Esempio n. 1
0
static void
sparc32_extract_return_value (struct type *type, struct regcache *regcache,
			      void *valbuf)
{
  int len = TYPE_LENGTH (type);
  char buf[8];

  gdb_assert (!sparc_structure_or_union_p (type));
  gdb_assert (!(sparc_floating_p (type) && len == 16));

  if (sparc_floating_p (type))
    {
      /* Floating return values.  */
      regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
      memcpy (valbuf, buf, len);
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
      if (len > 4)
	{
	  regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
	  gdb_assert (len == 8);
	  memcpy (valbuf, buf, 8);
	}
      else
	{
	  /* Just stripping off any unused bytes should preserve the
	     signed-ness just fine.  */
	  memcpy (valbuf, buf + 4 - len, len);
	}
    }
}
Esempio n. 2
0
static LONGEST
i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* The content of a register.  */
  gdb_byte buf[4];
  /* The result.  */
  LONGEST ret;

  /* Getting the system call number from the register.
     When dealing with x86 architecture, this information
     is stored at %eax register.  */
  regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);

  ret = extract_signed_integer (buf, 4, byte_order);

  return ret;
}
Esempio n. 3
0
static LONGEST
aarch64_linux_get_syscall_number (struct gdbarch *gdbarch,
				  ptid_t ptid)
{
  struct regcache *regs = get_thread_regcache (ptid);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The content of register x8.  */
  gdb_byte buf[X_REGISTER_SIZE];
  /* The result.  */
  LONGEST ret;

  /* Getting the system call number from the register x8.  */
  regcache_cooked_read (regs, AARCH64_DWARF_X0 + 8, buf);

  ret = extract_signed_integer (buf, X_REGISTER_SIZE, byte_order);

  return ret;
}
static LONGEST
bfin_linux_get_syscall_number (struct gdbarch *gdbarch,
                               ptid_t ptid)
{
  struct regcache *regcache = get_thread_regcache (ptid);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* The content of a register.  */
  gdb_byte buf[4];
  /* The result.  */
  LONGEST ret;

  /* Getting the system call number from the register.
     When dealing with Blackfin architecture, this information
     is stored at %p0 register.  */
  regcache_cooked_read (regcache, BFIN_P0_REGNUM, buf);

  ret = extract_signed_integer (buf, 4, byte_order);

  return ret;
}
Esempio n. 5
0
static enum return_value_convention
rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
			     struct type *valtype, struct regcache *regcache,
			     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The calling convention this function implements assumes the
     processor has floating-point registers.  We shouldn't be using it
     on PowerPC variants that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* AltiVec extension: Functions that declare a vector data type as a
     return value place that return value in VR2.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
      && TYPE_LENGTH (valtype) == 16)
    {
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* If the called subprogram returns an aggregate, there exists an
     implicit first argument, whose value is the address of a caller-
     allocated buffer into which the callee is assumed to store its
     return value.  All explicit parameters are appropriately
     relabeled.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
      || TYPE_CODE (valtype) == TYPE_CODE_UNION
      || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
    return RETURN_VALUE_STRUCT_CONVENTION;

  /* Scalar floating-point values are returned in FPR1 for float or
     double, and in FPR1:FPR2 for quadword precision.  Fortran
     complex*8 and complex*16 are returned in FPR1:FPR2, and
     complex*32 is returned in FPR1:FPR4.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
      && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
    {
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      gdb_byte regval[8];

      /* FIXME: kettenis/2007-01-01: Add support for quadword
	 precision and complex.  */

      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, valtype);
	}
      if (writebuf)
	{
	  convert_typed_floating (writebuf, valtype, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
  }

  /* Values of the types int, long, short, pointer, and char (length
     is less than or equal to four bytes), as well as bit values of
     lengths less than or equal to 32 bits, must be returned right
     justified in GPR3 with signed values sign extended and unsigned
     values zero extended, as necessary.  */
  if (TYPE_LENGTH (valtype) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  ULONGEST regval;

	  /* For reading we don't have to worry about sign extension.  */
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
				  regval);
	}
      if (writebuf)
	{
	  /* For writing, use unpack_long since that should handle any
	     required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (valtype, writebuf));
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  /* Eight-byte non-floating-point scalar values must be returned in
     GPR3:GPR4.  */

  if (TYPE_LENGTH (valtype) == 8)
    {
      gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
      gdb_assert (tdep->wordsize == 4);

      if (readbuf)
	{
	  gdb_byte regval[8];

