Esempio n. 1
0
/*
 * Check that rte_lpm_lookup fails gracefully for incorrect user input
 * arguments
 */
int32_t
test5(void)
{
#if defined(RTE_LIBRTE_LPM_DEBUG)
	struct rte_lpm *lpm = NULL;
	uint32_t ip = IPv4(0, 0, 0, 0);
	uint8_t next_hop_return = 0;
	int32_t status = 0;

	/* rte_lpm_lookup: lpm == NULL */
	status = rte_lpm_lookup(NULL, ip, &next_hop_return);
	TEST_LPM_ASSERT(status < 0);

	/*Create vaild lpm to use in rest of test. */
	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	/* rte_lpm_lookup: depth < 1 */
	status = rte_lpm_lookup(lpm, ip, NULL);
	TEST_LPM_ASSERT(status < 0);

	rte_lpm_free(lpm);
#endif
	return PASS;
}
Esempio n. 2
0
/*
 * Check that rte_lpm_delete fails gracefully for incorrect user input
 * arguments
 */
int32_t
test4(void)
{
	struct rte_lpm *lpm = NULL;
	uint32_t ip = IPv4(0, 0, 0, 0);
	uint8_t depth = 24;
	int32_t status = 0;

	/* rte_lpm_delete: lpm == NULL */
	status = rte_lpm_delete(NULL, ip, depth);
	TEST_LPM_ASSERT(status < 0);

	/*Create vaild lpm to use in rest of test. */
	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	/* rte_lpm_delete: depth < 1 */
	status = rte_lpm_delete(lpm, ip, 0);
	TEST_LPM_ASSERT(status < 0);

	/* rte_lpm_delete: depth > MAX_DEPTH */
	status = rte_lpm_delete(lpm, ip, (MAX_DEPTH + 1));
	TEST_LPM_ASSERT(status < 0);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 3
0
/*
 * Call add, lookup and delete for a single rule with depth <= 24
 */
int32_t
test6(void)
{
	struct rte_lpm *lpm = NULL;
	uint32_t ip = IPv4(0, 0, 0, 0);
	uint8_t depth = 24, next_hop_add = 100, next_hop_return = 0;
	int32_t status = 0;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 4
0
static void
app_init_lpm_tables(void)
{
	unsigned socket, lcore;

	/* Init the LPM tables */
	for (socket = 0; socket < APP_MAX_SOCKETS; socket ++) {
		char name[32];
		uint32_t rule;

		if (app_is_socket_used(socket) == 0) {
			continue;
		}

		struct rte_lpm_config lpm_config;

		lpm_config.max_rules = APP_MAX_LPM_RULES;
		lpm_config.number_tbl8s = 256;
		lpm_config.flags = 0;
		snprintf(name, sizeof(name), "lpm_table_%u", socket);
		printf("Creating the LPM table for socket %u ...\n", socket);
		app.lpm_tables[socket] = rte_lpm_create(
			name,
			socket,
			&lpm_config);
		if (app.lpm_tables[socket] == NULL) {
			rte_panic("Unable to create LPM table on socket %u\n", socket);
		}

		for (rule = 0; rule < app.n_lpm_rules; rule ++) {
			int ret;

			ret = rte_lpm_add(app.lpm_tables[socket],
				app.lpm_rules[rule].ip,
				app.lpm_rules[rule].depth,
				app.lpm_rules[rule].if_out);

			if (ret < 0) {
				rte_panic("Unable to add entry %u (%x/%u => %u) to the LPM table on socket %u (%d)\n",
					(unsigned) rule,
					(unsigned) app.lpm_rules[rule].ip,
					(unsigned) app.lpm_rules[rule].depth,
					(unsigned) app.lpm_rules[rule].if_out,
					socket,
					ret);
			}
		}

	}

	for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
		if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
			continue;
		}

		socket = rte_lcore_to_socket_id(lcore);
		app.lcore_params[lcore].worker.lpm_table = app.lpm_tables[socket];
	}
}
Esempio n. 5
0
static void *
rte_table_lpm_create(void *params, int socket_id, uint32_t entry_size)
{
	struct rte_table_lpm_params *p = (struct rte_table_lpm_params *) params;
	struct rte_table_lpm *lpm;
	uint32_t total_size, nht_size;

	/* Check input parameters */
	if (p == NULL) {
		RTE_LOG(ERR, TABLE, "%s: NULL input parameters\n", __func__);
		return NULL;
	}
	if (p->n_rules == 0) {
		RTE_LOG(ERR, TABLE, "%s: Invalid n_rules\n", __func__);
		return NULL;
	}
	if (p->entry_unique_size == 0) {
		RTE_LOG(ERR, TABLE, "%s: Invalid entry_unique_size\n",
			__func__);
		return NULL;
	}
	if (p->entry_unique_size > entry_size) {
		RTE_LOG(ERR, TABLE, "%s: Invalid entry_unique_size\n",
			__func__);
		return NULL;
	}

	entry_size = RTE_ALIGN(entry_size, sizeof(uint64_t));

