ASSERT(tileID < zBuffer->tileNum);
        HiZ::Tile &tile = zBuffer->tiles[tileID];
        for (uint32 chunkID = 0; chunkID < HiZ::Tile::chunkNum; ++chunkID) {
          //const ssef t = hit.t[chunkID];
          const ssef t = hit.t[chunkID] *dot(sse3f(view.x,view.y,view.z), pckt.dir[chunkID]);
          tile.z[chunkID] = t;
          zmin = min(zmin, t);
          zmax = max(zmax, t);
        }
        tile.zmin = reduce_min(zmin)[0];
        tile.zmax = reduce_max(zmax)[0];
      }
    }
  }
  void GhostBlockBrickedVolume::createEquivalentISPC()
  {
    // Get the voxel type.
    voxelType = getParamString("voxelType", "unspecified");
    exitOnCondition(getVoxelType() == OSP_UNKNOWN,
                    "unrecognized voxel type (must be set before calling "
                    "ospSetRegion())");

    // Get the volume dimensions.
    this->dimensions = getParam3i("dimensions", vec3i(0));
    exitOnCondition(reduce_min(this->dimensions) <= 0,
                    "invalid volume dimensions (must be set before calling "
                    "ospSetRegion())");

    // Create an ISPC GhostBlockBrickedVolume object and assign type-specific
    // function pointers.
    ispcEquivalent = ispc::GBBV_createInstance(this,
                                         (int)getVoxelType(),
                                         (const ispc::vec3i &)this->dimensions);
  }
Esempio n. 3
0
  void BlockBrickedVolume::createEquivalentISPC() 
  {
    //! Get the voxel type.
    voxelType = getParamString("voxelType", "unspecified");  exitOnCondition(getVoxelType() == OSP_UNKNOWN, "unrecognized voxel type");

    //! Create an ISPC BlockBrickedVolume object and assign type-specific function pointers.
    ispcEquivalent = ispc::BlockBrickedVolume_createInstance((int) getVoxelType());

    //! Get the volume dimensions.
    volumeDimensions = getParam3i("dimensions", vec3i(0));  exitOnCondition(reduce_min(volumeDimensions) <= 0, "invalid volume dimensions");

    //! Get the transfer function.
    transferFunction = (TransferFunction *) getParamObject("transferFunction", NULL);  exitOnCondition(transferFunction == NULL, "no transfer function specified");

    //! Get the value range.
    //! Voxel range not used for now.
    // vec2f voxelRange = getParam2f("voxelRange", vec2f(0.0f));  exitOnCondition(voxelRange == vec2f(0.0f), "no voxel range specified");

    //! Get the gamma correction coefficient and exponent.
    vec2f gammaCorrection = getParam2f("gammaCorrection", vec2f(1.0f));

    //! Set the volume dimensions.
    ispc::BlockBrickedVolume_setVolumeDimensions(ispcEquivalent, (const ispc::vec3i &) volumeDimensions);

    //! Set the value range (must occur before setting the transfer function).
    //ispc::BlockBrickedVolume_setValueRange(ispcEquivalent, (const ispc::vec2f &) voxelRange);

    //! Set the transfer function.
    ispc::BlockBrickedVolume_setTransferFunction(ispcEquivalent, transferFunction->getEquivalentISPC());

    //! Set the recommended sampling rate for ray casting based renderers.
    ispc::BlockBrickedVolume_setSamplingRate(ispcEquivalent, getParam1f("samplingRate", 1.0f));

    //! Set the gamma correction coefficient and exponent.
    ispc::BlockBrickedVolume_setGammaCorrection(ispcEquivalent, (const ispc::vec2f &) gammaCorrection);

    //! Allocate memory for the voxel data in the ISPC object.
    ispc::BlockBrickedVolume_allocateMemory(ispcEquivalent);

  }
Esempio n. 4
0
  size_t BVH4MB::rotate(Base* nodeID, size_t depth)
  {
    /*! nothing to rotate if we reached a leaf node. */
    if (nodeID->isLeaf()) return 0;
    Node* parent = nodeID->node();

    /*! rotate all children first */
    ssei cdepth;
    for (size_t c=0; c<4; c++)
      cdepth[c] = (int)rotate(parent->child[c],depth+1);

    /* compute current area of all children */
    ssef sizeX = parent->upper_x-parent->lower_x;
    ssef sizeY = parent->upper_y-parent->lower_y;
    ssef sizeZ = parent->upper_z-parent->lower_z;
    ssef childArea = sizeX*(sizeY + sizeZ) + sizeY*sizeZ;

    /*! transpose node bounds */
    ssef plower0,plower1,plower2,plower3; transpose(parent->lower_x,parent->lower_y,parent->lower_z,ssef(zero),plower0,plower1,plower2,plower3);
    ssef pupper0,pupper1,pupper2,pupper3; transpose(parent->upper_x,parent->upper_y,parent->upper_z,ssef(zero),pupper0,pupper1,pupper2,pupper3);
    BBox<ssef> other0(plower0,pupper0), other1(plower1,pupper1), other2(plower2,pupper2), other3(plower3,pupper3);

