static NLboolean __nlInvert_SUPERLU(__NLContext *context) { /* OpenNL Context */ NLfloat* b = (context->least_squares)? context->Mtb: context->b; NLfloat* x = context->x; NLuint n = context->n, j; /* SuperLU variables */ SuperMatrix B; NLint info; for(j=0; j<context->nb_rhs; j++, b+=n, x+=n) { /* Create superlu array for B */ sCreate_Dense_Matrix( &B, n, 1, b, n, SLU_DN, /* Fortran-type column-wise storage */ SLU_S, /* floats */ SLU_GE /* general */ ); /* Forward/Back substitution to compute x */ sgstrs(TRANS, &(context->slu.L), &(context->slu.U), context->slu.perm_c, context->slu.perm_r, &B, &(context->slu.stat), &info); if(info == 0) memcpy(x, ((DNformat*)B.Store)->nzval, sizeof(*x)*n); Destroy_SuperMatrix_Store(&B); } return (info == 0); }
int main(int argc, char *argv[]) { void smatvec_mult(float alpha, float x[], float beta, float y[]); void spsolve(int n, float x[], float y[]); extern int sfgmr( int n, void (*matvec_mult)(float, float [], float, float []), void (*psolve)(int n, float [], float[]), float *rhs, float *sol, double tol, int restrt, int *itmax, FILE *fits); extern int sfill_diag(int n, NCformat *Astore); char equed[1] = {'B'}; yes_no_t equil; trans_t trans; SuperMatrix A, L, U; SuperMatrix B, X; NCformat *Astore; NCformat *Ustore; SCformat *Lstore; GlobalLU_t Glu; /* facilitate multiple factorizations with SamePattern_SameRowPerm */ float *a; int *asub, *xa; int *etree; int *perm_c; /* column permutation vector */ int *perm_r; /* row permutations from partial pivoting */ int nrhs, ldx, lwork, info, m, n, nnz; float *rhsb, *rhsx, *xact; float *work = NULL; float *R, *C; float u, rpg, rcond; float zero = 0.0; float one = 1.0; mem_usage_t mem_usage; superlu_options_t options; SuperLUStat_t stat; FILE *fp = stdin; int restrt, iter, maxit, i; double resid; float *x, *b; #ifdef DEBUG extern int num_drop_L, num_drop_U; #endif #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Enter main()"); #endif /* Defaults */ lwork = 0; nrhs = 1; trans = NOTRANS; /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 0.1; //different from complete LU options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; options.RowPerm = LargeDiag; options.ILU_DropTol = 1e-4; options.ILU_FillTol = 1e-2; options.ILU_FillFactor = 10.0; options.ILU_DropRule = DROP_BASIC | DROP_AREA; options.ILU_Norm = INF_NORM; options.ILU_MILU = SILU; */ ilu_set_default_options(&options); /* Modify the defaults. */ options.PivotGrowth = YES; /* Compute reciprocal pivot growth */ options.ConditionNumber = YES;/* Compute reciprocal condition number */ if ( lwork > 0 ) { work = SUPERLU_MALLOC(lwork); if ( !work ) ABORT("Malloc fails for work[]."); } /* Read matrix A from a file in Harwell-Boeing format.*/ if (argc < 2) { printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n" "-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n" "-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n" "-t -triplet:\n\t[INPUT] is a triplet format matrix.\n", argv[0]); return 0; } else { switch (argv[1][1]) { case 'H': case 'h': printf("Input a Harwell-Boeing format matrix:\n"); sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa); break; case 'R': case 'r': printf("Input a Rutherford-Boeing format matrix:\n"); sreadrb(&m, &n, &nnz, &a, &asub, &xa); break; case 'T': case 't': printf("Input a triplet format matrix:\n"); sreadtriple(&m, &n, &nnz, &a, &asub, &xa); break; default: printf("Unrecognized format.\n"); return 0; } } sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; sfill_diag(n, Astore); printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); fflush(stdout); /* Generate the right-hand side */ if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[]."); if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE); sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(trans, nrhs, xact, ldx, &A, &B); if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[]."); if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[]."); if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[]."); if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for R[]."); if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for C[]."); info = 0; #ifdef DEBUG num_drop_L = 0; num_drop_U = 0; #endif /* Initialize the statistics variables. */ StatInit(&stat); /* Compute the incomplete factorization and compute the condition number and pivot growth using dgsisx. */ B.ncol = 0; /* not to perform triangular solution */ sgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, &Glu, &mem_usage, &stat, &info); /* Set RHS for GMRES. */ if (!(b = floatMalloc(m))) ABORT("Malloc fails for b[]."); if (*equed == 'R' || *equed == 'B') { for (i = 0; i < n; ++i) b[i] = rhsb[i] * R[i]; } else { for (i = 0; i < m; i++) b[i] = rhsb[i]; } printf("sgsisx(): info %d, equed %c\n", info, equed[0]); if (info > 0 || rcond < 1e-8 || rpg > 1e8) printf("WARNING: This preconditioner might be unstable.\n"); if ( info == 0 || info == n+1 ) { if ( options.PivotGrowth == YES ) printf("Recip. pivot growth = %e\n", rpg); if ( options.ConditionNumber == YES ) printf("Recip. condition number = %e\n", rcond); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz); printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n", ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n) / (double)Astore->nnz); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); fflush(stdout); /* Set the global variables. */ GLOBAL_A = &A; GLOBAL_L = &L; GLOBAL_U = &U; GLOBAL_STAT = &stat; GLOBAL_PERM_C = perm_c; GLOBAL_PERM_R = perm_r; GLOBAL_OPTIONS = &options; GLOBAL_R = R; GLOBAL_C = C; GLOBAL_MEM_USAGE = &mem_usage; /* Set the options to do solve-only. */ options.Fact = FACTORED; options.PivotGrowth = NO; options.ConditionNumber = NO; /* Set the variables used by GMRES. */ restrt = SUPERLU_MIN(n / 3 + 1, 50); maxit = 1000; iter = maxit; resid = 1e-8; if (!(x = floatMalloc(n))) ABORT("Malloc fails for x[]."); if (info <= n + 1) { int i_1 = 1; double maxferr = 0.0, nrmA, nrmB, res, t; float temp; extern float snrm2_(int *, float [], int *); extern void saxpy_(int *, float *, float [], int *, float [], int *); /* Initial guess */ for (i = 0; i < n; i++) x[i] = zero; t = SuperLU_timer_(); /* Call GMRES */ sfgmr(n, smatvec_mult, spsolve, b, x, resid, restrt, &iter, stdout); t = SuperLU_timer_() - t; /* Output the result. */ nrmA = snrm2_(&(Astore->nnz), (float *)((DNformat *)A.Store)->nzval, &i_1); nrmB = snrm2_(&m, b, &i_1); sp_sgemv("N", -1.0, &A, x, 1, 1.0, b, 1); res = snrm2_(&m, b, &i_1); resid = res / nrmB; printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, " "relres = %.1e\n", nrmA, nrmB, res, resid); if (iter >= maxit) { if (resid >= 1.0) iter = -180; else if (resid > 1e-8) iter = -111; } printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n", iter, resid, t); /* Scale the solution back if equilibration was performed. */ if (*equed == 'C' || *equed == 'B') for (i = 0; i < n; i++) x[i] *= C[i]; for (i = 0; i < m; i++) { maxferr = SUPERLU_MAX(maxferr, fabs(x[i] - xact[i])); } printf("||X-X_true||_oo = %.1e\n", maxferr); } #ifdef DEBUG printf("%d entries in L and %d entries in U dropped.