	/* Memory allocation */
	nht_size = RTE_TABLE_LPM_MAX_NEXT_HOPS * entry_size;
	total_size = sizeof(struct rte_table_lpm) + nht_size;
	lpm = rte_zmalloc_socket("TABLE", total_size, RTE_CACHE_LINE_SIZE,
		socket_id);
	if (lpm == NULL) {
		RTE_LOG(ERR, TABLE,
			"%s: Cannot allocate %u bytes for LPM table\n",
			__func__, total_size);
		return NULL;
	}

	/* LPM low-level table creation */
	lpm->lpm = rte_lpm_create("LPM", socket_id, p->n_rules, 0);
	if (lpm->lpm == NULL) {
		rte_free(lpm);
		RTE_LOG(ERR, TABLE, "Unable to create low-level LPM table\n");
		return NULL;
	}

	/* Memory initialization */
	lpm->entry_size = entry_size;
	lpm->entry_unique_size = p->entry_unique_size;
	lpm->n_rules = p->n_rules;
	lpm->offset = p->offset;

	return lpm;
}
Esempio n. 6
0
void
rt_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
{
	char name[PATH_MAX];
	unsigned i;
	int ret;
	struct rte_lpm *lpm;
	struct ipv4_route *rt;
	char a, b, c, d;
	unsigned nb_routes;
	struct rte_lpm_config conf = { 0 };

	if (ctx == NULL)
		rte_exit(EXIT_FAILURE, "NULL context.\n");

	if (ctx->rt_ipv4 != NULL)
		rte_exit(EXIT_FAILURE, "Routing Table for socket %u already "
			"initialized\n", socket_id);

	printf("Creating Routing Table (RT) context with %u max routes\n",
			RT_IPV4_MAX_RULES);

	if (ep == 0) {
		rt = rt_ipv4_ep0;
		nb_routes = RTE_DIM(rt_ipv4_ep0);
	} else if (ep == 1) {
		rt = rt_ipv4_ep1;
		nb_routes = RTE_DIM(rt_ipv4_ep1);
	} else
		rte_exit(EXIT_FAILURE, "Invalid EP value %u. Only 0 or 1 "
			"supported.\n", ep);

	/* create the LPM table */
	snprintf(name, sizeof(name), "%s_%u", "rt_ipv4", socket_id);
	conf.max_rules = RT_IPV4_MAX_RULES;
	conf.number_tbl8s = RTE_LPM_TBL8_NUM_ENTRIES;
	lpm = rte_lpm_create(name, socket_id, &conf);
	if (lpm == NULL)
		rte_exit(EXIT_FAILURE, "Unable to create LPM table "
			"on socket %d\n", socket_id);

	/* populate the LPM table */
	for (i = 0; i < nb_routes; i++) {
		ret = rte_lpm_add(lpm, rt[i].ip, rt[i].depth, rt[i].if_out);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "Unable to add entry num %u to "
				"LPM table on socket %d\n", i, socket_id);

		uint32_t_to_char(rt[i].ip, &a, &b, &c, &d);
		printf("LPM: Adding route %hhu.%hhu.%hhu.%hhu/%hhu (%hhu)\n",
				a, b, c, d, rt[i].depth, rt[i].if_out);
	}

	ctx->rt_ipv4 = (struct rt_ctx *)lpm;
}
Esempio n. 7
0
/*
 * Check that rte_lpm_create fails gracefully for incorrect user input
 * arguments
 */
int32_t
test0(void)
{
	struct rte_lpm *lpm = NULL;

	/* rte_lpm_create: lpm name == NULL */
	lpm = rte_lpm_create(NULL, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm == NULL);

	/* rte_lpm_create: max_rules = 0 */
	/* Note: __func__ inserts the function name, in this case "test0". */
	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, 0, 0);
	TEST_LPM_ASSERT(lpm == NULL);

	/* socket_id < -1 is invalid */
	lpm = rte_lpm_create(__func__, -2, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm == NULL);

	return PASS;
}
Esempio n. 8
0
/*
 * Call rte_lpm_free for NULL pointer user input. Note: free has no return and
 * therefore it is impossible to check for failure but this test is added to
 * increase function coverage metrics and to validate that freeing null does
 * not crash.
 */
int32_t
test2(void)
{
	struct rte_lpm *lpm = NULL;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, RTE_LPM_HEAP);
	TEST_LPM_ASSERT(lpm != NULL);

	rte_lpm_free(lpm);
	rte_lpm_free(NULL);
	return PASS;
}
Esempio n. 9
0
int ss_conf_ioc_file_parse() {
    int is_ok          = 1;
    int rv             = 0;
    json_object* items = NULL;
    json_object* item  = NULL;

    struct rte_lpm6_config lpm6_info = {
        .max_rules    = SS_LPM_RULE_MAX,
        .number_tbl8s = SS_LPM_TBL8S_MAX,
        .flags        = 0,
    };

    ss_conf->cidr4 = rte_lpm_create("cidr4", 0, SS_LPM_RULE_MAX, 0);
    ss_conf->cidr6 = rte_lpm6_create("cidr6", 0, &lpm6_info);
    if (ss_conf->cidr4 == NULL) {
        fprintf(stderr, "could not allocate cidr4\n");
        return -1;
    }
    if (ss_conf->cidr6 == NULL) {
        fprintf(stderr, "could not allocate cidr6\n");
        return -1;
    }

