Esempio n. 1
0
static inline Indirect *get_branch(struct inode *inode,
					int depth,
					int *offsets,
					Indirect chain[DEPTH],
					int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
	add_chain (chain, NULL, i_data(inode) + *offsets);
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, block_to_cpu(p->key));
		if (!bh)
			goto failure;
		read_lock(&pointers_lock);
		if (!verify_chain(chain, p))
			goto changed;
		add_chain(++p, bh, (block_t *)bh->b_data + *++offsets);
		read_unlock(&pointers_lock);
		if (!p->key)
			goto no_block;
	}
	return NULL;

changed:
	read_unlock(&pointers_lock);
	brelse(bh);
	*err = -EAGAIN;
	goto no_block;
failure:
	*err = -EIO;
no_block:
	return p;
}
Esempio n. 2
0
struct buffer_head *
befs_bread(struct super_block *sb, befs_blocknr_t block)
{
	struct buffer_head *bh = NULL;

	befs_debug(sb, "---> Enter befs_read() %Lu", block);

	bh = sb_bread(sb, block);

	if (bh == NULL) {
		befs_error(sb, "Failed to read block %lu", block);
		goto error;
	}

	befs_debug(sb, "<--- befs_read()");

	return bh;

      error:
	befs_debug(sb, "<--- befs_read() ERROR");
	return NULL;
}
Esempio n. 3
0
static int update_dind_extent_range(handle_t *handle, struct inode *inode,
				    ext4_fsblk_t pblock, ext4_lblk_t *blk_nump,
				    struct list_blocks_struct *lb)
{
	struct buffer_head *bh;
	__le32 *i_data;
	int i, retval = 0;
	ext4_lblk_t blk_count = *blk_nump;
	unsigned long max_entries = inode->i_sb->s_blocksize >> 2;

	if (!pblock) {
		/* Only update the file block number */
		*blk_nump += max_entries * max_entries;
		return 0;
	}
	bh = sb_bread(inode->i_sb, pblock);
	if (!bh)
		return -EIO;

	i_data = (__le32 *)bh->b_data;
	for (i = 0; i < max_entries; i++) {
		if (i_data[i]) {
			retval = update_ind_extent_range(handle, inode,
						le32_to_cpu(i_data[i]),
						&blk_count, lb);
			if (retval)
				break;
		} else {
			/* Only update the file block number */
			blk_count += max_entries;
		}
	}

	/* Update the file block number */
	*blk_nump = blk_count;
	put_bh(bh);
	return retval;

}
/*
 * Read f2fs raw super block.
 * Because we have two copies of super block, so read the first one at first,
 * if the first one is invalid, move to read the second one.
 */
static int read_raw_super_block(struct super_block *sb,
			struct f2fs_super_block **raw_super,
			struct buffer_head **raw_super_buf)
{
	int block = 0;

retry:
	*raw_super_buf = sb_bread(sb, block);
	if (!*raw_super_buf) {
		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
				block + 1);
		if (block == 0) {
			block++;
			goto retry;
		} else {
			return -EIO;
		}
	}

	*raw_super = (struct f2fs_super_block *)
		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);

	/* sanity checking of raw super */
	if (sanity_check_raw_super(sb, *raw_super)) {
		brelse(*raw_super_buf);
		f2fs_msg(sb, KERN_ERR,
			"Can't find valid F2FS filesystem in %dth superblock",
								block + 1);
		if (block == 0) {
			block++;
			goto retry;
		} else {
			return -EINVAL;
		}
	}

	return 0;
}
Esempio n. 5
0
File: ux_dir.c Progetto: dunecn/uxfs
int
ux_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
        unsigned long         pos;
        struct inode          *inode = filp->f_dentry->d_inode;
        struct ux_inode       *uip = (struct ux_inode *)
                                      &inode->i_private;
        struct ux_dirent      *udir;
        struct buffer_head    *bh;
        __u32                 blk;

start_again:
        pos = filp->f_pos;
        if (pos >= inode->i_size) {
                return 0;
        }
        blk = (pos + 1) / UX_BSIZE;
        blk = uip->i_addr[blk];
        bh = sb_bread(inode->i_sb, blk);
        udir = (struct ux_dirent *)(bh->b_data + pos % UX_BSIZE);