\n", num_drop_L, num_drop_U); #endif fflush(stdout); if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); SUPERLU_FREE (rhsb); SUPERLU_FREE (rhsx); SUPERLU_FREE (xact); SUPERLU_FREE (etree); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); SUPERLU_FREE (R); SUPERLU_FREE (C); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); Destroy_SuperMatrix_Store(&X); if ( lwork >= 0 ) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } SUPERLU_FREE(b); SUPERLU_FREE(x); #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Exit main()"); #endif return 0; }
int main(int argc, char *argv[]) { char equed[1]; yes_no_t equil; trans_t trans; SuperMatrix A, L, U; SuperMatrix B, X; NCformat *Astore; NCformat *Ustore; SCformat *Lstore; float *a; int *asub, *xa; int *perm_r; /* row permutations from partial pivoting */ int *perm_c; /* column permutation vector */ int *etree; void *work; int info, lwork, nrhs, ldx; int i, m, n, nnz; float *rhsb, *rhsx, *xact; float *R, *C; float *ferr, *berr; float u, rpg, rcond; mem_usage_t mem_usage; superlu_options_t options; SuperLUStat_t stat; extern void parse_command_line(); #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Enter main()"); #endif /* Defaults */ lwork = 0; nrhs = 1; equil = YES; u = 1.0; trans = NOTRANS; /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options(&options); /* Can use command line input to modify the defaults. */ parse_command_line(argc, argv, &lwork, &u, &equil, &trans); options.Equil = equil; options.DiagPivotThresh = u; options.Trans = trans; /* Add more functionalities that the defaults. */ options.PivotGrowth = YES; /* Compute reciprocal pivot growth */ options.ConditionNumber = YES;/* Compute reciprocal condition number */ options.IterRefine = SLU_SINGLE; /* Perform single-precision refinement */ if ( lwork > 0 ) { work = SUPERLU_MALLOC(lwork); if ( !work ) { ABORT("SLINSOLX: cannot allocate work[]"); } } /* Read matrix A from a file in Harwell-Boeing format.*/ sreadhb(&m, &n, &nnz, &a, &asub, &xa); sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[]."); if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE); sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(trans, nrhs, xact, ldx, &A, &B); if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[]."); if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[]."); if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[]."); if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for R[]."); if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for C[]."); if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for ferr[]."); if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for berr[]."); /* Initialize the statistics variables. */ StatInit(&stat); /* Solve the system and compute the condition number and error bounds using dgssvx. */ sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info); printf("sgssvx(): info %d\n", info); if ( info == 0 || info == n+1 ) { /* This is how you could access the solution matrix. */ float *sol = (float*) ((DNformat*) X.Store)->nzval; if ( options.PivotGrowth == YES ) printf("Recip. pivot growth = %e\n", rpg); if ( options.ConditionNumber == YES ) printf("Recip. condition number = %e\n", rcond); if ( options.IterRefine != NOREFINE ) { printf("Iterative Refinement:\n"); printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR"); for (i = 0; i < nrhs; ++i) printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]); } Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); fflush(stdout); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); SUPERLU_FREE (rhsb); SUPERLU_FREE (rhsx); SUPERLU_FREE (xact); SUPERLU_FREE (etree); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); SUPERLU_FREE (R); SUPERLU_FREE (C); SUPERLU_FREE (ferr); SUPERLU_FREE (berr); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); Destroy_SuperMatrix_Store(&X); if ( lwork == 0 ) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } else if ( lwork > 0 ) { SUPERLU_FREE(work); } #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Exit main()"); #endif }
main(int argc, char *argv[]) { /* * Purpose * ======= * * SDRIVE is the main test program for the FLOAT linear * equation driver routines SGSSV and SGSSVX. * * The program is invoked by a shell script file -- stest.csh. * The output from the tests are written into a file -- stest.out. * * ===================================================================== */ float *a, *a_save; int *asub, *asub_save; int *xa, *xa_save; SuperMatrix A, B, X, L, U; SuperMatrix ASAV, AC; GlobalLU_t Glu; /* Not needed on return. */ mem_usage_t mem_usage; int *perm_r; /* row permutation from partial pivoting */ int *perm_c, *pc_save; /* column permutation */ int *etree; float zero = 0.0; float *R, *C; float *ferr, *berr; float *rwork; float *wwork; void *work; int info, lwork, nrhs, panel_size, relax; int m, n, nnz; float *xact; float *rhsb, *solx, *bsav; int ldb, ldx; float rpg, rcond; int i, j, k1; float rowcnd, colcnd, amax; int maxsuper, rowblk, colblk; int prefact, nofact, equil, iequed; int nt, nrun, nfail, nerrs, imat, fimat, nimat; int nfact, ifact, itran; int kl, ku, mode, lda; int zerot, izero, ioff; double u; float anorm, cndnum; float *Afull; float result[NTESTS]; superlu_options_t options; fact_t fact; trans_t trans; SuperLUStat_t stat; static char matrix_type[8]; static char equed[1], path[4], sym[1], dist[1]; FILE *fp; /* Fixed set of parameters */ int iseed[] = {1988, 1989, 1990, 1991}; static char equeds[] = {'N', 'R', 'C', 'B'}; static fact_t facts[] = {FACTORED, DOFACT, SamePattern, SamePattern_SameRowPerm}; static trans_t transs[] = {NOTRANS, TRANS, CONJ}; /* Some function prototypes */ extern int sgst01(int, int, SuperMatrix *, SuperMatrix *, SuperMatrix *, int *, int *, float *); extern int sgst02(trans_t, int, int, int, SuperMatrix *, float *, int, float *, int, float *resid); extern