int main(void) { printf("Hello World!\n"); cv::Mat depthMat(cv::Size(640,480), CV_16UC1); cv::Mat depthf(cv::Size(640,480), CV_8UC1); cv::Mat rgbMat(cv::Size(640,480), CV_8UC3, cv::Scalar(0)); std::list<cv::Mat> images; Freenect::Freenect freenect; CvKinect& device = freenect.createDevice<CvKinect>(0); device.startVideo(); cv::namedWindow("rgb", CV_WINDOW_AUTOSIZE); cv::namedWindow("depth", CV_WINDOW_AUTOSIZE); while (true) { device.getVideo(rgbMat); // if (images.size() > 0) { // cv::imshow("rgb", images.front()); // } else { cv::imshow("rgb", rgbMat); // } char key = cv::waitKey(5); if (key == 'x') { break; } else if (key == 's') { images.push_back(rgbMat.clone()); } } device.stopVideo(); std::cout << "Images: " << images.size() << std::endl; for (std::list<cv::Mat>::iterator iter = images.begin(); iter != images.end(); ++iter) { cv::imshow("rgb", *iter); cv::Mat greyMat(cv::Size(640, 480), CV_8UC1, cv::Scalar(0)); cv::cvtColor(*iter, greyMat, CV_RGB2GRAY); std::vector<cv::Point2f> corners; bool found = cv::findChessboardCorners(greyMat, cv::Size(7, 7), corners); std::cout << "Corners found: " << corners.size() << std::endl; } cv::destroyWindow("depth"); cv::destroyWindow("rgb"); std::cout << "Exit" << std::endl; return 0; }
// Do not call directly even in child void KinectInputDevice::VideoCallback(void* _rgb, uint32_t timestamp) { //std::cout << "RGB callback" << std::endl; uint8_t* rgb = static_cast<uint8_t*>(_rgb); cv::Mat rgbMat(cv::Size(640,480),CV_8UC3, cv::Scalar(0)); rgbMat.data = rgb; pthread_mutex_lock(&m_mutex); m_rgb = rgbMat; m_new_rgb = true; pthread_mutex_unlock(&m_mutex); };
int main(int argc, char **argv) { bool die(false); string filename("snapshot"); string suffix(".png"); int i_snap(0),iter(0); Mat depthMat(Size(640,480),CV_16UC1); Mat depthf (Size(640,480),CV_8UC1); Mat rgbMat(Size(640,480),CV_8UC3,Scalar(0)); Mat ownMat(Size(640,480),CV_8UC3,Scalar(0)); Freenect::Freenect<MyFreenectDevice> freenect; MyFreenectDevice& device = freenect.createDevice(0); device.setTiltDegrees(10.0); bool registered = false; Mat blobMaskOutput = Mat::zeros(Size(640,480),CV_8UC1),outC; Point midBlob; int startX = 200, sizeX = 180, num_x_reps = 18, num_y_reps = 48; double height_over_num_y_reps = 480/num_y_reps, width_over_num_x_reps = sizeX/num_x_reps; vector<double> _d(num_x_reps * num_y_reps); //the descriptor Mat descriptorMat(_d); // CvNormalBayesClassifier classifier; //doesnt work CvKNearest classifier; // CvSVM classifier; //doesnt work // CvBoost classifier; //only good for 2 classes // CvDTree classifier; vector<vector<double> > training_data; vector<int> label_data; PCA pca; Mat labelMat, dataMat; vector<float> label_counts(4); bool trained = false, loaded = false; device.startVideo(); device.startDepth(); while (!die) { device.getVideo(rgbMat); device.getDepth(depthMat); // cv::imshow("rgb", rgbMat); depthMat.convertTo(depthf, CV_8UC1, 255.0/2048.0); cv::imshow("depth",depthf); //interpolation & inpainting { Mat _tmp,_tmp1; // = (depthMat - 400.0); //minimum observed value is ~440. so shift a bit Mat(depthMat - 400.0).convertTo(_tmp1,CV_64FC1); _tmp.setTo(Scalar(2048), depthMat > 750.0); //cut off at 600 to create a "box" where the user interacts // _tmp.convertTo(depthf, CV_8UC1, 255.0/1648.0); //values are 0-2048 (11bit), account for -400 = 