    items = ss_json_object_get(ss_conf->json, "ioc_files");
    if (!items) return 0;

    is_ok = json_object_is_type(items, json_type_array);
    if (!is_ok) {
        fprintf(stderr, "ioc_files is not an array\n");
        return -1;
    }
    int length = json_object_array_length(items);
    if (length > SS_IOC_FILE_MAX) {
        fprintf(stderr, "ioc_file_count %d greater than %d, only parsing files below limit\n", length, SS_IOC_FILE_MAX);
        length = SS_IOC_FILE_MAX;
    }
    for (int i = 0; i < length; ++i) {
        item = json_object_array_get_idx(items, i);
        rv = ss_ioc_file_load(item);
        if (rv) {
            fprintf(stderr, "ioc_file index %d could not be loaded\n", i);
            is_ok = 0;
            return -1;
        }
    }

    ss_ioc_chain_dump(20);
    ss_ioc_chain_optimize();
    ss_ioc_tables_dump(5);

    return 0;
}
Esempio n. 10
0
int32_t
test13(void)
{
	struct rte_lpm *lpm = NULL;
	uint32_t ip, i;
	uint8_t depth, next_hop_add_1, next_hop_add_2, next_hop_return;
	int32_t status = 0;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	ip = IPv4(128, 0, 0, 0);
	depth = 24;
	next_hop_add_1 = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add_1);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add_1));

	depth = 32;
	next_hop_add_2 = 101;

	for (i = 0; i < 1000; i++) {
		status = rte_lpm_add(lpm, ip, depth, next_hop_add_2);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip, &next_hop_return);
		TEST_LPM_ASSERT((status == 0) &&
				(next_hop_return == next_hop_add_2));

		status = rte_lpm_delete(lpm, ip, depth);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip, &next_hop_return);
		TEST_LPM_ASSERT((status == 0) &&
				(next_hop_return == next_hop_add_1));
	}

	depth = 24;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 11
0
/*
 * Create lpm table then delete lpm table 100 times
 * Use a slightly different rules size each time
 * */
int32_t
test1(void)
{
	struct rte_lpm *lpm = NULL;
	int32_t i;

	/* rte_lpm_free: Free NULL */
	for (i = 0; i < 100; i++) {
		lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES - i, 0);
		TEST_LPM_ASSERT(lpm != NULL);

		rte_lpm_free(lpm);
	}

	/* Can not test free so return success */
	return PASS;
}
Esempio n. 12
0
int lpm_table_init(int socketid) {
	char s[64];
	struct rte_lpm_config config_ipv4;

	/* create the LPM table */
	config_ipv4.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
	config_ipv4.number_tbl8s = IPV4_L3FWD_LPM_NUMBER_TBL8S;
	config_ipv4.flags = 0;
	snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
	ipv4_l3fwd_lpm_lookup_struct[socketid] =
			rte_lpm_create(s, socketid, &config_ipv4);

	if (ipv4_l3fwd_lpm_lookup_struct[socketid] == NULL)
		rte_exit(EXIT_FAILURE,
			"Unable to create the l3fwd LPM table on socket %d\n",
			socketid);

	return 1;
}
Esempio n. 13
0
int32_t
test12(void)
{
	__m128i ipx4;
	uint16_t hop[4];
	struct rte_lpm *lpm = NULL;
	uint32_t ip, i;
	uint8_t depth, next_hop_add, next_hop_return;
	int32_t status = 0;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	ip = IPv4(128, 0, 0, 0);
	depth = 32;
	next_hop_add = 100;

	for (i = 0; i < 1000; i++) {
		status = rte_lpm_add(lpm, ip, depth, next_hop_add);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip, &next_hop_return);
		TEST_LPM_ASSERT((status == 0) &&
				(next_hop_return == next_hop_add));

		ipx4 = _mm_set_epi32(ip, ip + 1, ip, ip - 1);
		rte_lpm_lookupx4(lpm, ipx4, hop, UINT16_MAX);
		TEST_LPM_ASSERT(hop[0] == UINT16_MAX);
		TEST_LPM_ASSERT(hop[1] == next_hop_add);
		TEST_LPM_ASSERT(hop[2] == UINT16_MAX);
		TEST_LPM_ASSERT(hop[3] == next_hop_add);

		status = rte_lpm_delete(lpm, ip, depth);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip, &next_hop_return);
		TEST_LPM_ASSERT(status == -ENOENT);
	}

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 14
0
/*
 * Fore TBL8 extension exhaustion. Add 256 rules that require a tbl8 extension.
 * No more tbl8 extensions will be allowed. Now add one more rule that required
 * a tbl8 extension and get fail.
 * */
int32_t
test14(void)
{

	/* We only use depth = 32 in the loop below so we must make sure
	 * that we have enough storage for all rules at that depth*/

	struct rte_lpm *lpm = NULL;
	uint32_t ip;
	uint8_t depth, next_hop_add, next_hop_return;
	int32_t status = 0;

	/* Add enough space for 256 rules for every depth */
	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, 256 * 32, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	depth = 32;
	next_hop_add = 100;
	ip = IPv4(0, 0, 0, 0);