int sgst04(int, int, float *, int, float *, int, float rcond, float *resid); extern int sgst07(trans_t, int, int, SuperMatrix *, float *, int, float *, int, float *, int, float *, float *, float *); extern int slatb4_slu(char *, int *, int *, int *, char *, int *, int *, float *, int *, float *, char *); extern int slatms_slu(int *, int *, char *, int *, char *, float *d, int *, float *, float *, int *, int *, char *, float *, int *, float *, int *); extern int sp_sconvert(int, int, float *, int, int, int, float *a, int *, int *, int *); /* Executable statements */ strcpy(path, "SGE"); nrun = 0; nfail = 0; nerrs = 0; /* Defaults */ lwork = 0; n = 1; nrhs = 1; panel_size = sp_ienv(1); relax = sp_ienv(2); u = 1.0; strcpy(matrix_type, "LA"); parse_command_line(argc, argv, matrix_type, &n, &panel_size, &relax, &nrhs, &maxsuper, &rowblk, &colblk, &lwork, &u, &fp); if ( lwork > 0 ) { work = SUPERLU_MALLOC(lwork); if ( !work ) { fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork); exit (-1); } } /* Set the default input options. */ set_default_options(&options); options.DiagPivotThresh = u; options.PrintStat = NO; options.PivotGrowth = YES; options.ConditionNumber = YES; options.IterRefine = SLU_SINGLE; if ( strcmp(matrix_type, "LA") == 0 ) { /* Test LAPACK matrix suite. */ m = n; lda = SUPERLU_MAX(n, 1); nnz = n * n; /* upper bound */ fimat = 1; nimat = NTYPES; Afull = floatCalloc(lda * n); sallocateA(n, nnz, &a, &asub, &xa); } else { /* Read a sparse matrix */ fimat = nimat = 0; sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa); } sallocateA(n, nnz, &a_save, &asub_save, &xa_save); rhsb = floatMalloc(m * nrhs); bsav = floatMalloc(m * nrhs); solx = floatMalloc(n * nrhs); ldb = m; ldx = n; sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE); sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); etree = intMalloc(n); perm_r = intMalloc(n); perm_c = intMalloc(n); pc_save = intMalloc(n); R = (float *) SUPERLU_MALLOC(m*sizeof(float)); C = (float *) SUPERLU_MALLOC(n*sizeof(float)); ferr = (float *) SUPERLU_MALLOC(nrhs*sizeof(float)); berr = (float *) SUPERLU_MALLOC(nrhs*sizeof(float)); j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs); rwork = (float *) SUPERLU_MALLOC(j*sizeof(float)); for (i = 0; i < j; ++i) rwork[i] = 0.; if ( !R ) ABORT("SUPERLU_MALLOC fails for R"); if ( !C ) ABORT("SUPERLU_MALLOC fails for C"); if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr"); if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr"); if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork"); wwork = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) ); for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i; options.ColPerm = MY_PERMC; for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */ if ( imat ) { /* Skip types 5, 6, or 7 if the matrix size is too small. */ zerot = (imat >= 5 && imat <= 7); if ( zerot && n < imat-4 ) continue; /* Set up parameters with SLATB4 and generate a test matrix with SLATMS. */ slatb4_slu(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode, &cndnum, dist); slatms_slu(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum, &anorm, &kl, &ku, "No packing", Afull, &lda, &wwork[0], &info); if ( info ) { printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail); continue; } /* For types 5-7, zero one or more columns of the matrix to test that INFO is returned correctly. */ if ( zerot ) { if ( imat == 5 ) izero = 1; else if ( imat == 6 ) izero = n; else izero = n / 2 + 1; ioff = (izero - 1) * lda; if ( imat < 7 ) { for (i = 0; i < n; ++i) Afull[ioff + i] = zero; } else { for (j = 0; j < n - izero + 1; ++j) for (i = 0; i < n; ++i) Afull[ioff + i + j*lda] = zero; } } else { izero = 0; } /* Convert to sparse representation. */ sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz); } else { izero = 0; zerot = 0; } sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); /* Save a copy of matrix A in ASAV */ sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save, SLU_NC, SLU_S, SLU_GE); sCopy_CompCol_Matrix(&A, &ASAV); /* Form exact solution. */ sGenXtrue(n, nrhs, xact, ldx); StatInit(&stat); for (iequed = 0; iequed < 4; ++iequed) { *equed = equeds[iequed]; if (iequed == 0) nfact = 4; else nfact = 1; /* Only test factored, pre-equilibrated matrix */ for (ifact = 0; ifact < nfact; ++ifact) { fact = facts[ifact]; options.Fact = fact; for (equil = 0; equil < 2; ++equil) { options.Equil = equil; prefact = ( options.Fact == FACTORED || options.Fact == SamePattern_SameRowPerm ); /* Need a first factor */ nofact = (options.Fact != FACTORED); /* Not factored */ /* Restore the matrix A. */ sCopy_CompCol_Matrix(&ASAV, &A); if ( zerot ) { if ( prefact ) continue; } else if ( options.Fact == FACTORED ) { if ( equil || iequed ) { /* Compute row and column scale factors to equilibrate matrix A. */ sgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info); /* Force equilibration. */ if ( !info && n > 0 ) { if ( strncmp(equed, "R", 1)==0 ) { rowcnd = 0.; colcnd = 1.; } else if ( strncmp(equed, "C", 1)==0 ) { rowcnd = 1.; colcnd = 0.; } else if ( strncmp(equed, "B", 1)==0 ) { rowcnd = 0.; colcnd = 0.; } } /* Equilibrate the matrix. */ slaqgs(&A, R, C, rowcnd, colcnd, amax, equed); } } if ( prefact ) { /* Need a factor for the first time */ /* Save Fact option. */ fact = options.Fact; options.Fact = DOFACT; /* Preorder the matrix, obtain the column etree. */ sp_preorder(&options, &A, perm_c, etree, &AC); /* Factor the matrix AC. */ sgstrf(&options, &AC, relax, panel_size, etree, work, lwork, perm_c, perm_r, &L, &U, &Glu, &stat, &info); if ( info ) { printf("** First factor: info %d, equed %c\n", info, *equed); if ( lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); exit(0); } } Destroy_CompCol_Permuted(&AC); /* Restore Fact option. */ options.Fact = fact; } /* if .. first time factor */ for (itran = 0; itran < NTRAN; ++itran) { trans = transs[itran]; options.Trans = trans; /* Restore the matrix A. */ sCopy_CompCol_Matrix(&ASAV, &A); /* Set the right hand side. */ sFillRHS(trans, nrhs, xact, ldx, &A, &B); sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb); /*---------------- * Test sgssv *----------------*/ if ( options.Fact == DOFACT && itran == 0) { /* Not yet factored, and untransposed */ sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx); sgssv(&options, &A, perm_c, perm_r, &L, &U, &X, &stat, &info); if ( info && info != izero ) { printf(FMT3, "sgssv", info, izero, n, nrhs, imat, nfail); } else { /* Reconstruct matrix from factors