	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				regval + 4);
	  memcpy (readbuf, regval, 8);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }

  return RETURN_VALUE_STRUCT_CONVENTION;
}
Esempio n. 6
0
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
			  /* APPLE LOCAL gdb_byte */
			  struct regcache *regcache, gdb_byte *readbuf,
			  /* APPLE LOCAL gdb_byte */
			  const gdb_byte *writebuf, int broken_gcc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_assert (tdep->wordsize == 4);
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && ppc_floating_point_unit_p (gdbarch))
    {
      if (readbuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the required type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, type);
	}
      if (writebuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the register's "double" type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
	  convert_typed_floating (writebuf, type, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* APPLE LOCAL: gcc 3.3 had 8 byte long doubles, but gcc 4.0 uses 16 byte
     long doubles even for 32 bit ppc.  They are stored across f1 & f2. */
  /* Big floating point values get stored in adjacent floating
     point registers.  */
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && (TYPE_LENGTH (type) == 16 || TYPE_LENGTH (type) == 32))
    {
      if (writebuf || readbuf != NULL)
	{
	  int i;
	  for (i = 0; i < TYPE_LENGTH (type) / 8; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, FP0_REGNUM + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, FP0_REGNUM + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* END APPLE LOCAL */
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
    {
      if (readbuf)
	{
	  /* A long long, or a double stored in the 32 bit r3/r4.  */
	  ppc_copy_from_greg (regcache, tdep->ppc_gp0_regnum + 3, 
			      tdep->wordsize, 8, (bfd_byte *) readbuf);
	}
      if (writebuf)
	{
	  /* A long long, or a double stored in the 32 bit r3/r4.  */
	  ppc_copy_into_greg (regcache, tdep->ppc_gp0_regnum + 3, 
			      tdep->wordsize, 8, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_INT
      && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  /* Some sort of integer stored in r3.  Since TYPE isn't
	     bigger than the register, sign extension isn't a problem
	     - just do everything unsigned.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
	}
      if (writebuf)
	{
	  /* Some sort of integer stored in r3.  Use unpack_long since
	     that should handle any required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (type, writebuf));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
    {
      if (readbuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
	}
      if (writebuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 8
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
    {
      /* The e500 ABI places return values for the 64-bit DSP types
	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
	 corresponds to the entire r3 value for e500, whereas GDB's r3
	 only corresponds to the least significant 32-bits.  So place
	 the 64-bit DSP type's value in ev3.  */
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* GCC screwed up.  The last register isn't "left" aligned.
	     Need to extract the least significant part of each
	     register and then store that.  */
	  /* Transfer any full words.  */
	  int word = 0;
	  while (1)
	    {
	      ULONGEST reg;
	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
	      if (len <= 0)
		break;
	      if (len > tdep->wordsize)
		len = tdep->wordsize;
	      regcache_cooked_read_unsigned (regcache,
					     tdep->ppc_gp0_regnum + 3 + word,
					     &reg);
	      store_unsigned_integer (((bfd_byte *) readbuf
				       + word * tdep->wordsize), len, reg);
	      word++;
	    }
	}
      if (writebuf)
	{
	  /* GCC screwed up.  The last register isn't "left" aligned.
	     Need to extract the least significant part of each
	     register and then store that.  */
	  /* Transfer any full words.  */
	  int word = 0;
	  while (1)
	    {
	      ULONGEST reg;
	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
	      if (len <= 0)
		break;
	      if (len > tdep->wordsize)
		len = tdep->wordsize;
	      reg = extract_unsigned_integer (((const bfd_byte *) writebuf
					       + word * tdep->wordsize), len);
	      regcache_cooked_write_unsigned (regcache,
					      tdep->ppc_gp0_regnum + 3 + word,
					      reg);
	      word++;
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is right-padded to 8 bytes and then loaded, as
	     two "words", into r3/r4.  */
	  ppc_copy_from_greg (regcache, tdep->ppc_gp0_regnum + 3,
                              tdep->wordsize, TYPE_LENGTH (type), readbuf);
	}
      if (writebuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is padded out to 8 bytes and then loaded, as
	     two "words" into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
Esempio n. 7
0
/* The 64 bit ABI retun value convention.