	/* Add 256 rules that require a tbl8 extension */
	for (; ip <= IPv4(0, 0, 255, 0); ip += 256) {
		status = rte_lpm_add(lpm, ip, depth, next_hop_add);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip, &next_hop_return);
		TEST_LPM_ASSERT((status == 0) &&
				(next_hop_return == next_hop_add));
	}

	/* All tbl8 extensions have been used above. Try to add one more and
	 * we get a fail */
	ip = IPv4(1, 0, 0, 0);
	depth = 32;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status < 0);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 15
0
/*
 * Sequence of operations for find existing lpm table
 *
 *  - create table
 *  - find existing table: hit
 *  - find non-existing table: miss
 *
 */
int32_t
test15(void)
{
	struct rte_lpm *lpm = NULL, *result = NULL;

	/* Create lpm  */
	lpm = rte_lpm_create("lpm_find_existing", SOCKET_ID_ANY, 256 * 32, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	/* Try to find existing lpm */
	result = rte_lpm_find_existing("lpm_find_existing");
	TEST_LPM_ASSERT(result == lpm);

	/* Try to find non-existing lpm */
	result = rte_lpm_find_existing("lpm_find_non_existing");
	TEST_LPM_ASSERT(result == NULL);

	/* Cleanup. */
	rte_lpm_delete_all(lpm);
	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 16
0
/*
 * test failure condition of overloading the tbl8 so no more will fit
 * Check we get an error return value in that case
 */
int32_t
test16(void)
{
	uint32_t ip;
	struct rte_lpm *lpm = rte_lpm_create(__func__, SOCKET_ID_ANY,
			256 * 32, 0);

	/* ip loops through all possibilities for top 24 bits of address */
	for (ip = 0; ip < 0xFFFFFF; ip++){
		/* add an entry within a different tbl8 each time, since
		 * depth >24 and the top 24 bits are different */
		if (rte_lpm_add(lpm, (ip << 8) + 0xF0, 30, 0) < 0)
			break;
	}

	if (ip != RTE_LPM_TBL8_NUM_GROUPS) {
		printf("Error, unexpected failure with filling tbl8 groups\n");
		printf("Failed after %u additions, expected after %u\n",
				(unsigned)ip, (unsigned)RTE_LPM_TBL8_NUM_GROUPS);
	}

	rte_lpm_free(lpm);
	return 0;
}
Esempio n. 17
0
/*
 * This function is run in the secondary instance to test that creation of
 * objects fails in a secondary
 */
static int
run_object_creation_tests(void)
{
	const unsigned flags = 0;
	const unsigned size = 1024;
	const unsigned elt_size = 64;
	const unsigned cache_size = 64;
	const unsigned priv_data_size = 32;

	printf("### Testing object creation - expect lots of mz reserve errors!\n");

	rte_errno = 0;
	if ((rte_memzone_reserve("test_mz", size, rte_socket_id(),
				 flags) == NULL) &&
	    (rte_memzone_lookup("test_mz") == NULL)) {
		printf("Error: unexpected return value from rte_memzone_reserve\n");
		return -1;
	}
	printf("# Checked rte_memzone_reserve() OK\n");

	rte_errno = 0;
	if ((rte_ring_create(
		     "test_ring", size, rte_socket_id(), flags) == NULL) &&
		    (rte_ring_lookup("test_ring") == NULL)){
		printf("Error: unexpected return value from rte_ring_create()\n");
		return -1;
	}
	printf("# Checked rte_ring_create() OK\n");

	rte_errno = 0;
	if ((rte_mempool_create("test_mp", size, elt_size, cache_size,
				priv_data_size, NULL, NULL, NULL, NULL,
				rte_socket_id(), flags) == NULL) &&
	     (rte_mempool_lookup("test_mp") == NULL)){
		printf("Error: unexpected return value from rte_mempool_create()\n");
		return -1;
	}
	printf("# Checked rte_mempool_create() OK\n");

#ifdef RTE_LIBRTE_HASH
	const struct rte_hash_parameters hash_params = { .name = "test_mp_hash" };
	rte_errno=0;
	if ((rte_hash_create(&hash_params) != NULL) &&
	    (rte_hash_find_existing(hash_params.name) == NULL)){
		printf("Error: unexpected return value from rte_hash_create()\n");
		return -1;
	}
	printf("# Checked rte_hash_create() OK\n");

	const struct rte_fbk_hash_params fbk_params = { .name = "test_fbk_mp_hash" };
	rte_errno=0;
	if ((rte_fbk_hash_create(&fbk_params) != NULL) &&
	    (rte_fbk_hash_find_existing(fbk_params.name) == NULL)){
		printf("Error: unexpected return value from rte_fbk_hash_create()\n");
		return -1;
	}
	printf("# Checked rte_fbk_hash_create() OK\n");
#endif

#ifdef RTE_LIBRTE_LPM
	rte_errno=0;
	struct rte_lpm_config config;

	config.max_rules = rte_socket_id();
	config.number_tbl8s = 256;
	config.flags = 0;
	if ((rte_lpm_create("test_lpm", size, &config) != NULL) &&
	    (rte_lpm_find_existing("test_lpm") == NULL)){
		printf("Error: unexpected return value from rte_lpm_create()\n");
		return -1;
	}
	printf("# Checked rte_lpm_create() OK\n");
#endif