and compute residual. */ sgst01(m, n, &A, &L, &U, perm_c, perm_r, &result[0]); nt = 1; if ( izero == 0 ) { /* Compute residual of the computed solution. */ sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, wwork, ldb); sgst02(trans, m, n, nrhs, &A, solx, ldx, wwork,ldb, &result[1]); nt = 2; } /* Print information about the tests that did not pass the threshold. */ for (i = 0; i < nt; ++i) { if ( result[i] >= THRESH ) { printf(FMT1, "sgssv", n, i, result[i]); ++nfail; } } nrun += nt; } /* else .. info == 0 */ /* Restore perm_c. */ for (i = 0; i < n; ++i) perm_c[i] = pc_save[i]; if (lwork == 0) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } } /* if .. end of testing sgssv */ /*---------------- * Test sgssvx *----------------*/ /* Equilibrate the matrix if fact = FACTORED and equed = 'R', 'C', or 'B'. */ if ( options.Fact == FACTORED && (equil || iequed) && n > 0 ) { slaqgs(&A, R, C, rowcnd, colcnd, amax, equed); } /* Solve the system and compute the condition number and error bounds using sgssvx. */ sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &Glu, &mem_usage, &stat, &info); if ( info && info != izero ) { printf(FMT3, "sgssvx", info, izero, n, nrhs, imat, nfail); if ( lwork == -1 ) { printf("** Estimated memory: %.0f bytes\n", mem_usage.total_needed); exit(0); } } else { if ( !prefact ) { /* Reconstruct matrix from factors and compute residual. */ sgst01(m, n, &A, &L, &U, perm_c, perm_r, &result[0]); k1 = 0; } else { k1 = 1; } if ( !info ) { /* Compute residual of the computed solution.*/ sCopy_Dense_Matrix(m, nrhs, bsav, ldb, wwork, ldb); sgst02(trans, m, n, nrhs, &ASAV, solx, ldx, wwork, ldb, &result[1]); /* Check solution from generated exact solution. */ sgst04(n, nrhs, solx, ldx, xact, ldx, rcond, &result[2]); /* Check the error bounds from iterative refinement. */ sgst07(trans, n, nrhs, &ASAV, bsav, ldb, solx, ldx, xact, ldx, ferr, berr, &result[3]); /* Print information about the tests that did not pass the threshold. */ for (i = k1; i < NTESTS; ++i) { if ( result[i] >= THRESH ) { printf(FMT2, "sgssvx", options.Fact, trans, *equed, n, imat, i, result[i]); ++nfail; } } nrun += NTESTS; } /* if .. info == 0 */ } /* else .. end of testing sgssvx */ } /* for itran ... */ if ( lwork == 0 ) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } } /* for equil ... */ } /* for ifact ... */ } /* for iequed ... */ #if 0 if ( !info ) { PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed); } #endif Destroy_SuperMatrix_Store(&A); Destroy_SuperMatrix_Store(&ASAV); StatFree(&stat); } /* for imat ... */ /* Print a summary of the results. */ PrintSumm("SGE", nfail, nrun, nerrs); if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull); SUPERLU_FREE (rhsb); SUPERLU_FREE (bsav); SUPERLU_FREE (solx); SUPERLU_FREE (xact); SUPERLU_FREE (etree); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); SUPERLU_FREE (pc_save); SUPERLU_FREE (R); SUPERLU_FREE (C); SUPERLU_FREE (ferr); SUPERLU_FREE (berr); SUPERLU_FREE (rwork); SUPERLU_FREE (wwork); Destroy_SuperMatrix_Store(&B); Destroy_SuperMatrix_Store(&X); #if 0 Destroy_CompCol_Matrix(&A); Destroy_CompCol_Matrix(&ASAV); #else SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa); SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save); #endif if ( lwork > 0 ) { SUPERLU_FREE (work); Destroy_SuperMatrix_Store(&L); Destroy_SuperMatrix_Store(&U); } return 0; }
int main ( int argc, char *argv[] ) /**********************************************************************/ /* Purpose: SUPER_LU_S3 solves a sparse system read from a file using SGSSVX. Discussion: The sparse matrix is stored in a file using the Harwell-Boeing sparse matrix format. The file should be assigned to the standard input of this program. For instance, if the matrix is stored in the file "g10_rua.txt", the execution command might be: super_lu_s3 < g10_rua.txt Modified: 25 April 2004 Reference: James Demmel, John Gilbert, Xiaoye Li, SuperLU Users's Guide, Sections 1 and 2. Local parameters: SuperMatrix L, the computed L factor. int *perm_c, the column permutation vector. int *perm_r, the row permutations from partial pivoting. SuperMatrix U, the computed U factor. */ { SuperMatrix A; NCformat *Astore; float *a; int *asub; SuperMatrix B; float *berr; float *C; char equed[1]; yes_no_t equil; int *etree; float *ferr; int i; int info; SuperMatrix L; int ldx; SCformat *Lstore; int lwork; int m; mem_usage_t mem_usage; int n; int nnz; int nrhs; superlu_options_t options; int *perm_c; int *perm_r; float *R; float rcond; float *rhsb; float *rhsx; float rpg; float *sol; SuperLUStat_t stat; trans_t trans; SuperMatrix U; float u; NCformat *Ustore; void *work; SuperMatrix X; int *xa; float *xact; /* Say hello. */ printf ( "\n" ); printf ( "SUPER_LU_S3:\n" ); printf ( " Read a sparse matrix A from standard input,\n"); printf ( " stored in Harwell-Boeing Sparse Matrix format.\n" ); printf ( "\n" ); printf ( " Solve a linear system A * X = B using SGSSVX.\n" ); /* Defaults */ lwork = 0; nrhs = 1; equil = YES; u = 1.0; trans = NOTRANS; /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options ( &options ); /* Can use command line input to modify the defaults. */ parse_command_line ( argc, argv, &lwork, &u, &equil, &trans ); options.Equil = equil; options.DiagPivotThresh = u; options.Trans = trans; printf ( "\n" ); printf ( " Length of work array LWORK = %d\n", lwork ); printf ( " Equilibration option EQUIL = %d\n", equil ); printf ( " Diagonal pivot threshhold value U = %f\n", u ); printf ( " Tranpose option TRANS = %d\n", trans ); /* Add more functionalities that the defaults. Compute reciprocal pivot growth */ options.PivotGrowth = YES; /* Compute reciprocal condition number */ options.ConditionNumber = YES; /* Perform single-precision refinement */ options.IterRefine = SINGLE; if ( 0 < lwork ) { work = SUPERLU_MALLOC(lwork); if ( !work ) { ABORT ( "SUPERLU_MALLOC cannot allocate work[]" ); } } /* Read matrix A from a file in Harwell-Boeing format. */ sreadhb ( &m, &n, &nnz, &a, &asub, &xa ); /* Create storage for a compressed column matrix. */ sCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE ); Astore = A.Store; printf ( "\n" ); printf ( " Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz ); rhsb = floatMalloc ( m * nrhs ); if ( !rhsb ) { ABORT ( "Malloc fails for rhsb[]." ); } rhsx = floatMalloc ( m * nrhs ); if ( !rhsx ) { ABORT ( "Malloc fails for rhsx[]." ); } sCreate_Dense_Matrix ( &B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE ); sCreate_Dense_Matrix ( &X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE ); xact = floatMalloc ( n * nrhs ); if ( !xact ) { ABORT ( "SUPERLU_MALLOC cannot allocate xact[]" ); } ldx = n; sGenXtrue ( n, nrhs, xact, ldx ); sFillRHS ( trans, nrhs, xact, ldx, &A, &B ); etree = intMalloc ( n ); if ( !etree ) { ABORT ( "Malloc fails for etree[]." ); } perm_c = intMalloc ( n ); if ( !perm_c ) { ABORT ( "Malloc fails for perm_c[]." ); } perm_r = intMalloc ( m ); if ( !perm_r ) { ABORT ( "Malloc fails for perm_r[]." ); } R = (float *) SUPERLU_MALLOC ( A.nrow * sizeof(float) ); if ( !R ) { ABORT ( "SUPERLU_MALLOC fails for R[]." ); } C = (float *) SUPERLU_MALLOC ( A.ncol * sizeof(float) ); if ( !C ) { ABORT ( "SUPERLU_MALLOC fails for C[]." ); } ferr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) ); if ( !ferr ) { ABORT ( "SUPERLU_MALLOC fails for ferr[]." ); } berr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) ); if ( !berr ) { ABORT ( "SUPERLU_MALLOC fails for berr[]." ); } /* Initialize the statistics variables. */ StatInit(&stat); /* Solve the system and compute the condition number and error bounds using SGSSVX. */ sgssvx ( &options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info ); printf ( "\n" ); printf ( " SGSSVX returns INFO = %d\n", info ); if ( info == 0 || info == n+1 ) { sol = (float*) ((DNformat*) X.Store)->nzval; if ( options.PivotGrowth == YES ) { printf ( "\n" ); printf ( " Reciprocal pivot growth = %e\n", rpg); } if ( options.ConditionNumber == YES ) { printf ( "\n" ); printf ( " Reciprocal condition number = %e\n", rcond); } if ( options.IterRefine != NOREFINE ) { printf ( "\n" ); printf ( " Iterative Refinement:\n"); printf ( "%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR"); for ( i = 0; i < nrhs; i++ ) { printf ( "%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]); } } Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf ( "\n" ); printf ( " Number of nonzeros in factor L = %d\n", Lstore->nnz ); printf ( " Number of nonzeros in factor U = %d\n", Ustore->nnz ); printf ( " Number of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n ); printf ( "\n" ); printf ( " L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6, mem_usage.expansions ); fflush ( stdout ); } else if ( info > 0 && lwork == -1 ) { printf ( "\n" ); printf ( " Estimated memory: %d bytes\n", info - n ); } if ( options.PrintStat ) { StatPrint ( &stat ); } StatFree ( &stat ); SUPERLU_FREE ( rhsb ); SUPERLU_FREE ( rhsx ); SUPERLU_FREE ( xact ); SUPERLU_FREE ( etree ); SUPERLU_FREE ( perm_r ); SUPERLU_FREE ( perm_c ); SUPERLU_FREE ( R ); SUPERLU_FREE ( C ); SUPERLU_FREE ( ferr ); SUPERLU_FREE ( berr ); Destroy_CompCol_Matrix ( &A ); Destroy_SuperMatrix_Store ( &B ); Destroy_SuperMatrix_Store ( &X ); if ( 0 <= lwork ) { Destroy_SuperNode_Matrix ( &L ); Destroy_CompCol_Matrix ( &U ); } /* Say goodbye. */ printf ( "\n" ); printf ( "SUPER_LU_S3:\n" ); printf ( " Normal end of execution.\n"); return 0; }
int main ( int argc, char *argv[] ) /******************************************************************************/ /* Purpose: MAIN is the main program for PSLINSOL. Licensing: This code is distributed under the GNU LGPL license. Modified: 10 February 2014 Author: Xiaoye Li */ { SuperMatrix A; NCformat *Astore; float *a; int *asub, *xa; int *perm_r; /* row permutations from partial pivoting */ int *perm_c; /* column permutation vector */ SuperMatrix L; /* factor L */ SCPformat *Lstore; SuperMatrix U; /* factor U */ NCPformat *Ustore; SuperMatrix B; int nrhs, ldx, info, m, n, nnz, b; int nprocs; /* maximum number of processors to use. */ int panel_size, relax, maxsup; int permc_spec; trans_t trans; float *xact, *rhs; superlu_memusage_t superlu_memusage; void parse_command_line(); timestamp ( ); printf ( "\n" ); printf ( "PSLINSOL:\n" ); printf ( " C/OpenMP version\n" ); printf ( " Call the OpenMP version of SuperLU to solve a linear system.\n" ); nrhs = 1; trans = NOTRANS; nprocs = 1; n = 1000; b = 1; panel_size = sp_ienv(1); relax = sp_ienv(2); maxsup = sp_ienv(3); /* Check for any commandline input. */ parse_command_line ( argc, argv, &nprocs, &n, &b, &panel_size, &relax, &maxsup ); #if ( PRNTlevel>=1 || DEBUGlevel>=1 ) cpp_defs(); #endif #define HB #if defined( DEN ) m = n; nnz = n * n; sband(n, n, nnz, &a, &asub, &xa); #elif defined( BAND ) m = n; nnz = (2*b+1) * n; sband(n, b, nnz, &a, &asub, &xa); #elif defined( BD ) nb = 5; bs = 200; m = n = bs * nb; nnz = bs * bs * nb; sblockdiag(nb, bs, nnz, &a, &asub, &xa); #elif defined( HB ) sreadhb(&m, &n, &nnz, &a, &asub, &xa); #else sreadmt(&m, &n, &nnz, &a, &asub, &xa); #endif sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); if (!(rhs = floatMalloc(m * nrhs))) SUPERLU_ABORT("Malloc fails for rhs[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(trans, nrhs, xact, ldx, &A, &B); if (!(perm_r = intMalloc(m))) SUPERLU_ABORT("Malloc fails for perm_r[]."); if (!(perm_c = intMalloc(n))) SUPERLU_ABORT("Malloc fails for perm_c[]."); /* * Get column permutation vector perm_c[], according to permc_spec: * permc_spec = 0: natural ordering * permc_spec = 1: minimum degree ordering on structure of A'*A * permc_spec = 2: minimum degree ordering on structure of A'+A * permc_spec = 3: approximate minimum degree for unsymmetric matrices */ permc_spec = 1; get_perm_c(permc_spec, &A, perm_c); psgssv(nprocs, &A, perm_c, perm_r, &L, &U, &B, &info); if ( info == 0 ) { sinf_norm_error(nrhs, &B, xact); /* Inf. norm of the error */ Lstore = (SCPformat *) L.Store; Ustore = (NCPformat *) U.Store; printf("#NZ in factor L = %d\n", Lstore->nnz); printf("#NZ in factor U = %d\n", Ustore->nnz); printf("#NZ in L+U = %d\n", Lstore->nnz + Ustore->nnz - L.ncol); superlu_sQuerySpace(nprocs, &L, &U, panel_size, &superlu_memusage); printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", superlu_memusage.for_lu/1024/1024, superlu_memusage.total_needed/1024/1024, superlu_memusage.expansions); } SUPERLU_FREE (rhs); SUPERLU_FREE (xact); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); Destroy_SuperNode_SCP(&L); Destroy_CompCol_NCP(&U); /* Terminate. */ printf ( "\n" ); printf ( "PSLINSOL:\n" ); printf ( " Normal end of execution.\n" ); printf ( "\n" ); timestamp ( ); return 0; }