1648 //quadratic interpolation // cv::pow(_tmp,2.0,_tmp1); // _tmp1 = _tmp1 * 4.0; // try { // cv:log(_tmp,_tmp1); // } // catch (cv::Exception e) { // cerr << e.what() << endl; // exit(0); // } Point minLoc; double minval,maxval; minMaxLoc(_tmp1, &minval, &maxval, NULL, NULL); _tmp1.convertTo(depthf, CV_8UC1, 255.0/maxval); Mat small_depthf; resize(depthf,small_depthf,Size(),0.2,0.2); cv::inpaint(small_depthf,(small_depthf == 255),_tmp1,5.0,INPAINT_TELEA); resize(_tmp1, _tmp, depthf.size()); _tmp.copyTo(depthf, (depthf == 255)); } { // Mat smallDepth = depthf; //cv::resize(depthf,smallDepth,Size(),0.5,0.5); // Mat edges; //Laplacian(smallDepth, edges, -1, 7, 1.0); // Sobel(smallDepth, edges, -1, 1, 1, 7); //medianBlur(edges, edges, 11); // for (int x=0; x < edges.cols; x+=20) { // for (int y=0; y < edges.rows; y+=20) { // //int nz = countNonZero(edges(Range(y,MIN(y+20,edges.rows-1)),Range(x,MIN(x+20,edges.cols-1)))); // Mat _i = edges(Range(y,MIN(y+20,edges.rows-1)),Range(x,MIN(x+20,edges.cols-1))); // medianBlur(_i, _i, 7); // //rectangle(edges, Point(x,y), Point(x+20,y+20), Scalar(nz), CV_FILLED); // } // } // imshow("edges", edges); } cvtColor(depthf, outC, CV_GRAY2BGR); Mat blobMaskInput = depthf < 120; //anything not white is "real" depth, TODO: inpainting invalid data vector<Point> ctr,ctr2; //closest point to the camera Point minLoc; double minval,maxval; minMaxLoc(depthf, &minval, &maxval, &minLoc, NULL, blobMaskInput); circle(outC, minLoc, 5, Scalar(0,255,0), 3); blobMaskInput = depthf < (minval + 18); Scalar blb = refineSegments(Mat(),blobMaskInput,blobMaskOutput,ctr,ctr2,midBlob); //find contours in the foreground, choose biggest // if (blobMaskOutput.data != NULL) { // imshow("first", blobMaskOutput); // } /////// blb : //blb[0] = x, blb[1] = y, blb[2] = 1st blob size, blb[3] = 2nd blob size. if(blb[0]>=0 && blb[2] > 500) { //1st blob detected, and is big enough //cvtColor(depthf, outC, CV_GRAY2BGR); Scalar mn,stdv; meanStdDev(depthf,mn,stdv,blobMaskInput); //cout << "min: " << minval << ", max: " << maxval << ", mean: " << mn[0] << endl; //now refining blob by looking at the mean depth value it has... blobMaskInput = depthf < (mn[0] + stdv[0]); //(very simple) bias with hand color { Mat hsv; cvtColor(rgbMat, hsv, CV_RGB2HSV); Mat _col_p(hsv.size(),CV_32FC1); int jump = 5; for (int x=0; x < hsv.cols; x+=jump) { for (int y=0; y < hsv.rows; y+=jump) { Mat _i = hsv(Range(y,MIN(y+jump,hsv.rows-1)),Range(x,MIN(x+jump,hsv.cols-1))); Scalar hsv_mean = mean(_i); Vec2i u; u[0] = hsv_mean[0]; u[1] = hsv_mean[1]; Vec2i v; v[0] = 120; v[1] = 110; rectangle(_col_p, Point(x,y), Point(x+jump,y+jump), Scalar(1.0-MIN(norm(u-v)/125.0,1.0)), CV_FILLED); } } // hsv = hsv - Scalar(0,0,255); Mat _t = (Mat_<double>(2,3) << 1, 0, 15, 0, 1, -20); Mat col_p(_col_p.size(),CV_32FC1); warpAffine(_col_p, col_p, _t, col_p.size()); GaussianBlur(col_p, col_p, Size(11.0,11.0), 2.5); imshow("hand color",col_p); // imshow("rgb",rgbMat); Mat blobMaskInput_32FC1; blobMaskInput.convertTo(blobMaskInput_32FC1, CV_32FC1, 1.0/255.0); blobMaskInput_32FC1 = blobMaskInput_32FC1.mul(col_p, 1.0); blobMaskInput_32FC1.convertTo(blobMaskInput, CV_8UC1, 255.0); blobMaskInput = blobMaskInput > 128; imshow("blob bias", blobMaskInput); } blb = refineSegments(Mat(),blobMaskInput,blobMaskOutput,ctr,ctr2,midBlob); imshow("blob", blobMaskOutput); if(blb[0] >= 