   Return non-zero if the return-value is stored in a register, return
   0 if the return-value is instead stored on the stack (a.k.a.,
   struct return convention).

   For a return-value stored in a register: when WRITEBUF is non-NULL,
   copy the buffer to the corresponding register return-value location
   location; when READBUF is non-NULL, fill the buffer from the
   corresponding register return-value location.  */
enum return_value_convention
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
			     struct regcache *regcache, gdb_byte *readbuf,
			     const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This function exists to support a calling convention that
     requires floating-point registers.  It shouldn't be used on
     processors that lack them.  */
  gdb_assert (ppc_floating_point_unit_p (gdbarch));

  /* Floats and doubles in F1.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
    {
      gdb_byte regval[MAX_REGISTER_SIZE];
      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
      if (writebuf != NULL)
	{
	  convert_typed_floating (writebuf, valtype, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      if (readbuf != NULL)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, valtype);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (valtype) == TYPE_CODE_INT
       || TYPE_CODE (valtype) == TYPE_CODE_ENUM)
      && TYPE_LENGTH (valtype) <= 8)
    {
      /* Integers in r3.  */
      if (writebuf != NULL)
	{
	  /* Be careful to sign extend the value.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (valtype, writebuf));
	}
      if (readbuf != NULL)
	{
	  /* Extract the integer from r3.  Since this is truncating the
	     value, there isn't a sign extension problem.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* All pointers live in r3.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
    {
      /* All pointers live in r3.  */
      if (writebuf != NULL)
	regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
      if (readbuf != NULL)
	regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
      && TYPE_LENGTH (valtype) <= 8
      && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
      && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
    {
      /* Small character arrays are returned, right justified, in r3.  */
      int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
		    - TYPE_LENGTH (valtype));
      if (writebuf != NULL)
	regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
				    offset, TYPE_LENGTH (valtype), writebuf);
      if (readbuf != NULL)
	regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
				   offset, TYPE_LENGTH (valtype), readbuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Big floating point values get stored in adjacent floating
     point registers.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
      && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
    {
      if (writebuf || readbuf != NULL)
	{
	  int i;
	  for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Complex values get returned in f1:f2, need to convert.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
      && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
    {
      if (regcache != NULL)
	{
	  int i;
	  for (i = 0; i < 2; i++)
	    {
	      gdb_byte regval[MAX_REGISTER_SIZE];
	      struct type *regtype =
		register_type (current_gdbarch, tdep->ppc_fp0_regnum);
	      if (writebuf != NULL)
		{
		  convert_typed_floating ((const bfd_byte *) writebuf +
					  i * (TYPE_LENGTH (valtype) / 2),
					  valtype, regval, regtype);
		  regcache_cooked_write (regcache,
                                         tdep->ppc_fp0_regnum + 1 + i,
					 regval);
		}
	      if (readbuf != NULL)
		{
		  regcache_cooked_read (regcache,
                                        tdep->ppc_fp0_regnum + 1 + i,
                                        regval);
		  convert_typed_floating (regval, regtype,
					  (bfd_byte *) readbuf +
					  i * (TYPE_LENGTH (valtype) / 2),
					  valtype);
		}
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  /* Big complex values get stored in f1:f4.  */
  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
    {
      if (regcache != NULL)
	{
	  int i;
	  for (i = 0; i < 4; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
				       (const bfd_byte *) writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
				      (bfd_byte *) readbuf + i * 8);
	    }
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
Esempio n. 8
0
static enum return_value_convention
d10v_return_value (struct gdbarch *gdbarch, struct type *valtype,
		   struct regcache *regcache, void *readbuf,
		   const void *writebuf)
{
  if (TYPE_LENGTH (valtype) > 8)
    /* Anything larger than 8 bytes (4 registers) goes on the stack.  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (TYPE_LENGTH (valtype) == 5
      || TYPE_LENGTH (valtype) == 6)
    /* Anything 5 or 6 bytes in size goes in memory.  Contents don't
       appear to matter.  Note that 7 and 8 byte objects do end up in
       registers!  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (TYPE_LENGTH (valtype) == 1)
    {
      /* All single byte values go in a register stored right-aligned.
         Note: 2 byte integer values are handled further down.  */
      if (readbuf)
	{
	  /* Since TYPE is smaller than the register, there isn't a
             sign extension problem.  Let the extraction truncate the
             register value.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, R0_REGNUM,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);