main(int argc, char *argv[]) { /* * Purpose * ======= * * The driver program SLINSOLX1. * * This example illustrates how to use SGSSVX to solve systems with the same * A but different right-hand side. * In this case, we factorize A only once in the first call to DGSSVX, * and reuse the following data structures in the subsequent call to SGSSVX: * perm_c, perm_r, R, C, L, U. * */ char equed[1]; yes_no_t equil; trans_t trans; SuperMatrix A, L, U; SuperMatrix B, X; NCformat *Astore; NCformat *Ustore; SCformat *Lstore; float *a; int *asub, *xa; int *perm_c; /* column permutation vector */ int *perm_r; /* row permutations from partial pivoting */ int *etree; void *work; int info, lwork, nrhs, ldx; int i, m, n, nnz; float *rhsb, *rhsx, *xact; float *R, *C; float *ferr, *berr; float u, rpg, rcond; mem_usage_t mem_usage; superlu_options_t options; SuperLUStat_t stat; extern void parse_command_line(); #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Enter main()"); #endif /* Defaults */ lwork = 0; nrhs = 1; equil = YES; u = 1.0; trans = NOTRANS; /* Set the default values for options argument: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options(&options); /* Can use command line input to modify the defaults. */ parse_command_line(argc, argv, &lwork, &u, &equil, &trans); options.Equil = equil; options.DiagPivotThresh = u; options.Trans = trans; if ( lwork > 0 ) { work = SUPERLU_MALLOC(lwork); if ( !work ) { ABORT("SLINSOLX: cannot allocate work[]"); } } /* Read matrix A from a file in Harwell-Boeing format.*/ sreadhb(&m, &n, &nnz, &a, &asub, &xa); sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[]."); if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE); sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(trans, nrhs, xact, ldx, &A, &B); if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[]."); if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[]."); if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[]."); if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for R[]."); if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for C[]."); if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for ferr[]."); if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for berr[]."); /* Initialize the statistics variables. */ StatInit(&stat); /* ONLY PERFORM THE LU DECOMPOSITION */ B.ncol = 0; /* Indicate not to solve the system */ sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info); printf("LU factorization: sgssvx() returns info %d\n", info); if ( info == 0 || info == n+1 ) { if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg); if ( options.ConditionNumber ) printf("Recip. condition number = %e\n", rcond); Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); fflush(stdout); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); /* ------------------------------------------------------------ NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A. ------------------------------------------------------------*/ options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */ B.ncol = nrhs; /* Set the number of right-hand side */ /* Initialize the statistics variables. */ StatInit(&stat); sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info); printf("Triangular solve: sgssvx() returns info %d\n", info); if ( info == 0 || info == n+1 ) { /* This is how you could access the solution matrix. */ float *sol = (float*) ((DNformat*) X.Store)->nzval; if ( options.IterRefine ) { printf("Iterative Refinement:\n"); printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR"); for (i = 0; i < nrhs; ++i) printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]); } fflush(stdout); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); SUPERLU_FREE (rhsb); SUPERLU_FREE (rhsx); SUPERLU_FREE (xact); SUPERLU_FREE (etree); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); SUPERLU_FREE (R); SUPERLU_FREE (C); SUPERLU_FREE (ferr); SUPERLU_FREE (berr); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); Destroy_SuperMatrix_Store(&X); if ( lwork >= 0 ) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Exit main()"); #endif }
main(int argc, char *argv[]) { /* * Purpose * ======= * * The driver program SLINSOLX2. * * This example illustrates how to use SGSSVX to solve systems repeatedly * with the same sparsity pattern of matrix A. * In this case, the column permutation vector perm_c is computed once. * The following data structures will be reused in the subsequent call to * SGSSVX: perm_c, etree * */ char equed[1]; yes_no_t equil; trans_t trans; SuperMatrix A, A1, L, U; SuperMatrix B, B1, X; NCformat *Astore; NCformat *Ustore; SCformat *Lstore; float *a, *a1; int *asub, *xa, *asub1, *xa1; int *perm_r; /* row permutations from partial pivoting */ int *perm_c; /* column permutation vector */ int *etree; void *work; int info, lwork, nrhs, ldx; int i, j, m, n, nnz; float *rhsb, *rhsb1, *rhsx, *xact; float *R, *C; float *ferr, *berr; float u, rpg, rcond; mem_usage_t mem_usage; superlu_options_t options; SuperLUStat_t stat; extern void parse_command_line(); #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Enter main()"); #endif /* Defaults */ lwork = 0; nrhs = 1; equil = YES; u = 1.0; trans = NOTRANS; /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options(&options); /* Can use command line input to modify the defaults. */ parse_command_line(argc, argv, &lwork, &u, &equil, &trans); options.Equil = equil; options.DiagPivotThresh = u; options.Trans = trans; if ( lwork > 0 ) { work = SUPERLU_MALLOC(lwork); if ( !work ) { ABORT("DLINSOLX: cannot allocate work[]"); } } /* Read matrix A from a file in Harwell-Boeing format.*/ sreadhb(&m, &n, &nnz, &a, &asub, &xa); if ( !(a1 = floatMalloc(nnz)) ) ABORT("Malloc fails for a1[]."); if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[]."); if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[]."); for (i = 0; i < nnz; ++i) { a1[i] = a[i]; asub1[i] = asub[i]; } for (i = 0; i < n+1; ++i) xa1[i] = xa[i]; sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[]."); if ( !