void LR_MsgHandler_IMT_Base::update_from_msg_imt(uint8_t imu_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); if (!use_imt) { return; } uint8_t this_imu_mask = 1 << imu_offset; float delta_time = 0; require_field(msg, "DelT", delta_time); ins.set_delta_time(delta_time); if (gyro_mask & this_imu_mask) { Vector3f d_angle; require_field(msg, "DelA", d_angle); float d_angle_dt; if (!field_value(msg, "DelaT", d_angle_dt)) { d_angle_dt = 0; } ins.set_delta_angle(imu_offset, d_angle, d_angle_dt); } if (accel_mask & this_imu_mask) { float dvt = 0; require_field(msg, "DelvT", dvt); Vector3f d_velocity; require_field(msg, "DelV", d_velocity); ins.set_delta_velocity(imu_offset, dvt, d_velocity); } }
void LR_MsgHandler_CHEK::process_message(uint8_t *msg) { wait_timestamp_from_msg(msg); check_state.time_us = AP_HAL::micros64(); attitude_from_msg(msg, check_state.euler, "Roll", "Pitch", "Yaw"); check_state.euler *= radians(1); location_from_msg(msg, check_state.pos, "Lat", "Lng", "Alt"); require_field(msg, "VN", check_state.velocity.x); require_field(msg, "VE", check_state.velocity.y); require_field(msg, "VD", check_state.velocity.z); }
void MsgHandler::ground_vel_from_msg(uint8_t *msg, Vector3f &vel, const char *label_speed, const char *label_course, const char *label_vz) { uint32_t ground_speed; int32_t ground_course; require_field(msg, label_speed, ground_speed); require_field(msg, label_course, ground_course); vel[0] = ground_speed*0.01f*cosf(radians(ground_course*0.01f)); vel[1] = ground_speed*0.01f*sinf(radians(ground_course*0.01f)); vel[2] = require_field_float(msg, label_vz); }
void LR_MsgHandler_MAG_Base::update_from_msg_compass(uint8_t compass_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); Vector3f mag; require_field(msg, "Mag", mag); Vector3f mag_offset; require_field(msg, "Ofs", mag_offset); compass.setHIL(compass_offset, mag - mag_offset); // compass_offset is which compass we are setting info for; // mag_offset is a vector indicating the compass' calibration... compass.set_offsets(compass_offset, mag_offset); }
void LR_MsgHandler_PARM::process_message(uint8_t *msg) { const uint8_t parameter_name_len = AP_MAX_NAME_SIZE + 1; // null-term char parameter_name[parameter_name_len]; uint64_t time_us; if (field_value(msg, "TimeUS", time_us)) { wait_timestamp_usec(time_us); } else { // older logs can have a lot of FMT and PARM messages up the // front which don't have timestamps. Since in Replay we run // DataFlash's IO only when stop_clock is called, we can // overflow DataFlash's ringbuffer. This should force us to // do IO: hal.scheduler->stop_clock(last_timestamp_usec); } require_field(msg, "Name", parameter_name, parameter_name_len); float value = require_field_float(msg, "Value"); if (globals.no_params) { printf("Not changing %s to %f\n", parameter_name, value); } else { set_parameter(parameter_name, value); } }
void LR_MsgHandler_IMU_Base::update_from_msg_imu(uint8_t imu_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); uint8_t this_imu_mask = 1 << imu_offset; if (gyro_mask & this_imu_mask) { Vector3f gyro; require_field(msg, "Gyr", gyro); ins.set_gyro(imu_offset, gyro); } if (accel_mask & this_imu_mask) { Vector3f accel2; require_field(msg, "Acc", accel2); ins.set_accel(imu_offset, accel2); } }
void LR_MsgHandler_MAG_Base::update_from_msg_compass(uint8_t compass_offset, uint8_t *msg) { wait_timestamp_from_msg(msg); Vector3f mag; require_field(msg, "Mag", mag); Vector3f mag_offset; require_field(msg, "Ofs", mag_offset); uint32_t last_update_usec; if (!field_value(msg, "S", last_update_usec)) { last_update_usec = AP_HAL::micros(); } compass.setHIL(compass_offset, mag - mag_offset, last_update_usec); // compass_offset is which compass we are setting info for; // mag_offset is a vector indicating the compass' calibration... compass.set_offsets(compass_offset, mag_offset); }