	}
      if (writebuf)
	{
	  ULONGEST regval;
	  if (TYPE_CODE (valtype) == TYPE_CODE_INT)
	    /* Some sort of integer value stored in R0.  Use
	       unpack_long since that should handle any required sign
	       extension.  */
	    regval = unpack_long (valtype, writebuf);
	  else
	    /* Some other type.  Don't sign-extend the value when
               storing it in the register.  */
	    regval = extract_unsigned_integer (writebuf, 1);
	  regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
      && TYPE_NFIELDS (valtype) > 1
      && TYPE_FIELD_BITPOS (valtype, 1) == 8)
    /* If a composite is 8 bit aligned (determined by looking at the
       start address of the second field), put it in memory.  */
    return RETURN_VALUE_STRUCT_CONVENTION;
  /* Assume it is in registers.  */
  if (writebuf || readbuf)
    {
      int reg;
      /* Per above, the value is never more than 8 bytes long.  */
      gdb_assert (TYPE_LENGTH (valtype) <= 8);
      /* Xfer 2 bytes at a time.  */
      for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++)
	{
	  if (readbuf)
	    regcache_cooked_read (regcache, R0_REGNUM + reg,
				  (bfd_byte *) readbuf + reg * 2);
	  if (writebuf)
	    regcache_cooked_write (regcache, R0_REGNUM + reg,
				   (bfd_byte *) writebuf + reg * 2);
	}
      /* Any trailing byte ends up _left_ aligned.  */
      if ((reg * 2) < TYPE_LENGTH (valtype))
	{
	  if (readbuf)
	    regcache_cooked_read_part (regcache, R0_REGNUM + reg,
				       0, 1, (bfd_byte *) readbuf + reg * 2);
	  if (writebuf)
	    regcache_cooked_write_part (regcache, R0_REGNUM + reg,
					0, 1, (bfd_byte *) writebuf + reg * 2);
	}
    }
  return RETURN_VALUE_REGISTER_CONVENTION;
}
static enum return_value_convention
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
			  struct regcache *regcache, gdb_byte *readbuf,
			  const gdb_byte *writebuf, int broken_gcc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_assert (tdep->wordsize == 4);
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) <= 8
      && !tdep->soft_float)
    {
      if (readbuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the required type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch,
                                                tdep->ppc_fp0_regnum + 1);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
	  convert_typed_floating (regval, regtype, readbuf, type);
	}
      if (writebuf)
	{
	  /* Floats and doubles stored in "f1".  Convert the value to
	     the register's "double" type.  */
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
	  convert_typed_floating (writebuf, type, regval, regtype);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_FLT
      && TYPE_LENGTH (type) == 16
      && !tdep->soft_float
      && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
    {
      /* IBM long double stored in f1 and f2.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
				readbuf + 8);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
				 writebuf + 8);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && ((TYPE_CODE (type) == TYPE_CODE_FLT
	   && (gdbarch_long_double_format (gdbarch) == floatformats_ibm_long_double))
	  || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
    {
      /* Soft-float IBM long double or _Decimal128 stored in r3, r4,
	 r5, r6.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
				readbuf + 8);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
				readbuf + 12);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
				 writebuf + 8);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
				 writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
      || (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
	  && tdep->soft_float))
    {
      if (readbuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				readbuf + 0);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	}
      if (writebuf)
	{
	  /* A long long, double or _Decimal64 stored in the 32 bit
	     r3/r4.  */
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 writebuf + 0);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
    return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
					   writebuf);
  else if ((TYPE_CODE (type) == TYPE_CODE_INT
	    || TYPE_CODE (type) == TYPE_CODE_CHAR
	    || TYPE_CODE (type) == TYPE_CODE_BOOL
	    || TYPE_CODE (type) == TYPE_CODE_PTR
	    || TYPE_CODE (type) == TYPE_CODE_REF
	    || TYPE_CODE (type) == TYPE_CODE_ENUM)
	   && TYPE_LENGTH (type) <= tdep->wordsize)
    {
      if (readbuf)
	{
	  /* Some sort of integer stored in r3.  Since TYPE isn't
	     bigger than the register, sign extension isn't a problem
	     - just do everything unsigned.  */
	  ULONGEST regval;
	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					 &regval);
	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
				  regval);
	}
      if (writebuf)
	{
	  /* Some sort of integer stored in r3.  Use unpack_long since
	     that should handle any required sign extension.  */
	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
					  unpack_long (type, writebuf));
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_ALTIVEC)
    {
      if (readbuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
	}
      if (writebuf)
	{
	  /* Altivec places the return value in "v2".  */
	  regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 16
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_GENERIC)
    {
      /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
	 GCC without AltiVec returns them in memory, but it warns about
	 ABI risks in that case; we don't try to support it.  */
      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				readbuf + 0);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				readbuf + 4);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
				readbuf + 8);
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
				readbuf + 12);
	}
      if (writebuf)
	{
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 writebuf + 0);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				 writebuf + 4);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
				 writebuf + 8);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
				 writebuf + 12);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) == 8
      && TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_VECTOR (type)
      && tdep->vector_abi == POWERPC_VEC_SPE)
    {
      /* The e500 ABI places return values for the 64-bit DSP types
	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
	 corresponds to the entire r3 value for e500, whereas GDB's r3
	 only corresponds to the least significant 32-bits.  So place
	 the 64-bit DSP type's value in ev3.  */
      if (readbuf)
	regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
      if (writebuf)
	regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (broken_gcc && TYPE_LENGTH (type) <= 8)
    {
      /* GCC screwed up for structures or unions whose size is less
	 than or equal to 8 bytes..  Instead of left-aligning, it
	 right-aligns the data into the buffer formed by r3, r4.  */
      gdb_byte regvals[MAX_REGISTER_SIZE * 2];
      int len = TYPE_LENGTH (type);
      int offset = (2 * tdep->wordsize - len) % tdep->wordsize;