        /*
         * Skip over 'null' directory entries.
         */

        if (udir->d_ino == 0) {
                filp->f_pos += sizeof(struct ux_dirent);
                brelse(bh);
                goto start_again;
        } else {
                filldir(dirent, udir->d_name, 
                        sizeof(udir->d_name), pos, 
                        udir->d_ino, DT_UNKNOWN);
        }
        filp->f_pos += sizeof(struct ux_dirent);
        brelse(bh);
        return 0;        
}
Esempio n. 6
0
/* Returns the inode number of the directory entry at offset pos. If bh is
   non-NULL, it is brelse'd before. Pos is incremented. The buffer header is
   returned in bh.
   AV. Most often we do it item-by-item. Makes sense to optimize.
   AV. OK, there we go: if both bh and de are non-NULL we assume that we just
   AV. want the next entry (took one explicit de=NULL in vfat/namei.c).
   AV. It's done in fat_get_entry() (inlined), here the slow case lives.
   AV. Additionally, when we return -1 (i.e. reached the end of directory)
   AV. we make bh NULL.
 */
static int fat__get_entry(struct inode *dir, loff_t *pos,
			  struct buffer_head **bh, struct msdos_dir_entry **de)
{
	struct super_block *sb = dir->i_sb;
	sector_t phys, iblock;
	unsigned long mapped_blocks;
	int err, offset;

next:
	if (*bh)
		brelse(*bh);

	*bh = NULL;
	iblock = *pos >> sb->s_blocksize_bits;
	err = fat_bmap(dir, iblock, &phys, &mapped_blocks, 0);
	if (err || !phys)
		return -1;	/* beyond EOF or error */

	fat_dir_readahead(dir, iblock, phys);

	*bh = sb_bread(sb, phys);
	if (*bh == NULL) {
/* [email protected] remove error message at pulling sd card without unmount */
#ifdef LGE_REMOVE_ERROR
		printk(KERN_ERR "FAT: Directory bread(block %llu) failed\n",
		       (llu)phys);
#endif
		/* skip this block */
		*pos = (iblock + 1) << sb->s_blocksize_bits;
		goto next;
	}

	offset = *pos & (sb->s_blocksize - 1);
	*pos += sizeof(struct msdos_dir_entry);
	*de = (struct msdos_dir_entry *)((*bh)->b_data + offset);

	return 0;
}
Esempio n. 7
0
static int udf_symlink_filler(struct file *file, struct page *page)
{
	struct inode *inode = page->mapping->host;
	struct buffer_head *bh = NULL;
	char *symlink;
	int err = -EIO;
	char *p = kmap(page);
	struct udf_inode_info *iinfo;

	lock_kernel();
	iinfo = UDF_I(inode);
	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
		symlink = iinfo->i_ext.i_data + iinfo->i_lenEAttr;
	} else {
		bh = sb_bread(inode->i_sb, udf_block_map(inode, 0));

		if (!bh)
			goto out;

		symlink = bh->b_data;
	}

	udf_pc_to_char(inode->i_sb, symlink, inode->i_size, p);
	brelse(bh);

	unlock_kernel();
	SetPageUptodate(page);
	kunmap(page);
	unlock_page(page);
	return 0;

out:
	unlock_kernel();
	SetPageError(page);
	kunmap(page);
	unlock_page(page);
	return err;
}
Esempio n. 8
0
ssize_t hellofs_read(struct file *filp, char __user *buf, size_t len,
                     loff_t *ppos) {
    struct super_block *sb;
    struct inode *inode;
    struct hellofs_inode *hellofs_inode;
    struct buffer_head *bh;
    char *buffer;
    int nbytes;

    inode = filp->f_path.dentry->d_inode;
    sb = inode->i_sb;
    hellofs_inode = HELLOFS_INODE(inode);
    