(rhsb1 = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[]."); if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE); sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(trans, nrhs, xact, ldx, &A, &B); for (j = 0; j < nrhs; ++j) for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m]; if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[]."); if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[]."); if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[]."); if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for R[]."); if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for C[]."); if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for ferr[]."); if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) ABORT("SUPERLU_MALLOC fails for berr[]."); /* Initialize the statistics variables. */ StatInit(&stat); /* ------------------------------------------------------------ WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B ------------------------------------------------------------*/ sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info); printf("First system: sgssvx() returns info %d\n", info); if ( info == 0 || info == n+1 ) { /* This is how you could access the solution matrix. */ float *sol = (float*) ((DNformat*) X.Store)->nzval; if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg); if ( options.ConditionNumber ) printf("Recip. condition number = %e\n", rcond); Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); if ( options.IterRefine ) { printf("Iterative Refinement:\n"); printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR"); for (i = 0; i < nrhs; ++i) printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]); } fflush(stdout); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); Destroy_CompCol_Matrix(&A); Destroy_Dense_Matrix(&B); if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */ Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } /* ------------------------------------------------------------ NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1 ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A. ------------------------------------------------------------*/ options.Fact = SamePattern; StatInit(&stat); /* Initialize the statistics variables. */ sCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1, SLU_NC, SLU_S, SLU_GE); sCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_S, SLU_GE); sgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C, &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr, &mem_usage, &stat, &info); printf("\nSecond system: sgssvx() returns info %d\n", info); if ( info == 0 || info == n+1 ) { /* This is how you could access the solution matrix. */ float *sol = (float*) ((DNformat*) X.Store)->nzval; if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg); if ( options.ConditionNumber ) printf("Recip. condition number = %e\n", rcond); Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); if ( options.IterRefine ) { printf("Iterative Refinement:\n"); printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR"); for (i = 0; i < nrhs; ++i) printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]); } fflush(stdout); } else if ( info > 0 && lwork == -1 ) { printf("** Estimated memory: %d bytes\n", info - n); } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); SUPERLU_FREE (xact); SUPERLU_FREE (etree); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); SUPERLU_FREE (R); SUPERLU_FREE (C); SUPERLU_FREE (ferr); SUPERLU_FREE (berr); Destroy_CompCol_Matrix(&A1); Destroy_Dense_Matrix(&B1); Destroy_Dense_Matrix(&X); if ( lwork == 0 ) { Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); } else if ( lwork > 0 ) { SUPERLU_FREE(work); } #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Exit main()"); #endif }
int main(int argc, char *argv[]) { SuperMatrix A; NCformat *Astore; float *a; int *asub, *xa; int *perm_c; /* column permutation vector */ int *perm_r; /* row permutations from partial pivoting */ SuperMatrix L; /* factor L */ SCformat *Lstore; SuperMatrix U; /* factor U */ NCformat *Ustore; SuperMatrix B; int nrhs, ldx, info, m, n, nnz; float *xact, *rhs; mem_usage_t mem_usage; superlu_options_t options; SuperLUStat_t stat; FILE *fp = stdin; #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Enter main()"); #endif /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options(&options); /* Read the matrix in Harwell-Boeing format. */ sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa); sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE); Astore = A.Store; printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz); nrhs = 1; if ( !(rhs = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[]."); sCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE); xact = floatMalloc(n * nrhs); ldx = n; sGenXtrue(n, nrhs, xact, ldx); sFillRHS(options.Trans, nrhs, xact, ldx, &A, &B); if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[]."); if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[]."); /* Initialize the statistics variables. */ StatInit(&stat); sgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info); if ( info == 0 ) { /* This is how you could access the solution matrix. */ float *sol = (float*) ((DNformat*) B.Store)->nzval; /* Compute the infinity norm of the error. */ sinf_norm_error(nrhs, &B, xact); Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf("No of nonzeros in factor L = %d\n", Lstore->nnz); printf("No of nonzeros in factor U = %d\n", Ustore->nnz); printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n); printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz); sQuerySpace(&L, &U, &mem_usage); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); } else { printf("sgssv() error returns INFO= %d\n", info); if ( info <= n ) { /* factorization completes */ sQuerySpace(&L, &U, &mem_usage); printf("L\\U MB %.3f\ttotal MB needed %.3f\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6); } } if ( options.PrintStat ) StatPrint(&stat); StatFree(&stat); SUPERLU_FREE (rhs); SUPERLU_FREE (xact); SUPERLU_FREE (perm_r); SUPERLU_FREE (perm_c); Destroy_CompCol_Matrix(&A); Destroy_SuperMatrix_Store(&B); Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); #if ( DEBUGlevel>=1 ) CHECK_MALLOC("Exit main()"); #endif }
/* Here is a driver inspired by A. Sheffer's "cow flattener". */ static NLboolean __nlSolve_SUPERLU( NLboolean do_perm) { /* OpenNL Context */ __NLSparseMatrix* M = &(__nlCurrentContext->M); NLfloat* b = __nlCurrentContext->b; NLfloat* x = __nlCurrentContext->x; /* Compressed Row Storage matrix representation */ NLuint n = __nlCurrentContext->n; NLuint nnz = __nlSparseMatrixNNZ(M); /* Number of Non-Zero coeffs */ NLint* xa = __NL_NEW_ARRAY(NLint, n+1); NLfloat* rhs = __NL_NEW_ARRAY(NLfloat, n); NLfloat* a = __NL_NEW_ARRAY(NLfloat, nnz); NLint* asub = __NL_NEW_ARRAY(NLint, nnz); /* Permutation vector */ NLint* perm_r = __NL_NEW_ARRAY(NLint, n); NLint* perm = __NL_NEW_ARRAY(NLint, n); /* SuperLU variables */ SuperMatrix A, B; /* System */ SuperMatrix L, U; /* Inverse of A */ NLint info; /* status code */ DNformat *vals = NULL; /* access to result */ float *rvals = NULL; /* access to result */ /* SuperLU options and stats */ superlu_options_t options; SuperLUStat_t stat; /* Temporary variables */ __NLRowColumn* Ri = NULL; NLuint i,jj,count; __nl_assert(!