void LR_MsgHandler_GPA_Base::update_from_msg_gpa(uint8_t gps_offset, uint8_t *msg) { uint64_t time_us; require_field(msg, "TimeUS", time_us); wait_timestamp_usec(time_us); uint16_t vdop, hacc, vacc, sacc; require_field(msg, "VDop", vdop); require_field(msg, "HAcc", hacc); require_field(msg, "VAcc", vacc); require_field(msg, "SAcc", sacc); uint8_t have_vertical_velocity; if (! field_value(msg, "VV", have_vertical_velocity)) { have_vertical_velocity = !is_zero(gps.velocity(gps_offset).z); } uint32_t sample_ms; if (! field_value(msg, "SMS", sample_ms)) { sample_ms = 0; } gps.setHIL_Accuracy(gps_offset, vdop*0.01f, hacc*0.01f, vacc*0.01f, sacc*0.01f, have_vertical_velocity, sample_ms); }
void LR_MsgHandler_GPS_Base::update_from_msg_gps(uint8_t gps_offset, uint8_t *msg, bool responsible_for_relalt) { uint64_t time_us; if (! field_value(msg, "TimeUS", time_us)) { uint32_t timestamp; require_field(msg, "T", timestamp); time_us = timestamp * 1000; } wait_timestamp_usec(time_us); Location loc; location_from_msg(msg, loc, "Lat", "Lng", "Alt"); Vector3f vel; ground_vel_from_msg(msg, vel, "Spd", "GCrs", "VZ"); uint8_t status = require_field_uint8_t(msg, "Status"); uint8_t hdop = 0; if (! field_value(msg, "HDop", hdop) && ! field_value(msg, "HDp", hdop)) { hdop = 20; } uint8_t nsats = 0; if (! field_value(msg, "NSats", nsats) && ! field_value(msg, "numSV", nsats)) { field_not_found(msg, "NSats"); } gps.setHIL(gps_offset, (AP_GPS::GPS_Status)status, uint32_t(time_us/1000), loc, vel, nsats, hdop, require_field_float(msg, "VZ") != 0); if (status == AP_GPS::GPS_OK_FIX_3D && ground_alt_cm == 0) { ground_alt_cm = require_field_int32_t(msg, "Alt"); } if (responsible_for_relalt) { // this could possibly check for the presence of "RelAlt" label? int32_t tmp; if (! field_value(msg, "RAlt", tmp)) { tmp = require_field_int32_t(msg, "RelAlt"); } rel_altitude = 0.01f * tmp; } }
void LR_MsgHandler_GPS_Base::update_from_msg_gps(uint8_t gps_offset, uint8_t *msg) { uint64_t time_us; if (! field_value(msg, "TimeUS", time_us)) { uint32_t timestamp; require_field(msg, "T", timestamp); time_us = timestamp * 1000; } wait_timestamp_usec(time_us); Location loc; location_from_msg(msg, loc, "Lat", "Lng", "Alt"); Vector3f vel; ground_vel_from_msg(msg, vel, "Spd", "GCrs", "VZ"); uint8_t status = require_field_uint8_t(msg, "Status"); uint8_t hdop = 0; if (! field_value(msg, "HDop", hdop) && ! field_value(msg, "HDp", hdop)) { hdop = 20; } uint8_t nsats = 0; if (! field_value(msg, "NSats", nsats) && ! field_value(msg, "numSV", nsats)) { field_not_found(msg, "NSats"); } uint16_t GWk; uint32_t GMS; if (! field_value(msg, "GWk", GWk)) { field_not_found(msg, "GWk"); } if (! field_value(msg, "GMS", GMS)) { field_not_found(msg, "GMS"); } gps.setHIL(gps_offset, (AP_GPS::GPS_Status)status, AP_GPS::time_epoch_convert(GWk, GMS), loc, vel, nsats, hdop); if (status == AP_GPS::GPS_OK_FIX_3D && ground_alt_cm == 0) { ground_alt_cm = require_field_int32_t(msg, "Alt"); } }
void LR_MsgHandler_MSG::process_message(uint8_t *msg) { const uint8_t msg_text_len = 64; char msg_text[msg_text_len]; require_field(msg, "Message", msg_text, msg_text_len); if (strncmp(msg_text, "ArduPlane", strlen("ArduPlane")) == 0) { vehicle = VehicleType::VEHICLE_PLANE; ::printf("Detected Plane\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); ahrs.set_fly_forward(true); } else if (strncmp(msg_text, "ArduCopter", strlen("ArduCopter")) == 0 || strncmp(msg_text, "APM:Copter", strlen("APM:Copter")) == 0) { vehicle = VehicleType::VEHICLE_COPTER; ::printf("Detected Copter\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); ahrs.set_fly_forward(false); } else if (strncmp(msg_text, "ArduRover", strlen("ArduRover")) == 0) { vehicle = VehicleType::VEHICLE_ROVER; ::printf("Detected Rover\n"); ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); ahrs.set_fly_forward(true); } }
int16_t MsgHandler::require_field_int16_t(uint8_t *msg, const char *label) { int16_t ret; require_field(msg, label, ret); return ret; }
float MsgHandler::require_field_float(uint8_t *msg, const char *label) { float ret; require_field(msg, label, ret); return ret; }
void MsgHandler::wait_timestamp_from_msg(uint8_t *msg) { uint32_t timestamp; require_field(msg, "TimeMS", timestamp); wait_timestamp(timestamp); }