	/* Run a test_pci call */
	if (test_pci() != 0) {
		printf("PCI scan failed in secondary\n");
		if (getuid() == 0) /* pci scans can fail as non-root */
			return -1;
	} else
		printf("PCI scan succeeded in secondary\n");

	return 0;
}

/* if called in a primary process, just spawns off a secondary process to
 * run validation tests - which brings us right back here again...
 * if called in a secondary process, this runs a series of API tests to check
 * how things run in a secondary instance.
 */
int
test_mp_secondary(void)
{
	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		if (!test_pci_run) {
			printf("=== Running pre-requisite test of test_pci\n");
			test_pci();
			printf("=== Requisite test done\n");
		}
		return run_secondary_instances();
	}

	printf("IN SECONDARY PROCESS\n");

	return run_object_creation_tests();
}

static struct test_command multiprocess_cmd = {
	.command = "multiprocess_autotest",
	.callback = test_mp_secondary,
};
REGISTER_TEST_COMMAND(multiprocess_cmd);
Esempio n. 18
0
void *
mg_table_lpm_create(void *params, int socket_id, uint32_t entry_size)
{
	struct rte_table_lpm_params *p = (struct rte_table_lpm_params *) params;
	struct rte_table_lpm *lpm;
	uint32_t total_size, nht_size;

	/* Check input parameters */
	if (p == NULL) {
		RTE_LOG(ERR, TABLE, "%s: NULL input parameters\n", __func__);
		return NULL;
	}
	if (p->n_rules == 0) {
		RTE_LOG(ERR, TABLE, "%s: Invalid n_rules\n", __func__);
		return NULL;
	}
	if (p->entry_unique_size == 0) {
		RTE_LOG(ERR, TABLE, "%s: Invalid entry_unique_size\n",
			__func__);
		return NULL;
	}
	if (p->entry_unique_size > entry_size) {
		RTE_LOG(ERR, TABLE, "%s: Invalid entry_unique_size\n",
			__func__);
		return NULL;
	}
  // XXX ASK: does a 32 bit aligned offset make any sense here?
  //      this prevents me from accessing ip address in payload
	//if ((p->offset & 0x3) != 0) {
	//	RTE_LOG(ERR, TABLE, "%s: Invalid offset\n", __func__);
	//	return NULL;
	//}

	entry_size = RTE_ALIGN(entry_size, sizeof(uint64_t));

	/* Memory allocation */
	nht_size = RTE_TABLE_LPM_MAX_NEXT_HOPS * entry_size;
	total_size = sizeof(struct rte_table_lpm) + nht_size;
	lpm = rte_zmalloc_socket("TABLE", total_size, CACHE_LINE_SIZE,
		socket_id);
	if (lpm == NULL) {
		RTE_LOG(ERR, TABLE,
			"%s: Cannot allocate %u bytes for LPM table\n",
			__func__, total_size);
		return NULL;
	}

	/* LPM low-level table creation */
	lpm->lpm = rte_lpm_create("LPM", socket_id, p->n_rules, 0);
	if (lpm->lpm == NULL) {
		rte_free(lpm);
		RTE_LOG(ERR, TABLE, "Unable to create low-level LPM table\n");
		return NULL;
	}

	/* Memory initialization */
	lpm->entry_size = entry_size;
	lpm->entry_unique_size = p->entry_unique_size;
	lpm->n_rules = p->n_rules;
	lpm->offset = p->offset;

	return lpm;
}
Esempio n. 19
0
/*
 * - Add rule that covers a TBL24 range previously invalid & lookup (& delete &
 *   lookup)
 * - Add rule that extends a TBL24 invalid entry & lookup (& delete & lookup)
 * - Add rule that extends a TBL24 valid entry & lookup for both rules (&
 *   delete & lookup)
 * - Add rule that updates the next hop in TBL24 & lookup (& delete & lookup)
 * - Add rule that updates the next hop in TBL8 & lookup (& delete & lookup)
 * - Delete a rule that is not present in the TBL24 & lookup
 * - Delete a rule that is not present in the TBL8 & lookup
 *
 */
int32_t
test10(void)
{

	struct rte_lpm *lpm = NULL;
	uint32_t ip;
	uint8_t depth, next_hop_add, next_hop_return;
	int32_t status = 0;

	/* Add rule that covers a TBL24 range previously invalid & lookup
	 * (& delete & lookup) */
	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, RTE_LPM_HEAP);
	TEST_LPM_ASSERT(lpm != NULL);

	ip = IPv4(128, 0, 0, 0);
	depth = 16;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	ip = IPv4(128, 0, 0, 0);
	depth = 25;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	rte_lpm_delete_all(lpm);

	/* Add rule that extends a TBL24 valid entry & lookup for both rules
	 * (& delete & lookup) */

	ip = IPv4(128, 0, 0, 0);
	depth = 24;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	ip = IPv4(128, 0, 0, 10);
	depth = 32;
	next_hop_add = 101;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	ip = IPv4(128, 0, 0, 0);
	next_hop_add = 100;