    if (*ppos >= hellofs_inode->file_size) {
        return 0;
    }

    bh = sb_bread(sb, hellofs_inode->data_block_no);
    if (!bh) {
        printk(KERN_ERR "Failed to read data block %llu\n",
               hellofs_inode->data_block_no);
        return 0;
    }

    buffer = (char *)bh->b_data + *ppos;
    nbytes = min((size_t)(hellofs_inode->file_size - *ppos), len);

    if (copy_to_user(buf, buffer, nbytes)) {
        brelse(bh);
        printk(KERN_ERR
               "Error copying file content to userspace buffer\n");
        return -EFAULT;
    }

    brelse(bh);
    *ppos += nbytes;
    return nbytes;
}
Esempio n. 9
0
static int read_from_real_sfs(sfs_info_t *info, byte4_t block, byte4_t offset, void *buf, byte4_t len)
{
	byte4_t block_size = info->sb.block_size;
	byte4_t bd_block_size = info->vfs_sb->s_bdev->bd_block_size;
	byte4_t abs;
	struct buffer_head *bh;

	// Translating the real SFS block numbering to underlying block device block numbering, for sb_bread()
	abs = block * block_size + offset;
	block = abs / bd_block_size;
	offset = abs % bd_block_size;
	if (offset + len > bd_block_size) // Should never happen
	{
		return -EINVAL;
	}
	if (!(bh = sb_bread(info->vfs_sb, block)))
	{
		return -EIO;
	}
	memcpy(buf, bh->b_data + offset, len);
	brelse(bh);
	return 0;
}
Esempio n. 10
0
File: io.c Progetto: 020gzh/linux
struct buffer_head *
befs_bread(struct super_block *sb, befs_blocknr_t block)
{
	struct buffer_head *bh = NULL;

	befs_debug(sb, "---> Enter %s %lu", __func__, (unsigned long)block);

	bh = sb_bread(sb, block);

	if (bh == NULL) {
		befs_error(sb, "Failed to read block %lu",
			   (unsigned long)block);
		goto error;
	}

	befs_debug(sb, "<--- %s", __func__);

	return bh;

      error:
	befs_debug(sb, "<--- %s ERROR", __func__);
	return NULL;
}
Esempio n. 11
0
struct ufs_buffer_head * ubh_bread_uspi (struct ufs_sb_private_info * uspi,
	struct super_block *sb, u64 fragment, u64 size)
{
	unsigned i, j;
	u64 count = 0;
	if (size & ~uspi->s_fmask)
		return NULL;
	count = size >> uspi->s_fshift;
	if (count <= 0 || count > UFS_MAXFRAG)
		return NULL;
	USPI_UBH(uspi)->fragment = fragment;
	USPI_UBH(uspi)->count = count;
	for (i = 0; i < count; i++)
		if (!(USPI_UBH(uspi)->bh[i] = sb_bread(sb, fragment + i)))
			goto failed;
	for (; i < UFS_MAXFRAG; i++)
		USPI_UBH(uspi)->bh[i] = NULL;
	return USPI_UBH(uspi);
failed:
	for (j = 0; j < i; j++)
		brelse (USPI_UBH(uspi)->bh[j]);
	return NULL;
}
Esempio n. 12
0
struct minix_inode *
minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
{
	int block;
	struct minix_sb_info *sbi = minix_sb(sb);
	struct minix_inode *p;

	if (!ino || ino > sbi->s_ninodes) {
		printk("Bad inode number on dev %s: %ld is out of range\n",
		       sb->s_id, (long)ino);
		return NULL;
	}
	ino--;
	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
		 ino / MINIX_INODES_PER_BLOCK;
	*bh = sb_bread(sb, block);
	if (!*bh) {
		printk("Unable to read inode block\n");
		return NULL;
	}
	p = (void *)(*bh)->b_data;
	return p + ino % MINIX_INODES_PER_BLOCK;
}
Esempio n. 13
0
/*
 * Initialize a data index block for specified inode at specified block number
 *
 */
int lab5fs_inode_init_block_index(struct inode *ino, int bi_block_num)
{
	int err = 0;
	struct super_block *sb = ino->i_sb;
	struct buffer_head *bibh = NULL;
	struct lab5fs_inode_data_index *lab5fs_data_index = NULL;