0 && blb[2] > 300) { //draw contour Scalar color(0,0,255); for (int idx=0; idx<ctr.size()-1; idx++) line(outC, ctr[idx], ctr[idx+1], color, 1); line(outC, ctr[ctr.size()-1], ctr[0], color, 1); if(ctr2.size() > 0) { //second blob detected Scalar color2(255,0,255); for (int idx=0; idx<ctr2.size()-1; idx++) line(outC, ctr2[idx], ctr2[idx+1], color2, 2); line(outC, ctr2[ctr2.size()-1], ctr2[0], color2, 2); } //blob center circle(outC, Point(blb[0],blb[1]), 50, Scalar(255,0,0), 3); { Mat hsv; cvtColor(rgbMat, hsv, CV_RGB2HSV); Scalar hsv_mean,hsv_stddev; meanStdDev(hsv, hsv_mean, hsv_stddev, blobMaskOutput); stringstream ss; ss << hsv_mean[0] << "," << hsv_mean[1] << "," << hsv_mean[2]; putText(outC, ss.str(), Point(blb[0],blb[1]), CV_FONT_HERSHEY_PLAIN, 1.0, Scalar(0,255,255)); } Mat blobDepth,blobEdge; depthf.copyTo(blobDepth,blobMaskOutput); Laplacian(blobDepth, blobEdge, 8); // equalizeHist(blobEdge, blobEdge);//just for visualization Mat logPolar(depthf.size(),CV_8UC1); cvLogPolar(&((IplImage)blobEdge), &((IplImage)logPolar), Point2f(blb[0],blb[1]), 80.0); // for (int i=0; i<num_x_reps+1; i++) { // //verical lines // line(logPolar, Point(startX+i*width_over_num_x_reps, 0), Point(startX+i*width_over_num_x_reps,479), Scalar(255), 1); // } // for(int i=0; i<num_y_reps+1; i++) { // //horizontal // line(logPolar, Point(startX, i*height_over_num_y_reps), Point(startX+sizeX,i*height_over_num_y_reps), Scalar(255), 1); // } double total = 0.0; //histogram for (int i=0; i<num_x_reps; i++) { for(int j=0; j<num_y_reps; j++) { Mat part = logPolar( Range(j*height_over_num_y_reps,(j+1)*height_over_num_y_reps), Range(startX+i*width_over_num_x_reps,startX+(i+1)*width_over_num_x_reps) ); // int count = countNonZero(part); //TODO: use calcHist // _d[i*num_x_reps + j] = count; Scalar mn = mean(part); // part.setTo(Scalar(mn[0])); //for debug: show the value in the image _d[i*num_x_reps + j] = mn[0]; total += mn[0]; } } descriptorMat = descriptorMat / total; /* Mat images[1] = {logPolar(Range(0,30),Range(0,30))}; int nimages = 1; int channels[1] = {0}; int dims = 1; float range_0[]={0,256}; float* ranges[] = { range_0 }; int histSize[1] = { 5 }; calcHist(, <#int nimages#>, <#const int *channels#>, <#const Mat mask#>, <#MatND hist#>, <#int dims#>, <#const int *histSize#>, <#const float **ranges#>, <#bool uniform#>, <#bool accumulate#>) */ // Mat _tmp(logPolar.size(),CV_8UC1); // cvLogPolar(&((IplImage)logPolar), &((IplImage)_tmp),Point2f(blb[0],blb[1]), 80.0, CV_WARP_INVERSE_MAP); // imshow("descriptor", _tmp); // imshow("logpolar", logPolar); } } if(trained) { Mat results(1,1,CV_32FC1); Mat samples; Mat(Mat(_d).t()).convertTo(samples,CV_32FC1); Mat samplesAfterPCA = samples; //pca.project(samples); classifier.find_nearest(&((CvMat)samplesAfterPCA), 1, &((CvMat)results)); // ((float*)results.data)[0] = classifier.predict(&((CvMat)samples))->value; Mat lc(label_counts); lc *= 0.9; // label_counts[(int)((float*)results.data)[0]] *= 0.9; label_counts[(int)((float*)results.data)[0]] += 0.1; Point maxLoc; minMaxLoc(lc, NULL, NULL, NULL, &maxLoc); int res = maxLoc.y; stringstream ss; ss << "prediction: "; if (res == LABEL_OPEN) { ss << "Open hand"; } if (res == LABEL_FIST) { ss << "Fist"; } if (res == LABEL_THUMB) { ss << "Thumb"; } if (res == LABEL_GARBAGE) { ss << "Garbage"; } putText(outC, ss.str(), Point(20,50), CV_FONT_HERSHEY_PLAIN, 3.0, Scalar(0,0,255), 2); } stringstream ss; ss << "samples: " << training_data.size(); putText(outC, ss.str(), Point(30,outC.rows - 30), CV_FONT_HERSHEY_PLAIN, 2.0, Scalar(0,0,255), 1); imshow("blobs", outC); char k = cvWaitKey(5); if( k == 27 ){ break; } if( k == 8 ) { std::ostringstream file; file << filename << i_snap << suffix; cv::imwrite(file.str(),rgbMat); i_snap++; } if (k == 'g') { //put into training as 'garbage' training_data.push_back(_d); label_data.push_back(LABEL_GARBAGE); cout << "learn grabage" << endl; } if(k == 'o') { //put into training as 'open' training_data.push_back(_d); label_data.push_back(LABEL_OPEN); cout << "learn open" << endl; } if(k == 'f') { //put into training as 'fist' training_data.push_back(_d); label_data.push_back(LABEL_FIST); cout << "learn fist" << endl; } if(k == 'h') { //put into training as 'thumb' training_data.push_back(_d); label_data.push_back(LABEL_THUMB); cout << "learn thumb" << endl; } if (k=='t') { //train model cout << "train model" << endl; if(loaded != true) { dataMat = Mat(training_data.size(),_d.size(),CV_32FC1); //descriptors as matrix rows for (uint i=0; i<training_data.size(); i++) { Mat v = dataMat(Range(i,i+1),Range::all()); Mat(Mat(training_data[i]).t()).convertTo(v,CV_32FC1,1.0); } Mat(label_data).convertTo(labelMat,CV_32FC1); } // pca = pca(dataMat,Mat(),CV_PCA_DATA_AS_ROW,15); Mat dataAfterPCA = dataMat; // pca.project(dataMat,dataAfterPCA); classifier.train(&((CvMat)dataAfterPCA), &((CvMat)labelMat)); trained = true; } // if(k=='p' && trained) { // //predict // Mat results(1,1,CV_32FC1); // Mat samples(1,64,CV_32FC1); Mat(Mat(_d).t()).convertTo(samples,CV_32FC1); // classifier.find_nearest(&((CvMat)samples), 1, &((CvMat)results)); // cout << "prediction: " << ((float*)results.data)[0] << endl; // } if(k=='s') { cout << "save training data" << endl; // classifier.save("knn-classifier-open-fist-thumb.yaml"); //not implemented dataMat = Mat(training_data.size(),_d.size(),CV_32FC1); //descriptors as matrix rows for (uint i=0; i<training_data.size(); i++) { Mat v = dataMat(Range(i,i+1),Range::all()); Mat(Mat(training_data[i]).t()).convertTo(v,CV_32FC1,1.0); } Mat(label_data).convertTo(labelMat,CV_32FC1); FileStorage fs; fs.open("data-samples-labels.yaml", CV_STORAGE_WRITE); if (fs.isOpened()) { fs << "samples" << dataMat; fs << "labels" << labelMat; fs << "startX" << startX; fs << "sizeX" << sizeX; fs << "num_x_reps" << num_x_reps; fs << "num_y_reps" << num_y_reps; loaded = true; fs.release(); } else { cerr << "can't open saved data" << endl; } } if(k=='l') { cout << "try to load training data" << endl; FileStorage fs; fs.open("data-samples-labels.yaml", CV_STORAGE_READ); if (fs.isOpened()) { fs["samples"] >> dataMat; fs["labels"] >> labelMat; fs["startX"] >> startX; fs["sizeX"] >> sizeX; fs["num_x_reps"] >> num_x_reps; fs["num_y_reps"] >> num_y_reps; height_over_num_y_reps = 480/num_y_reps; width_over_num_x_reps = sizeX/num_x_reps; loaded = true; fs.release(); } else {
Rgbimage::Rgbimage(libfreenect2::Frame * image, libfreenect2::Frame::Type type) : Frame(image,type) { std::cout << "rgb const" << std::endl; cv::Mat rgbMat(image->height,image->width,CV_8UC4,image->data); image_ = rgbMat; }