    /*! Find best rotation. We pick a target child of a first child,
      and swap this with an other child. We perform the best such
      swap. */
    float bestCost = pos_inf;
    int bestChild = -1, bestTarget = -1, bestOther = -1;
    for (size_t c=0; c<4; c++)
    {
      /*! ignore leaf nodes as we cannot descent into */
      if (parent->child[c]->isLeaf()) continue;
      Node* child = parent->child[c]->node();

      /*! transpose child bounds */
      ssef clower0,clower1,clower2,clower3; transpose(child->lower_x,child->lower_y,child->lower_z,ssef(zero),clower0,clower1,clower2,clower3);
      ssef cupper0,cupper1,cupper2,cupper3; transpose(child->upper_x,child->upper_y,child->upper_z,ssef(zero),cupper0,cupper1,cupper2,cupper3);
      BBox<ssef> target0(clower0,cupper0), target1(clower1,cupper1), target2(clower2,cupper2), target3(clower3,cupper3);

      /*! put other0 at each target position */
      float cost00 = halfArea3f(merge(other0 ,target1,target2,target3));
      float cost01 = halfArea3f(merge(target0,other0 ,target2,target3));
      float cost02 = halfArea3f(merge(target0,target1,other0 ,target3));
      float cost03 = halfArea3f(merge(target0,target1,target2,other0 ));
      ssef cost0 = ssef(cost00,cost01,cost02,cost03);
      ssef min0 = vreduce_min(cost0);
      int pos0 = (int)__bsf(movemask(min0 == cost0));

      /*! put other1 at each target position */
      float cost10 = halfArea3f(merge(other1 ,target1,target2,target3));
      float cost11 = halfArea3f(merge(target0,other1 ,target2,target3));
      float cost12 = halfArea3f(merge(target0,target1,other1 ,target3));
      float cost13 = halfArea3f(merge(target0,target1,target2,other1 ));
      ssef cost1 = ssef(cost10,cost11,cost12,cost13);
      ssef min1 = vreduce_min(cost1);
      int pos1 = (int)__bsf(movemask(min1 == cost1));

      /*! put other2 at each target position */
      float cost20 = halfArea3f(merge(other2 ,target1,target2,target3));
      float cost21 = halfArea3f(merge(target0,other2 ,target2,target3));
      float cost22 = halfArea3f(merge(target0,target1,other2 ,target3));
      float cost23 = halfArea3f(merge(target0,target1,target2,other2 ));
      ssef cost2 = ssef(cost20,cost21,cost22,cost23);
      ssef min2 = vreduce_min(cost2);
      int pos2 = (int)__bsf(movemask(min2 == cost2));

      /*! put other3 at each target position */
      float cost30 = halfArea3f(merge(other3 ,target1,target2,target3));
      float cost31 = halfArea3f(merge(target0,other3 ,target2,target3));
      float cost32 = halfArea3f(merge(target0,target1,other3 ,target3));
      float cost33 = halfArea3f(merge(target0,target1,target2,other3 ));
      ssef cost3 = ssef(cost30,cost31,cost32,cost33);
      ssef min3 = vreduce_min(cost3);
      int pos3 = (int)__bsf(movemask(min3 == cost3));

      /*! find best other child */
      ssef otherCost = ssef(extract<0>(min0),extract<0>(min1),extract<0>(min2),extract<0>(min3));
      int pos[4] = { pos0,pos1,pos2,pos3 };
      sseb valid = ssei(int(depth+1))+cdepth <= ssei(maxDepth); // only select swaps that fulfill depth constraints
      if (none(valid)) continue;
      
      size_t n = select_min(valid,otherCost);
      float cost = otherCost[n]-childArea[c]; //< increasing the original child bound is bad, decreasing good

      /*! accept a swap when it reduces cost and is not swapping a node with itself */
      if (cost < bestCost && n != c) {
        bestCost = cost;
        bestChild = (int)c;
        bestOther = (int)n;
        bestTarget = pos[n];
      }
    }

    /*! if we did not find a swap that improves the SAH then do nothing */
    if (bestCost >= 0) return 1+reduce_max(cdepth);

    /*! perform the best found tree rotation */
    Node* child = parent->child[bestChild]->node();
    swap(parent,bestOther,child,bestTarget);
    parent->lower_x[bestChild] = reduce_min(child->lower_x);
    parent->lower_y[bestChild] = reduce_min(child->lower_y);
    parent->lower_z[bestChild] = reduce_min(child->lower_z);
    parent->upper_x[bestChild] = reduce_max(child->upper_x);
    parent->upper_y[bestChild] = reduce_max(child->upper_y);
    parent->upper_z[bestChild] = reduce_max(child->upper_z);
    parent->lower_dx[bestChild] = reduce_min(child->lower_dx);
    parent->lower_dy[bestChild] = reduce_min(child->lower_dy);
    parent->lower_dz[bestChild] = reduce_min(child->lower_dz);
    parent->upper_dx[bestChild] = reduce_max(child->upper_dx);
    parent->upper_dy[bestChild] = reduce_max(child->upper_dy);
    parent->upper_dz[bestChild] = reduce_max(child->upper_dz);

    /*! This returned depth is conservative as the child that was
     *  pulled up in the tree could have been on the critical path. */
    cdepth[bestOther]++; // bestOther was pushed down one level
    return 1+reduce_max(cdepth); 
  }