	/* read the inode's block index. */
	if (!(bibh = sb_bread(sb, bi_block_num))) {
		printk("unable to read inode block index, block %d.\n",
				bi_block_num);
		err = -ENOMEM;
		goto ret;
	}
	lab5fs_data_index = (struct lab5fs_inode_data_index *)(bibh->b_data);
	memset(lab5fs_data_index->blocks, 0, sizeof(*lab5fs_data_index));
	mark_buffer_dirty(bibh);

ret:
	if (bibh)
		brelse(bibh);
	return err;
}
Esempio n. 14
0
/*Clear out data and data index blocks of given inode*/
void lab5fs_inode_clear_blocks(struct inode *ino){
	struct super_block *sb = ino->i_sb;
	struct lab5fs_inode_info *inode_info = LAB5FS_INODE_INFO(ino);
	int bi_block_num = inode_info->i_bi_block_num;
	struct buffer_head *bibh = NULL;
	struct lab5fs_inode_data_index *block_index_table = NULL;
	int i, block_num;
	printk("inode_clear_blocks:: freeing data blocks \n");

	/* read the inode's block index. */
	if (!(bibh = sb_bread(sb, bi_block_num))) {
		printk("unable to read block index, block %d.\n",bi_block_num);
	}
	block_index_table = (struct lab5fs_inode_data_index *) bibh->b_data;
	for (i=0;i < LAB5FS_MAX_BLOCK_INDEX; i++) {
		block_num = le32_to_cpu(block_index_table->blocks[i]);
		if (block_num != 0) { //block is in used
			printk("freeing block %u\n",block_num);
			lab5fs_release_block_num(sb, block_num);
		}
	}
	ino->i_blocks=0;
}
Esempio n. 15
0
static void free_branches(struct inode *inode, block_t *p, block_t *q, int depth)
{
	struct buffer_head * bh;
	unsigned long nr;

	if (depth--) {
		for ( ; p < q ; p++) {
			nr = block_to_cpu(*p);
			if (!nr)
				continue;
			*p = 0;
			bh = sb_bread(inode->i_sb, nr);
			if (!bh)
				continue;
			free_branches(inode, (block_t*)bh->b_data,
				      block_end(bh), depth);
			bforget(bh);
			xiafs_free_block(inode, nr);
			mark_inode_dirty(inode);
		}
	} else
		free_data(inode, p, q);
}
Esempio n. 16
0
void dedupfs_inode_add(struct super_block *vsb, 
						struct dedupfs_inode *inode)
{
	struct dedupfs_super_block *sb = DEDUPFS_SB(vsb);
	struct buffer_head *bh;
	struct dedupfs_inode *inode_iterator;

	if(mutex_lock_interruptible(&dedupfs_inodes_mgmt_lock)) {
		printk(KERN_ERR "Failed to acquire mutex lock %s +%d\n",
					__FILE__, __LINE__);
		return;
	}

	bh = (struct buffer_head *)sb_bread(vsb,
									DEDUPFS_INODESTORE_BLOCK_NUMBER);

	inode_iterator = (struct dedupfs_inode *)bh->b_data;

	if(mutex_lock_interruptible(&dedupfs_sb_lock)) {
		printk(KERN_ERR "Failed to acquire mutex lock %s +%d\n",
							__FILE__, __LINE__);	
		return;
	}

	/* Append the new inode in the end in the inode store */
	inode_iterator += sb->inodes_count;

	memcpy(inode_iterator, inode, sizeof(struct dedupfs_inode));
	sb->inodes_count++;

	mark_buffer_dirty(bh);
	dedupfs_sb_sync(vsb);

	mutex_unlock(&dedupfs_sb_lock);
	mutex_unlock(&dedupfs_inodes_mgmt_lock);

}
Esempio n. 17
0
static struct buffer_head *qnx4_find_entry(int len, struct inode *dir,
	   const char *name, struct qnx4_inode_entry **res_dir, int *ino)
{
	unsigned long block, offset, blkofs;
	struct buffer_head *bh;

