Storage::ReturnCode Storage::Run(int max_wait) { BOOST_ASSERT_MSG(config.IsValid(), "Invalid storage config"); util::LogPolicy::GetInstance().Unmute(); SharedBarriers barriers; boost::interprocess::upgradable_lock<boost::interprocess::named_upgradable_mutex> current_regions_lock(barriers.current_regions_mutex, boost::interprocess::defer_lock); try { if (!current_regions_lock.try_lock()) { util::SimpleLogger().Write(logWARNING) << "A data update is in progress"; return ReturnCode::Error; } } // hard unlock in case of any exception. catch (boost::interprocess::lock_exception &ex) { barriers.current_regions_mutex.unlock_upgradable(); // make sure we exit here because this is bad throw; } #ifdef __linux__ // try to disable swapping on Linux const bool lock_flags = MCL_CURRENT | MCL_FUTURE; if (-1 == mlockall(lock_flags)) { util::SimpleLogger().Write(logWARNING) << "Could not request RAM lock"; } #endif auto regions_layout = getRegionsLayout(barriers); const SharedDataType layout_region = regions_layout.old_layout_region; const SharedDataType data_region = regions_layout.old_data_region; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " second for all queries on the old dataset to finish:"; } else { util::SimpleLogger().Write() << "Waiting for all queries on the old dataset to finish:"; } boost::interprocess::scoped_lock<boost::interprocess::named_sharable_mutex> regions_lock( regions_layout.old_regions_mutex, boost::interprocess::defer_lock); if (max_wait > 0) { if (!regions_lock.timed_lock(boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait))) { util::SimpleLogger().Write(logWARNING) << "Queries did not finish in " << max_wait << " seconds. Claiming the lock by force."; // WARNING: if queries are still using the old dataset they might crash if (regions_layout.old_layout_region == LAYOUT_1) { BOOST_ASSERT(regions_layout.old_data_region == DATA_1); barriers.resetRegions1(); } else { BOOST_ASSERT(regions_layout.old_layout_region == LAYOUT_2); BOOST_ASSERT(regions_layout.old_data_region == DATA_2); barriers.resetRegions2(); } return ReturnCode::Retry; } } else { regions_lock.lock(); } util::SimpleLogger().Write() << "Ok."; // since we can't change the size of a shared memory regions we delete and reallocate if (SharedMemory::RegionExists(layout_region) && !SharedMemory::Remove(layout_region)) { throw util::exception("Could not remove " + regionToString(layout_region)); } if (SharedMemory::RegionExists(data_region) && !SharedMemory::Remove(data_region)) { throw util::exception("Could not remove " + regionToString(data_region)); } // Allocate a memory layout in shared memory auto layout_memory = makeSharedMemory(layout_region, sizeof(SharedDataLayout), true); auto shared_layout_ptr = new (layout_memory->Ptr()) SharedDataLayout(); auto absolute_file_index_path = boost::filesystem::absolute(config.file_index_path); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::FILE_INDEX_PATH, absolute_file_index_path.string().length() + 1); // collect number of elements to store in shared memory object util::SimpleLogger().Write() << "load names from: " << config.names_data_path; // number of entries in name index boost::filesystem::ifstream name_stream(config.names_data_path, std::ios::binary); if (!name_stream) { throw util::exception("Could not open " + config.names_data_path.string() + " for reading."); } unsigned name_blocks = 0; name_stream.read((char *)&name_blocks, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::NAME_OFFSETS, name_blocks); shared_layout_ptr->SetBlockSize<typename util::RangeTable<16, true>::BlockT>( SharedDataLayout::NAME_BLOCKS, name_blocks); BOOST_ASSERT_MSG(0 != name_blocks, "name file broken"); unsigned number_of_chars = 0; name_stream.read((char *)&number_of_chars, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::NAME_CHAR_LIST, number_of_chars); std::vector<std::uint32_t> lane_description_offsets; std::vector<extractor::guidance::TurnLaneType::Mask> lane_description_masks; if (!util::deserializeAdjacencyArray(config.turn_lane_description_path.string(), lane_description_offsets, lane_description_masks)) throw util::exception("Failed to read lane descriptions from: " + config.turn_lane_description_path.string()); shared_layout_ptr->SetBlockSize<std::uint32_t>(SharedDataLayout::LANE_DESCRIPTION_OFFSETS, lane_description_offsets.size()); shared_layout_ptr->SetBlockSize<extractor::guidance::TurnLaneType::Mask>( SharedDataLayout::LANE_DESCRIPTION_MASKS, lane_description_masks.size()); // Loading information for original edges boost::filesystem::ifstream edges_input_stream(config.edges_data_path, std::ios::binary); if (!edges_input_stream) { throw util::exception("Could not open " + config.edges_data_path.string() + " for reading."); } unsigned number_of_original_edges = 0; edges_input_stream.read((char *)&number_of_original_edges, sizeof(unsigned)); // note: settings this all to the same size is correct, we extract them from the same struct shared_layout_ptr->SetBlockSize<NodeID>(SharedDataLayout::VIA_NODE_LIST, number_of_original_edges); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::NAME_ID_LIST, number_of_original_edges); shared_layout_ptr->SetBlockSize<extractor::TravelMode>(SharedDataLayout::TRAVEL_MODE, number_of_original_edges); shared_layout_ptr->SetBlockSize<util::guidance::TurnBearing>(SharedDataLayout::PRE_TURN_BEARING, number_of_original_edges); shared_layout_ptr->SetBlockSize<util::guidance::TurnBearing>( SharedDataLayout::POST_TURN_BEARING, number_of_original_edges); shared_layout_ptr->SetBlockSize<extractor::guidance::TurnInstruction>( SharedDataLayout::TURN_INSTRUCTION, number_of_original_edges); shared_layout_ptr->SetBlockSize<LaneDataID>(SharedDataLayout::LANE_DATA_ID, number_of_original_edges); shared_layout_ptr->SetBlockSize<EntryClassID>(SharedDataLayout::ENTRY_CLASSID, number_of_original_edges); boost::filesystem::ifstream hsgr_input_stream(config.hsgr_data_path, std::ios::binary); if (!hsgr_input_stream) { throw util::exception("Could not open " + config.hsgr_data_path.string() + " for reading."); } auto hsgr_header = io::readHSGRHeader(hsgr_input_stream); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::HSGR_CHECKSUM, 1); shared_layout_ptr->SetBlockSize<QueryGraph::NodeArrayEntry>(SharedDataLayout::GRAPH_NODE_LIST, hsgr_header.number_of_nodes); shared_layout_ptr->SetBlockSize<QueryGraph::EdgeArrayEntry>(SharedDataLayout::GRAPH_EDGE_LIST, hsgr_header.number_of_edges); // load rsearch tree size boost::filesystem::ifstream tree_node_file(config.ram_index_path, std::ios::binary); uint32_t tree_size = 0; tree_node_file.read((char *)&tree_size, sizeof(uint32_t)); shared_layout_ptr->SetBlockSize<RTreeNode>(SharedDataLayout::R_SEARCH_TREE, tree_size); // load profile properties shared_layout_ptr->SetBlockSize<extractor::ProfileProperties>(SharedDataLayout::PROPERTIES, 1); // read timestampsize boost::filesystem::ifstream timestamp_stream(config.timestamp_path); if (!timestamp_stream) { throw util::exception("Could not open " + config.timestamp_path.string() + " for reading."); } std::size_t timestamp_size = io::readTimestampSize(timestamp_stream); shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::TIMESTAMP, timestamp_size); // load core marker size boost::filesystem::ifstream core_marker_file(config.core_data_path, std::ios::binary); if (!core_marker_file) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } uint32_t number_of_core_markers = 0; core_marker_file.read((char *)&number_of_core_markers, sizeof(uint32_t)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::CORE_MARKER, number_of_core_markers); // load coordinate size boost::filesystem::ifstream nodes_input_stream(config.nodes_data_path, std::ios::binary); if (!nodes_input_stream) { throw util::exception("Could not open " + config.core_data_path.string() + " for reading."); } unsigned coordinate_list_size = 0; nodes_input_stream.read((char *)&coordinate_list_size, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<util::Coordinate>(SharedDataLayout::COORDINATE_LIST, coordinate_list_size); // we'll read a list of OSM node IDs from the same data, so set the block size for the same // number of items: shared_layout_ptr->SetBlockSize<std::uint64_t>( SharedDataLayout::OSM_NODE_ID_LIST, util::PackedVector<OSMNodeID>::elements_to_blocks(coordinate_list_size)); // load geometries sizes boost::filesystem::ifstream geometry_input_stream(config.geometries_path, std::ios::binary); if (!geometry_input_stream) { throw util::exception("Could not open " + config.geometries_path.string() + " for reading."); } unsigned number_of_geometries_indices = 0; unsigned number_of_compressed_geometries = 0; geometry_input_stream.read((char *)&number_of_geometries_indices, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::GEOMETRIES_INDEX, number_of_geometries_indices); boost::iostreams::seek( geometry_input_stream, number_of_geometries_indices * sizeof(unsigned), BOOST_IOS::cur); geometry_input_stream.read((char *)&number_of_compressed_geometries, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<extractor::CompressedEdgeContainer::CompressedEdge>( SharedDataLayout::GEOMETRIES_LIST, number_of_compressed_geometries); // load datasource sizes. This file is optional, and it's non-fatal if it doesn't // exist. boost::filesystem::ifstream geometry_datasource_input_stream(config.datasource_indexes_path, std::ios::binary); if (!geometry_datasource_input_stream) { throw util::exception("Could not open " + config.datasource_indexes_path.string() + " for reading."); } std::uint64_t number_of_compressed_datasources = 0; if (geometry_datasource_input_stream) { geometry_datasource_input_stream.read( reinterpret_cast<char *>(&number_of_compressed_datasources), sizeof(number_of_compressed_datasources)); } shared_layout_ptr->SetBlockSize<uint8_t>(SharedDataLayout::DATASOURCES_LIST, number_of_compressed_datasources); // Load datasource name sizes. This file is optional, and it's non-fatal if it doesn't // exist boost::filesystem::ifstream datasource_names_input_stream(config.datasource_names_path, std::ios::binary); if (!datasource_names_input_stream) { throw util::exception("Could not open " + config.datasource_names_path.string() + " for reading."); } std::vector<char> m_datasource_name_data; std::vector<std::size_t> m_datasource_name_offsets; std::vector<std::size_t> m_datasource_name_lengths; if (datasource_names_input_stream) { std::string name; while (std::getline(datasource_names_input_stream, name)) { m_datasource_name_offsets.push_back(m_datasource_name_data.size()); std::copy(name.c_str(), name.c_str() + name.size(), std::back_inserter(m_datasource_name_data)); m_datasource_name_lengths.push_back(name.size()); } } shared_layout_ptr->SetBlockSize<char>(SharedDataLayout::DATASOURCE_NAME_DATA, m_datasource_name_data.size()); shared_layout_ptr->SetBlockSize<std::size_t>(SharedDataLayout::DATASOURCE_NAME_OFFSETS, m_datasource_name_offsets.size()); shared_layout_ptr->SetBlockSize<std::size_t>(SharedDataLayout::DATASOURCE_NAME_LENGTHS, m_datasource_name_lengths.size()); boost::filesystem::ifstream intersection_stream(config.intersection_class_path, std::ios::binary); if (!static_cast<bool>(intersection_stream)) throw util::exception("Could not open " + config.intersection_class_path.string() + " for reading."); if (!util::readAndCheckFingerprint(intersection_stream)) throw util::exception("Fingerprint of " + config.intersection_class_path.string() + " does not match or could not read from file"); std::vector<BearingClassID> bearing_class_id_table; if (!util::deserializeVector(intersection_stream, bearing_class_id_table)) throw util::exception("Failed to bearing class ids read from " + config.names_data_path.string()); shared_layout_ptr->SetBlockSize<BearingClassID>(SharedDataLayout::BEARING_CLASSID, bearing_class_id_table.size()); unsigned bearing_blocks = 0; intersection_stream.read((char *)&bearing_blocks, sizeof(unsigned)); unsigned sum_lengths = 0; intersection_stream.read((char *)&sum_lengths, sizeof(unsigned)); shared_layout_ptr->SetBlockSize<unsigned>(SharedDataLayout::BEARING_OFFSETS, bearing_blocks); shared_layout_ptr->SetBlockSize<typename util::RangeTable<16, true>::BlockT>( SharedDataLayout::BEARING_BLOCKS, bearing_blocks); std::vector<unsigned> bearing_offsets_data(bearing_blocks); std::vector<typename util::RangeTable<16, true>::BlockT> bearing_blocks_data(bearing_blocks); if (bearing_blocks) { intersection_stream.read(reinterpret_cast<char *>(&bearing_offsets_data[0]), bearing_blocks * sizeof(bearing_offsets_data[0])); } if (bearing_blocks) { intersection_stream.read(reinterpret_cast<char *>(&bearing_blocks_data[0]), bearing_blocks * sizeof(bearing_blocks_data[0])); } std::uint64_t num_bearings; intersection_stream.read(reinterpret_cast<char *>(&num_bearings), sizeof(num_bearings)); std::vector<DiscreteBearing> bearing_class_table(num_bearings); intersection_stream.read(reinterpret_cast<char *>(&bearing_class_table[0]), sizeof(bearing_class_table[0]) * num_bearings); shared_layout_ptr->SetBlockSize<DiscreteBearing>(SharedDataLayout::BEARING_VALUES, num_bearings); // Loading turn lane data boost::filesystem::ifstream lane_data_stream(config.turn_lane_data_path, std::ios::binary); std::uint64_t lane_tupel_count = 0; lane_data_stream.read(reinterpret_cast<char *>(&lane_tupel_count), sizeof(lane_tupel_count)); shared_layout_ptr->SetBlockSize<util::guidance::LaneTupleIdPair>( SharedDataLayout::TURN_LANE_DATA, lane_tupel_count); if (!static_cast<bool>(intersection_stream)) throw util::exception("Failed to read bearing values from " + config.intersection_class_path.string()); std::vector<util::guidance::EntryClass> entry_class_table; if (!util::deserializeVector(intersection_stream, entry_class_table)) throw util::exception("Failed to read entry classes from " + config.intersection_class_path.string()); shared_layout_ptr->SetBlockSize<util::guidance::EntryClass>(SharedDataLayout::ENTRY_CLASS, entry_class_table.size()); // allocate shared memory block util::SimpleLogger().Write() << "allocating shared memory of " << shared_layout_ptr->GetSizeOfLayout() << " bytes"; auto shared_memory = makeSharedMemory(data_region, shared_layout_ptr->GetSizeOfLayout(), true); char *shared_memory_ptr = static_cast<char *>(shared_memory->Ptr()); // read actual data into shared memory object // // hsgr checksum unsigned *checksum_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::HSGR_CHECKSUM); *checksum_ptr = hsgr_header.checksum; // ram index file name char *file_index_path_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::FILE_INDEX_PATH); // make sure we have 0 ending std::fill(file_index_path_ptr, file_index_path_ptr + shared_layout_ptr->GetBlockSize(SharedDataLayout::FILE_INDEX_PATH), 0); std::copy(absolute_file_index_path.string().begin(), absolute_file_index_path.string().end(), file_index_path_ptr); // Loading street names unsigned *name_offsets_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_OFFSETS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_OFFSETS) > 0) { name_stream.read((char *)name_offsets_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_OFFSETS)); } unsigned *name_blocks_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_BLOCKS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_BLOCKS) > 0) { name_stream.read((char *)name_blocks_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_BLOCKS)); } char *name_char_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::NAME_CHAR_LIST); unsigned temp_length = 0; name_stream.read((char *)&temp_length, sizeof(unsigned)); BOOST_ASSERT_MSG(shared_layout_ptr->AlignBlockSize(temp_length) == shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST), "Name file corrupted!"); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST) > 0) { name_stream.read(name_char_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::NAME_CHAR_LIST)); } name_stream.close(); // make sure do write