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	ip = IPv4(128, 0, 0, 0);
	depth = 24;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	ip = IPv4(128, 0, 0, 10);
	depth = 32;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Add rule that updates the next hop in TBL24 & lookup
	 * (& delete & lookup) */

	ip = IPv4(128, 0, 0, 0);
	depth = 24;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	next_hop_add = 101;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Add rule that updates the next hop in TBL8 & lookup
	 * (& delete & lookup) */

	ip = IPv4(128, 0, 0, 0);
	depth = 32;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	next_hop_add = 101;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Delete a rule that is not present in the TBL24 & lookup */

	ip = IPv4(128, 0, 0, 0);
	depth = 24;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status < 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Delete a rule that is not present in the TBL8 & lookup */

	ip = IPv4(128, 0, 0, 0);
	depth = 32;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status < 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 20
0
/*
 * - Add & lookup to hit invalid TBL24 entry
 * - Add & lookup to hit valid TBL24 entry not extended
 * - Add & lookup to hit valid extended TBL24 entry with invalid TBL8 entry
 * - Add & lookup to hit valid extended TBL24 entry with valid TBL8 entry
 *
 */
int32_t
test9(void)
{
	struct rte_lpm *lpm = NULL;
	uint32_t ip, ip_1, ip_2;
	uint8_t depth, depth_1, depth_2, next_hop_add, next_hop_add_1,
		next_hop_add_2, next_hop_return;
	int32_t status = 0;

	/* Add & lookup to hit invalid TBL24 entry */
	ip = IPv4(128, 0, 0, 0);
	depth = 24;
	next_hop_add = 100;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Add & lookup to hit valid TBL24 entry not extended */
	ip = IPv4(128, 0, 0, 0);
	depth = 23;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	depth = 24;
	next_hop_add = 101;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	depth = 24;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	depth = 23;

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Add & lookup to hit valid extended TBL24 entry with invalid TBL8
	 * entry */
	ip = IPv4(128, 0, 0, 0);
	depth = 32;
	next_hop_add = 100;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	ip = IPv4(128, 0, 0, 5);
	depth = 32;
	next_hop_add = 101;

	status = rte_lpm_add(lpm, ip, depth, next_hop_add);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	ip = IPv4(128, 0, 0, 0);
	depth = 32;
	next_hop_add = 100;

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add));

	status = rte_lpm_delete(lpm, ip, depth);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_delete_all(lpm);

	/* Add & lookup to hit valid extended TBL24 entry with valid TBL8
	 * entry */
	ip_1 = IPv4(128, 0, 0, 0);
	depth_1 = 25;
	next_hop_add_1 = 101;

	ip_2 = IPv4(128, 0, 0, 5);
	depth_2 = 32;
	next_hop_add_2 = 102;

	next_hop_return = 0;

	status = rte_lpm_add(lpm, ip_1, depth_1, next_hop_add_1);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip_1, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add_1));

	status = rte_lpm_add(lpm, ip_2, depth_2, next_hop_add_2);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip_2, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add_2));

	status = rte_lpm_delete(lpm, ip_2, depth_2);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip_2, &next_hop_return);
	TEST_LPM_ASSERT((status == 0) && (next_hop_return == next_hop_add_1));

	status = rte_lpm_delete(lpm, ip_1, depth_1);
	TEST_LPM_ASSERT(status == 0);

	status = rte_lpm_lookup(lpm, ip_1, &next_hop_return);
	TEST_LPM_ASSERT(status == -ENOENT);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 21
0
/*
 * Use rte_lpm_add to add rules which effect only the second half of the lpm
 * table. Use all possible depths ranging from 1..32. Set the next hop = to the
 * depth. Check lookup hit for on every add and check for lookup miss on the
 * first half of the lpm table after each add. Finally delete all rules going
 * backwards (i.e. from depth = 32 ..1) and carry out a lookup after each
 * delete. The lookup should return the next_hop_add value related to the
 * previous depth value (i.e. depth -1).
 */
int32_t
test8(void)
{
	__m128i ipx4;
	uint16_t hop[4];
	struct rte_lpm *lpm = NULL;
	uint32_t ip1 = IPv4(127, 255, 255, 255), ip2 = IPv4(128, 0, 0, 0);
	uint8_t depth, next_hop_add, next_hop_return;
	int32_t status = 0;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	/* Loop with rte_lpm_add. */
	for (depth = 1; depth <= 32; depth++) {
		/* Let the next_hop_add value = depth. Just for change. */
		next_hop_add = depth;

		status = rte_lpm_add(lpm, ip2, depth, next_hop_add);
		TEST_LPM_ASSERT(status == 0);

		/* Check IP in first half of tbl24 which should be empty. */
		status = rte_lpm_lookup(lpm, ip1, &next_hop_return);
		TEST_LPM_ASSERT(status == -ENOENT);

		status = rte_lpm_lookup(lpm, ip2, &next_hop_return);
		TEST_LPM_ASSERT((status == 0) &&
			(next_hop_return == next_hop_add));

		ipx4 = _mm_set_epi32(ip2, ip1, ip2, ip1);
		rte_lpm_lookupx4(lpm, ipx4, hop, UINT16_MAX);
		TEST_LPM_ASSERT(hop[0] == UINT16_MAX);
		TEST_LPM_ASSERT(hop[1] == next_hop_add);
		TEST_LPM_ASSERT(hop[2] == UINT16_MAX);
		TEST_LPM_ASSERT(hop[3] == next_hop_add);
	}