	*res_dir = NULL;
	bh = NULL;
	block = offset = blkofs = 0;
	while (blkofs * QNX4_BLOCK_SIZE + offset < dir->i_size) {
		if (!bh) {
			block = qnx4_block_map(dir, blkofs);
			if (block)
				bh = sb_bread(dir->i_sb, block);
			if (!bh) {
				blkofs++;
				continue;
			}
		}
		*res_dir = (struct qnx4_inode_entry *) (bh->b_data + offset);
		if (qnx4_match(len, name, bh, &offset)) {
			*ino = block * QNX4_INODES_PER_BLOCK +
			    (offset / QNX4_DIR_ENTRY_SIZE) - 1;
			return bh;
		}
		if (offset < bh->b_size) {
			continue;
		}
		brelse(bh);
		bh = NULL;
		offset = 0;
		blkofs++;
	}
	brelse(bh);
	*res_dir = NULL;
	return NULL;
}
Esempio n. 18
0
static int fat__get_entry(struct inode *dir, loff_t *pos,
			  struct buffer_head **bh, struct msdos_dir_entry **de)
{
	struct super_block *sb = dir->i_sb;
	sector_t phys, iblock;
	unsigned long mapped_blocks;
	int err, offset, retry_count;
    retry_count = MAX_BREAD_TRYCOUNT;
next:
	if (*bh)
		brelse(*bh);

	*bh = NULL;
	iblock = *pos >> sb->s_blocksize_bits;
	err = fat_bmap(dir, iblock, &phys, &mapped_blocks, 0);
	if (err || !phys)
		return -1;	/* beyond EOF or error */

	fat_dir_readahead(dir, iblock, phys);

	*bh = sb_bread(sb, phys);
	if (*bh == NULL) {
		fat_msg(sb, KERN_DEBUG, "Directory bread(block %llu) failed",
		       (llu)phys);
		/* skip this block */
		*pos = (iblock + 1) << sb->s_blocksize_bits;
        if(retry_count-- < 0)
            return -1;
		goto next;
	}

	offset = *pos & (sb->s_blocksize - 1);
	*pos += sizeof(struct msdos_dir_entry);
	*de = (struct msdos_dir_entry *)((*bh)->b_data + offset);

	return 0;
}
/* Returns the inode number of the directory entry at offset pos. If bh is
   non-NULL, it is brelse'd before. Pos is incremented. The buffer header is
   returned in bh.
   AV. Most often we do it item-by-item. Makes sense to optimize.
   AV. OK, there we go: if both bh and de are non-NULL we assume that we just
   AV. want the next entry (took one explicit de=NULL in vfat/namei.c).
   AV. It's done in fat_get_entry() (inlined), here the slow case lives.
   AV. Additionally, when we return -1 (i.e. reached the end of directory)
   AV. we make bh NULL.
 */
static int fat__get_entry(struct inode *dir, loff_t *pos,
			  struct buffer_head **bh, struct msdos_dir_entry **de)
{
	struct super_block *sb = dir->i_sb;
	sector_t phys, iblock;
	unsigned long mapped_blocks;
	int err, offset;

next:
	if (*bh)
		brelse(*bh);

	*bh = NULL;
	iblock = *pos >> sb->s_blocksize_bits;
	err = fat_bmap(dir, iblock, &phys, &mapped_blocks, 0);
	if (err || !phys)
		return -1;	/* beyond EOF or error */

	fat_dir_readahead(dir, iblock, phys);

	*bh = sb_bread(sb, phys);
	if (*bh == NULL) {
#ifndef CONFIG_MACH_LGE
		fat_msg_ratelimit(sb, KERN_ERR,
			"Directory bread(block %llu) failed", (llu)phys);
#endif
		/* skip this block */
		*pos = (iblock + 1) << sb->s_blocksize_bits;
		goto next;
	}

	offset = *pos & (sb->s_blocksize - 1);
	*pos += sizeof(struct msdos_dir_entry);
	*de = (struct msdos_dir_entry *)((*bh)->b_data + offset);