canary... auto *turn_lane_data_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::LaneTupleIdPair, true>( shared_memory_ptr, SharedDataLayout::TURN_LANE_DATA); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::TURN_LANE_DATA) > 0) { lane_data_stream.read(reinterpret_cast<char *>(turn_lane_data_ptr), shared_layout_ptr->GetBlockSize(SharedDataLayout::TURN_LANE_DATA)); } lane_data_stream.close(); auto *turn_lane_offset_ptr = shared_layout_ptr->GetBlockPtr<std::uint32_t, true>( shared_memory_ptr, SharedDataLayout::LANE_DESCRIPTION_OFFSETS); if (!lane_description_offsets.empty()) { BOOST_ASSERT(shared_layout_ptr->GetBlockSize(SharedDataLayout::LANE_DESCRIPTION_OFFSETS) >= sizeof(lane_description_offsets[0]) * lane_description_offsets.size()); std::copy( lane_description_offsets.begin(), lane_description_offsets.end(), turn_lane_offset_ptr); std::vector<std::uint32_t> tmp; lane_description_offsets.swap(tmp); } auto *turn_lane_mask_ptr = shared_layout_ptr->GetBlockPtr<extractor::guidance::TurnLaneType::Mask, true>( shared_memory_ptr, SharedDataLayout::LANE_DESCRIPTION_MASKS); if (!lane_description_masks.empty()) { BOOST_ASSERT(shared_layout_ptr->GetBlockSize(SharedDataLayout::LANE_DESCRIPTION_MASKS) >= sizeof(lane_description_masks[0]) * lane_description_masks.size()); std::copy(lane_description_masks.begin(), lane_description_masks.end(), turn_lane_mask_ptr); std::vector<extractor::guidance::TurnLaneType::Mask> tmp; lane_description_masks.swap(tmp); } // load original edge information GeometryID *via_geometry_ptr = shared_layout_ptr->GetBlockPtr<GeometryID, true>( shared_memory_ptr, SharedDataLayout::VIA_NODE_LIST); unsigned *name_id_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::NAME_ID_LIST); extractor::TravelMode *travel_mode_ptr = shared_layout_ptr->GetBlockPtr<extractor::TravelMode, true>(shared_memory_ptr, SharedDataLayout::TRAVEL_MODE); util::guidance::TurnBearing *pre_turn_bearing_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::TurnBearing, true>( shared_memory_ptr, SharedDataLayout::PRE_TURN_BEARING); util::guidance::TurnBearing *post_turn_bearing_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::TurnBearing, true>( shared_memory_ptr, SharedDataLayout::POST_TURN_BEARING); LaneDataID *lane_data_id_ptr = shared_layout_ptr->GetBlockPtr<LaneDataID, true>( shared_memory_ptr, SharedDataLayout::LANE_DATA_ID); extractor::guidance::TurnInstruction *turn_instructions_ptr = shared_layout_ptr->GetBlockPtr<extractor::guidance::TurnInstruction, true>( shared_memory_ptr, SharedDataLayout::TURN_INSTRUCTION); EntryClassID *entry_class_id_ptr = shared_layout_ptr->GetBlockPtr<EntryClassID, true>( shared_memory_ptr, SharedDataLayout::ENTRY_CLASSID); extractor::OriginalEdgeData current_edge_data; for (unsigned i = 0; i < number_of_original_edges; ++i) { edges_input_stream.read((char *)&(current_edge_data), sizeof(extractor::OriginalEdgeData)); via_geometry_ptr[i] = current_edge_data.via_geometry; name_id_ptr[i] = current_edge_data.name_id; travel_mode_ptr[i] = current_edge_data.travel_mode; lane_data_id_ptr[i] = current_edge_data.lane_data_id; turn_instructions_ptr[i] = current_edge_data.turn_instruction; entry_class_id_ptr[i] = current_edge_data.entry_classid; pre_turn_bearing_ptr[i] = current_edge_data.pre_turn_bearing; post_turn_bearing_ptr[i] = current_edge_data.post_turn_bearing; } edges_input_stream.close(); // load compressed geometry unsigned temporary_value; unsigned *geometries_index_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::GEOMETRIES_INDEX); geometry_input_stream.seekg(0, geometry_input_stream.beg); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == shared_layout_ptr->num_entries[SharedDataLayout::GEOMETRIES_INDEX]); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_INDEX) > 0) { geometry_input_stream.read( (char *)geometries_index_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_INDEX)); } extractor::CompressedEdgeContainer::CompressedEdge *geometries_list_ptr = shared_layout_ptr->GetBlockPtr<extractor::CompressedEdgeContainer::CompressedEdge, true>( shared_memory_ptr, SharedDataLayout::GEOMETRIES_LIST); geometry_input_stream.read((char *)&temporary_value, sizeof(unsigned)); BOOST_ASSERT(temporary_value == shared_layout_ptr->num_entries[SharedDataLayout::GEOMETRIES_LIST]); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_LIST) > 0) { geometry_input_stream.read( (char *)geometries_list_ptr, shared_layout_ptr->GetBlockSize(SharedDataLayout::GEOMETRIES_LIST)); } // load datasource information (if it exists) uint8_t *datasources_list_ptr = shared_layout_ptr->GetBlockPtr<uint8_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCES_LIST); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCES_LIST) > 0) { geometry_datasource_input_stream.read( reinterpret_cast<char *>(datasources_list_ptr), shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCES_LIST)); } // load datasource name information (if it exists) char *datasource_name_data_ptr = shared_layout_ptr->GetBlockPtr<char, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_DATA); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_DATA) > 0) { std::copy( m_datasource_name_data.begin(), m_datasource_name_data.end(), datasource_name_data_ptr); } auto datasource_name_offsets_ptr = shared_layout_ptr->GetBlockPtr<std::size_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_OFFSETS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_OFFSETS) > 0) { std::copy(m_datasource_name_offsets.begin(), m_datasource_name_offsets.end(), datasource_name_offsets_ptr); } auto datasource_name_lengths_ptr = shared_layout_ptr->GetBlockPtr<std::size_t, true>( shared_memory_ptr, SharedDataLayout::DATASOURCE_NAME_LENGTHS); if (shared_layout_ptr->GetBlockSize(SharedDataLayout::DATASOURCE_NAME_LENGTHS) > 0) { std::copy(m_datasource_name_lengths.begin(), m_datasource_name_lengths.end(), datasource_name_lengths_ptr); } // Loading list of coordinates util::Coordinate *coordinates_ptr = shared_layout_ptr->GetBlockPtr<util::Coordinate, true>( shared_memory_ptr, SharedDataLayout::COORDINATE_LIST); std::uint64_t *osmnodeid_ptr = shared_layout_ptr->GetBlockPtr<std::uint64_t, true>( shared_memory_ptr, SharedDataLayout::OSM_NODE_ID_LIST); util::PackedVector<OSMNodeID, true> osmnodeid_list; osmnodeid_list.reset(osmnodeid_ptr, shared_layout_ptr->num_entries[SharedDataLayout::OSM_NODE_ID_LIST]); extractor::QueryNode current_node; for (unsigned i = 0; i < coordinate_list_size; ++i) { nodes_input_stream.read((char *)¤t_node, sizeof(extractor::QueryNode)); coordinates_ptr[i] = util::Coordinate(current_node.lon, current_node.lat); osmnodeid_list.push_back(current_node.node_id); } nodes_input_stream.close(); // store timestamp char *timestamp_ptr = shared_layout_ptr->GetBlockPtr<char, true>(shared_memory_ptr, SharedDataLayout::TIMESTAMP); io::readTimestamp(timestamp_stream, timestamp_ptr, timestamp_size); // store search tree portion of rtree char *rtree_ptr = shared_layout_ptr->GetBlockPtr<char, true>(shared_memory_ptr, SharedDataLayout::R_SEARCH_TREE); if (tree_size > 0) { tree_node_file.read(rtree_ptr, sizeof(RTreeNode) * tree_size); } tree_node_file.close(); // load core markers std::vector<char> unpacked_core_markers(number_of_core_markers); core_marker_file.read((char *)unpacked_core_markers.data(), sizeof(char) * number_of_core_markers); unsigned *core_marker_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::CORE_MARKER); for (auto i = 0u; i < number_of_core_markers; ++i) { BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1); if (unpacked_core_markers[i] == 1) { const unsigned bucket = i / 32; const unsigned offset = i % 32; const unsigned value = [&] { unsigned return_value = 0; if (0 != offset) { return_value = core_marker_ptr[bucket]; } return return_value; }(); core_marker_ptr[bucket] = (value | (1u << offset)); } } // load the nodes of the search graph QueryGraph::NodeArrayEntry *graph_node_list_ptr = shared_layout_ptr->GetBlockPtr<QueryGraph::NodeArrayEntry, true>( shared_memory_ptr, SharedDataLayout::GRAPH_NODE_LIST); // load the edges of the search graph QueryGraph::EdgeArrayEntry *graph_edge_list_ptr = shared_layout_ptr->GetBlockPtr<QueryGraph::EdgeArrayEntry, true>( shared_memory_ptr, SharedDataLayout::GRAPH_EDGE_LIST); io::readHSGR(hsgr_input_stream, graph_node_list_ptr, hsgr_header.number_of_nodes, graph_edge_list_ptr, hsgr_header.number_of_edges); hsgr_input_stream.close(); // load profile properties auto profile_properties_ptr = shared_layout_ptr->GetBlockPtr<extractor::ProfileProperties, true>( shared_memory_ptr, SharedDataLayout::PROPERTIES); boost::filesystem::ifstream profile_properties_stream(config.properties_path); if (!profile_properties_stream) { util::exception("Could not open " + config.properties_path.string() + " for reading!"); } profile_properties_stream.read(reinterpret_cast<char *>(profile_properties_ptr), sizeof(extractor::ProfileProperties)); // load intersection classes if (!bearing_class_id_table.empty()) { auto bearing_id_ptr = shared_layout_ptr->GetBlockPtr<BearingClassID, true>( shared_memory_ptr, SharedDataLayout::BEARING_CLASSID); std::copy(bearing_class_id_table.begin(), bearing_class_id_table.end(), bearing_id_ptr); } if (shared_layout_ptr->GetBlockSize(SharedDataLayout::BEARING_OFFSETS) > 0) { auto *bearing_offsets_ptr = shared_layout_ptr->GetBlockPtr<unsigned, true>( shared_memory_ptr, SharedDataLayout::BEARING_OFFSETS); std::copy(bearing_offsets_data.begin(), bearing_offsets_data.end(), bearing_offsets_ptr); } if (shared_layout_ptr->GetBlockSize(SharedDataLayout::BEARING_BLOCKS) > 0) { auto *bearing_blocks_ptr = shared_layout_ptr->GetBlockPtr<typename util::RangeTable<16, true>::BlockT, true>( shared_memory_ptr, SharedDataLayout::BEARING_BLOCKS); std::copy(bearing_blocks_data.begin(), bearing_blocks_data.end(), bearing_blocks_ptr); } if (!bearing_class_table.empty()) { auto bearing_class_ptr = shared_layout_ptr->GetBlockPtr<DiscreteBearing, true>( shared_memory_ptr, SharedDataLayout::BEARING_VALUES); std::copy(bearing_class_table.begin(), bearing_class_table.end(), bearing_class_ptr); } if (!entry_class_table.empty()) { auto entry_class_ptr = shared_layout_ptr->GetBlockPtr<util::guidance::EntryClass, true>( shared_memory_ptr, SharedDataLayout::ENTRY_CLASS); std::copy(entry_class_table.begin(), entry_class_table.end(), entry_class_ptr); } auto data_type_memory = makeSharedMemory(CURRENT_REGIONS, sizeof(SharedDataTimestamp), true); SharedDataTimestamp *data_timestamp_ptr = static_cast<SharedDataTimestamp *>(data_type_memory->Ptr()); { boost::interprocess::scoped_lock<boost::interprocess::named_upgradable_mutex> current_regions_exclusive_lock; if (max_wait > 0) { util::SimpleLogger().Write() << "Waiting for " << max_wait << " seconds to write new dataset timestamp"; auto end_time = boost::posix_time::microsec_clock::universal_time() + boost::posix_time::seconds(max_wait); current_regions_exclusive_lock = boost::interprocess::scoped_lock<boost::interprocess::named_upgradable_mutex>( std::move(current_regions_lock), end_time); if (!current_regions_exclusive_lock.owns()) { util::SimpleLogger().Write(logWARNING) << "Aquiring the lock timed out after " << max_wait << " seconds. Claiming the lock by force."; current_regions_lock.unlock(); current_regions_lock.release(); storage::SharedBarriers::resetCurrentRegions(); return ReturnCode::Retry; } } else { util::SimpleLogger().Write() << "Waiting to write new dataset timestamp"; current_regions_exclusive_lock = boost::interprocess::scoped_lock<boost::interprocess::named_upgradable_mutex>( std::move(current_regions_lock)); } util::SimpleLogger().Write() << "Ok."; data_timestamp_ptr->layout = layout_region; data_timestamp_ptr->data = data_region; data_timestamp_ptr->timestamp += 1; } util::SimpleLogger().Write() << "All data loaded."; return ReturnCode::Ok; }
void RegionEditor::setValue(const QRegion &aValue) { mValue=aValue; ui->valueEdit->setText(regionToString(mValue)); }