(M->storage & __NL_SYMMETRIC)); __nl_assert(M->storage & __NL_ROWS); __nl_assert(M->m == M->n); /* * Step 1: convert matrix M into SuperLU compressed column * representation. * ------------------------------------------------------- */ count = 0; for(i=0; i<n; i++) { Ri = &(M->row[i]); xa[i] = count; for(jj=0; jj<Ri->size; jj++) { a[count] = Ri->coeff[jj].value; asub[count] = Ri->coeff[jj].index; count++; } } xa[n] = nnz; /* Save memory for SuperLU */ __nlSparseMatrixClear(M); /* * Rem: symmetric storage does not seem to work with * SuperLU ... (->deactivated in main SLS::Solver driver) */ sCreate_CompCol_Matrix( &A, n, n, nnz, a, asub, xa, SLU_NR, /* Row_wise, no supernode */ SLU_S, /* floats */ SLU_GE /* general storage */ ); /* Step 2: create vector */ sCreate_Dense_Matrix( &B, n, 1, b, n, SLU_DN, /* Fortran-type column-wise storage */ SLU_S, /* floats */ SLU_GE /* general */ ); /* Step 3: get permutation matrix * ------------------------------ * com_perm: 0 -> no re-ordering * 1 -> re-ordering for A^t.A * 2 -> re-ordering for A^t+A * 3 -> approximate minimum degree ordering */ get_perm_c(do_perm ? 3 : 0, &A, perm); /* Step 4: call SuperLU main routine * --------------------------------- */ set_default_options(&options); options.ColPerm = MY_PERMC; StatInit(&stat); sgssv(&options, &A, perm, perm_r, &L, &U, &B, &stat, &info); /* Step 5: get the solution * ------------------------ * Fortran-type column-wise storage */ vals = (DNformat*)B.Store; rvals = (float*)(vals->nzval); if(info == 0) { for(i = 0; i < n; i++){ x[i] = rvals[i]; } } /* Step 6: cleanup * --------------- */ /* * For these two ones, only the "store" structure * needs to be deallocated (the arrays have been allocated * by us). */ Destroy_SuperMatrix_Store(&A); Destroy_SuperMatrix_Store(&B); /* * These ones need to be fully deallocated (they have been * allocated by SuperLU). */ Destroy_SuperNode_Matrix(&L); Destroy_CompCol_Matrix(&U); StatFree(&stat); __NL_DELETE_ARRAY(xa); __NL_DELETE_ARRAY(rhs); __NL_DELETE_ARRAY(a); __NL_DELETE_ARRAY(asub); __NL_DELETE_ARRAY(perm_r); __NL_DELETE_ARRAY(perm); return (info == 0); }
int main ( int argc, char *argv[] ) /**********************************************************************/ /* Purpose: SUPER_LU_S2 solves a symmetric sparse system read from a file. Discussion: The sparse matrix is stored in a file using the Harwell-Boeing sparse matrix format. The file should be assigned to the standard input of this program. For instance, if the matrix is stored in the file "g10_rua.txt", the execution command might be: super_lu_s2 < g10_rua.txt Modified: 25 April 2004 Reference: James Demmel, John Gilbert, Xiaoye Li, SuperLU Users's Guide, Sections 1 and 2. Local parameters: SuperMatrix L, the computed L factor. int *perm_c, the column permutation vector. int *perm_r, the row permutations from partial pivoting. SuperMatrix U, the computed U factor. */ { SuperMatrix A; NCformat *Astore; float *a; int *asub; SuperMatrix B; int info; SuperMatrix L; int ldx; SCformat *Lstore; int m; mem_usage_t mem_usage; int n; int nnz; int nrhs; superlu_options_t options; int *perm_c; int *perm_r; float *rhs; float *sol; SuperLUStat_t stat; SuperMatrix U; NCformat *Ustore; int *xa; float *xact; /* Say hello. */ printf ( "\n" ); printf ( "SUPER_LU_S2:\n" ); printf ( " Read a symmetric sparse matrix A from standard input,\n"); printf ( " stored in Harwell-Boeing Sparse Matrix format.\n" ); printf ( "\n" ); printf ( " Solve a linear system A * X = B.\n" ); /* Set the default input options: options.Fact = DOFACT; options.Equil = YES; options.ColPerm = COLAMD; options.DiagPivotThresh = 1.0; options.Trans = NOTRANS; options.IterRefine = NOREFINE; options.SymmetricMode = NO; options.PivotGrowth = NO; options.ConditionNumber = NO; options.PrintStat = YES; */ set_default_options ( &options ); /* Now we modify the default options to use the symmetric mode. */ options.SymmetricMode = YES; options.ColPerm = MMD_AT_PLUS_A; options.DiagPivotThresh = 0.001; /* Read the matrix in Harwell-Boeing format. */ sreadhb ( &m, &n, &nnz, &a, &asub, &xa ); /* Create storage for a compressed column matrix. */ sCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE ); Astore = A.Store; printf ( "\n" ); printf ( " Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz ); /* Set up the right hand side. */ nrhs = 1; rhs = floatMalloc ( m * nrhs ); if ( !rhs ) { ABORT ( " Malloc fails for rhs[]." ); } sCreate_Dense_Matrix ( &B, m, nrhs, rhs, m, SLU_DN, SLU_S, SLU_GE ); xact = floatMalloc ( n * nrhs ); if ( !xact ) { ABORT ( " Malloc fails for rhs[]." ); } ldx = n; sGenXtrue ( n, nrhs, xact, ldx ); sFillRHS ( options.Trans, nrhs, xact, ldx, &A, &B ); perm_c = intMalloc ( n ); if ( !perm_c ) { ABORT ( "Malloc fails for perm_c[]." ); } perm_r = intMalloc ( m ); if ( !perm_r ) { ABORT ( "Malloc fails for perm_r[]." ); } /* Initialize the statistics variables. */ StatInit ( &stat ); /* Call SGSSV to factor the matrix and solve the linear system. */ sgssv ( &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info ); if ( info == 0 ) { /* To conveniently access the solution matrix, you need to get a pointer to it. */ sol = (float*) ((DNformat*) B.Store)->nzval; /* Compute the infinity norm of the error. */ sinf_norm_error ( nrhs, &B, xact ); Lstore = (SCformat *) L.Store; Ustore = (NCformat *) U.Store; printf ( "\n" ); printf ( " Number of nonzeros in factor L = %d\n", Lstore->nnz ); printf ( " Number of nonzeros in factor U = %d\n", Ustore->nnz ); printf ( " Number of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n ); sQuerySpace ( &L, &U, &mem_usage ); printf ( "\n" ); printf ( " L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6, mem_usage.expansions); } else { printf ( "\n" ); printf ( " SGSSV error returns INFO= %d\n", info ); if ( info <= n ) { sQuerySpace ( &L, &U, &mem_usage ); printf ( "\n" ); printf (" L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", mem_usage.for_lu/1e6, mem_usage.total_needed/1e6, mem_usage.expansions ); } } if ( options.PrintStat ) { StatPrint ( &stat ); } StatFree ( &stat ); /* Free the memory. */ SUPERLU_FREE ( rhs ); SUPERLU_FREE ( xact ); SUPERLU_FREE ( perm_r ); SUPERLU_FREE ( perm_c ); Destroy_CompCol_Matrix ( &A ); Destroy_SuperMatrix_Store ( &B ); Destroy_SuperNode_Matrix ( &L ); Destroy_CompCol_Matrix ( &U ); /* Say goodbye. */ printf ( "\n" ); printf ( "SUPER_LU_S2:\n" ); printf ( " Normal end of execution.\n"); return 0; }