      if (readbuf)
	{
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				  regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals + offset, len);
	}
      if (writebuf)
	{
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals + offset, writebuf, len);
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (len > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}

      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  if (TYPE_LENGTH (type) <= 8)
    {
      if (readbuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is right-padded to 8 bytes and then loaded, as
	     two "words", into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
				regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
				  regvals + 1 * tdep->wordsize);
	  memcpy (readbuf, regvals, TYPE_LENGTH (type));
	}
      if (writebuf)
	{
	  /* This matches SVr4 PPC, it does not match GCC.  */
	  /* The value is padded out to 8 bytes and then loaded, as
	     two "words" into r3/r4.  */
	  gdb_byte regvals[MAX_REGISTER_SIZE * 2];
	  memset (regvals, 0, sizeof regvals);
	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
				 regvals + 0 * tdep->wordsize);
	  if (TYPE_LENGTH (type) > tdep->wordsize)
	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
				   regvals + 1 * tdep->wordsize);
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  return RETURN_VALUE_STRUCT_CONVENTION;
}
/* Handle the return-value conventions for Decimal Floating Point values
   in both ppc32 and ppc64, which are the same.  */
static int
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
				struct regcache *regcache, gdb_byte *readbuf,
				const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);

  /* 32-bit and 64-bit decimal floats in f1.  */
  if (TYPE_LENGTH (valtype) <= 8)
    {
      if (writebuf != NULL)
	{
	  gdb_byte regval[MAX_REGISTER_SIZE];
	  const gdb_byte *p;

	  /* 32-bit decimal float is right aligned in the doubleword.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    {
	      memcpy (regval + 4, writebuf, 4);
	      p = regval;
	    }
	  else
	    p = writebuf;

	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
	}
      if (readbuf != NULL)
	{
	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);

	  /* Left align 32-bit decimal float.  */
	  if (TYPE_LENGTH (valtype) == 4)
	    memcpy (readbuf, readbuf + 4, 4);
	}
    }
  /* 128-bit decimal floats in f2,f3.  */
  else if (TYPE_LENGTH (valtype) == 16)
    {
      if (writebuf != NULL || readbuf != NULL)
	{
	  int i;

	  for (i = 0; i < 2; i++)
	    {
	      if (writebuf != NULL)
		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
				       writebuf + i * 8);
	      if (readbuf != NULL)
		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
				      readbuf + i * 8);
	    }
	}
    }
  else
    /* Can't happen.  */
    internal_error (__FILE__, __LINE__, "Unknown decimal float size.");

  return RETURN_VALUE_REGISTER_CONVENTION;
}