	/* Loop with rte_lpm_delete. */
	for (depth = 32; depth >= 1; depth--) {
		next_hop_add = (uint8_t) (depth - 1);

		status = rte_lpm_delete(lpm, ip2, depth);
		TEST_LPM_ASSERT(status == 0);

		status = rte_lpm_lookup(lpm, ip2, &next_hop_return);

		if (depth != 1) {
			TEST_LPM_ASSERT((status == 0) &&
				(next_hop_return == next_hop_add));
		}
		else {
			TEST_LPM_ASSERT(status == -ENOENT);
		}

		status = rte_lpm_lookup(lpm, ip1, &next_hop_return);
		TEST_LPM_ASSERT(status == -ENOENT);

		ipx4 = _mm_set_epi32(ip1, ip1, ip2, ip2);
		rte_lpm_lookupx4(lpm, ipx4, hop, UINT16_MAX);
		if (depth != 1) {
			TEST_LPM_ASSERT(hop[0] == next_hop_add);
			TEST_LPM_ASSERT(hop[1] == next_hop_add);
		} else {
			TEST_LPM_ASSERT(hop[0] == UINT16_MAX);
			TEST_LPM_ASSERT(hop[1] == UINT16_MAX);
		}
		TEST_LPM_ASSERT(hop[2] == UINT16_MAX);
		TEST_LPM_ASSERT(hop[3] == UINT16_MAX);
	}

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 22
0
/*
 * Test for overwriting of tbl8:
 *  - add rule /32 and lookup
 *  - add new rule /24 and lookup
 *	- add third rule /25 and lookup
 *	- lookup /32 and /24 rule to ensure the table has not been overwritten.
 */
int32_t
test17(void)
{
	struct rte_lpm *lpm = NULL;
	const uint32_t ip_10_32 = IPv4(10, 10, 10, 2);
	const uint32_t ip_10_24 = IPv4(10, 10, 10, 0);
	const uint32_t ip_20_25 = IPv4(10, 10, 20, 2);
	const uint8_t d_ip_10_32 = 32,
			d_ip_10_24 = 24,
			d_ip_20_25 = 25;
	const uint8_t next_hop_ip_10_32 = 100,
			next_hop_ip_10_24 = 105,
			next_hop_ip_20_25 = 111;
	uint8_t next_hop_return = 0;
	int32_t status = 0;

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, MAX_RULES, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	if ((status = rte_lpm_add(lpm, ip_10_32, d_ip_10_32,
			next_hop_ip_10_32)) < 0)
		return -1;

	status = rte_lpm_lookup(lpm, ip_10_32, &next_hop_return);
	uint8_t test_hop_10_32 = next_hop_return;
	TEST_LPM_ASSERT(status == 0);
	TEST_LPM_ASSERT(next_hop_return == next_hop_ip_10_32);

	if ((status = rte_lpm_add(lpm, ip_10_24, d_ip_10_24,
			next_hop_ip_10_24)) < 0)
			return -1;

	status = rte_lpm_lookup(lpm, ip_10_24, &next_hop_return);
	uint8_t test_hop_10_24 = next_hop_return;
	TEST_LPM_ASSERT(status == 0);
	TEST_LPM_ASSERT(next_hop_return == next_hop_ip_10_24);

	if ((status = rte_lpm_add(lpm, ip_20_25, d_ip_20_25,
			next_hop_ip_20_25)) < 0)
		return -1;

	status = rte_lpm_lookup(lpm, ip_20_25, &next_hop_return);
	uint8_t test_hop_20_25 = next_hop_return;
	TEST_LPM_ASSERT(status == 0);
	TEST_LPM_ASSERT(next_hop_return == next_hop_ip_20_25);

	if (test_hop_10_32 == test_hop_10_24) {
		printf("Next hop return equal\n");
		return -1;
	}

	if (test_hop_10_24 == test_hop_20_25){
		printf("Next hop return equal\n");
		return -1;
	}

	status = rte_lpm_lookup(lpm, ip_10_32, &next_hop_return);
	TEST_LPM_ASSERT(status == 0);
	TEST_LPM_ASSERT(next_hop_return == next_hop_ip_10_32);

	status = rte_lpm_lookup(lpm, ip_10_24, &next_hop_return);
	TEST_LPM_ASSERT(status == 0);
	TEST_LPM_ASSERT(next_hop_return == next_hop_ip_10_24);

	rte_lpm_free(lpm);

	return PASS;
}
Esempio n. 23
0
int32_t
perf_test(void)
{
	struct rte_lpm *lpm = NULL;
	uint64_t begin, total_time, lpm_used_entries = 0;
	unsigned i, j;
	uint8_t next_hop_add = 0xAA, next_hop_return = 0;
	int status = 0;
	uint64_t cache_line_counter = 0;
	int64_t count = 0;

	rte_srand(rte_rdtsc());

	printf("No. routes = %u\n", (unsigned) NUM_ROUTE_ENTRIES);

	print_route_distribution(large_route_table, (uint32_t) NUM_ROUTE_ENTRIES);

	lpm = rte_lpm_create(__func__, SOCKET_ID_ANY, 1000000, 0);
	TEST_LPM_ASSERT(lpm != NULL);

	/* Measue add. */
	begin = rte_rdtsc();

	for (i = 0; i < NUM_ROUTE_ENTRIES; i++) {
		if (rte_lpm_add(lpm, large_route_table[i].ip,
				large_route_table[i].depth, next_hop_add) == 0)
			status++;
	}
	/* End Timer. */
	total_time = rte_rdtsc() - begin;

	printf("Unique added entries = %d\n", status);
	/* Obtain add statistics. */
	for (i = 0; i < RTE_LPM_TBL24_NUM_ENTRIES; i++) {
		if (lpm->tbl24[i].valid)
			lpm_used_entries++;

		if (i % 32 == 0){
			if ((uint64_t)count < lpm_used_entries) {
				cache_line_counter++;
				count = lpm_used_entries;
			}
		}
	}

	printf("Used table 24 entries = %u (%g%%)\n",
			(unsigned) lpm_used_entries,
			(lpm_used_entries * 100.0) / RTE_LPM_TBL24_NUM_ENTRIES);
	printf("64 byte Cache entries used = %u (%u bytes)\n",
			(unsigned) cache_line_counter, (unsigned) cache_line_counter * 64);

	printf("Average LPM Add: %g cycles\n", (double)total_time / NUM_ROUTE_ENTRIES);

	/* Measure single Lookup */
	total_time = 0;
	count = 0;

	for (i = 0; i < ITERATIONS; i ++) {
		static uint32_t ip_batch[BATCH_SIZE];

		for (j = 0; j < BATCH_SIZE; j ++)
			ip_batch[j] = rte_rand();

		/* Lookup per batch */
		begin = rte_rdtsc();

		for (j = 0; j < BATCH_SIZE; j ++) {
			if (rte_lpm_lookup(lpm, ip_batch[j], &next_hop_return) != 0)
				count++;
		}

		total_time += rte_rdtsc() - begin;

	}
	printf("Average LPM Lookup: %.1f cycles (fails = %.1f%%)\n",
			(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
			(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));

	/* Measure bulk Lookup */
	total_time = 0;
	count = 0;
	for (i = 0; i < ITERATIONS; i ++) {
		static uint32_t ip_batch[BATCH_SIZE];
		uint16_t next_hops[BULK_SIZE];

		/* Create array of random IP addresses */
		for (j = 0; j < BATCH_SIZE; j ++)
			ip_batch[j] = rte_rand();

		/* Lookup per batch */
		begin = rte_rdtsc();
		for (j = 0; j < BATCH_SIZE; j += BULK_SIZE) {
			unsigned k;
			rte_lpm_lookup_bulk(lpm, &ip_batch[j], next_hops, BULK_SIZE);
			for (k = 0; k < BULK_SIZE; k++)
				if (unlikely(!(next_hops[k] & RTE_LPM_LOOKUP_SUCCESS)))
					count++;
		}

		total_time += rte_rdtsc() - begin;
	}
	printf("BULK LPM Lookup: %.1f cycles (fails = %.1f%%)\n",
			(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
			(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));

	/* Measure LookupX4 */
	total_time = 0;
	count = 0;
	for (i = 0; i < ITERATIONS; i++) {
		static uint32_t ip_batch[BATCH_SIZE];
		uint16_t next_hops[4];

		/* Create array of random IP addresses */
		for (j = 0; j < BATCH_SIZE; j++)
			ip_batch[j] = rte_rand();

		/* Lookup per batch */
		begin = rte_rdtsc();
		for (j = 0; j < BATCH_SIZE; j += RTE_DIM(next_hops)) {
			unsigned k;
			__m128i ipx4;

			ipx4 = _mm_loadu_si128((__m128i *)(ip_batch + j));
			ipx4 = *(__m128i *)(ip_batch + j);
			rte_lpm_lookupx4(lpm, ipx4, next_hops, UINT16_MAX);
			for (k = 0; k < RTE_DIM(next_hops); k++)
				if (unlikely(next_hops[k] == UINT16_MAX))
					count++;
		}

		total_time += rte_rdtsc() - begin;
	}
	printf("LPM LookupX4: %.1f cycles (fails = %.1f%%)\n",
			(double)total_time / ((double)ITERATIONS * BATCH_SIZE),
			(count * 100.0) / (double)(ITERATIONS * BATCH_SIZE));

	/* Delete */
	status = 0;
	begin = rte_rdtsc();

	for (i = 0; i < NUM_ROUTE_ENTRIES; i++) {
		/* rte_lpm_delete(lpm, ip, depth) */
		status += rte_lpm_delete(lpm, large_route_table[i].ip,
				large_route_table[i].depth);
	}

	total_time += rte_rdtsc() - begin;

	printf("Average LPM Delete: %g cycles\n",
			(double)total_time / NUM_ROUTE_ENTRIES);

	rte_lpm_delete_all(lpm);
	rte_lpm_free(lpm);

	return PASS;
}