	return 0;
}
Esempio n. 20
0
int uxfs_find_entry(struct inode *dip, char *name)
{
	struct uxfs_inode_info *uxi = uxfs_i(dip);
	struct super_block *sb = dip->i_sb;
	struct buffer_head *bh = NULL;
	struct uxfs_dirent *dirent;
	int i, blk = 0;

	for (blk = 0; blk < uxi->uip.i_blocks; blk++) {
		bh = sb_bread(sb, uxi->uip.i_addr[blk]);
		dirent = (struct uxfs_dirent *)bh->b_data;
		for (i = 0; i < UXFS_DIRS_PER_BLOCK; i++) {
			if (strcmp(dirent->d_name, name) == 0) {
				brelse(bh);
				return dirent->d_ino;
			}
			dirent++;
		}
	}
	if (bh)
		brelse(bh);

	return 0;
}
Esempio n. 21
0
File: io.c Progetto: 020gzh/linux
struct buffer_head *
befs_bread_iaddr(struct super_block *sb, befs_inode_addr iaddr)
{
	struct buffer_head *bh = NULL;
	befs_blocknr_t block = 0;
	struct befs_sb_info *befs_sb = BEFS_SB(sb);

	befs_debug(sb, "---> Enter %s "
		   "[%u, %hu, %hu]", __func__, iaddr.allocation_group,
		   iaddr.start, iaddr.len);

	if (iaddr.allocation_group > befs_sb->num_ags) {
		befs_error(sb, "BEFS: Invalid allocation group %u, max is %u",
			   iaddr.allocation_group, befs_sb->num_ags);
		goto error;
	}

	block = iaddr2blockno(sb, &iaddr);

	befs_debug(sb, "%s: offset = %lu", __func__, (unsigned long)block);

	bh = sb_bread(sb, block);

	if (bh == NULL) {
		befs_error(sb, "Failed to read block %lu",
			   (unsigned long)block);
		goto error;
	}

	befs_debug(sb, "<--- %s", __func__);
	return bh;

      error:
	befs_debug(sb, "<--- %s ERROR", __func__);
	return NULL;
}
Esempio n. 22
0
/* Save the modified inode */
int simplefs_inode_save(struct super_block *sb, struct simplefs_inode *sfs_inode)
{
    struct simplefs_inode *inode_iterator;
    struct buffer_head *bh;

    bh = sb_bread(sb, SIMPLEFS_INODESTORE_BLOCK_NUMBER);
    BUG_ON(!bh);

    if (mutex_lock_interruptible(&simplefs_sb_lock)) {
        sfs_trace("Failed to acquire mutex lock\n");
        return -EINTR;
    }

    inode_iterator = simplefs_inode_search(sb,
                                           (struct simplefs_inode *)bh->b_data,
                                           sfs_inode);

    if (likely(inode_iterator)) {
        memcpy(inode_iterator, sfs_inode, sizeof(*inode_iterator));
        printk(KERN_INFO "The inode updated\n");

        mark_buffer_dirty(bh);
        sync_dirty_buffer(bh);
    } else {
        mutex_unlock(&simplefs_sb_lock);
        printk(KERN_ERR
               "The new filesize could not be stored to the inode.");
        return -EIO;
    }

    brelse(bh);

    mutex_unlock(&simplefs_sb_lock);

    return 0;
}
Esempio n. 23
0
static int affs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct affs_sb_info	*sbi;
	struct buffer_head	*root_bh = NULL;
	struct buffer_head	*boot_bh;
	struct inode		*root_inode = NULL;
	s32			 root_block;
	int			 size, blocksize;
	u32			 chksum;
	int			 num_bm;
	int			 i, j;
	s32			 key;
	uid_t			 uid;
	gid_t			 gid;
	int			 reserved;
	unsigned long		 mount_flags;
	int			 tmp_flags;	/* fix remount prototype... */
	u8			 sig[4];
	int			 ret = -EINVAL;

	save_mount_options(sb, data);

	pr_debug("AFFS: read_super(%s)\n",data ? (const char *)data : "no options");

	sb->s_magic             = AFFS_SUPER_MAGIC;
	sb->s_op                = &affs_sops;
	sb->s_flags |= MS_NODIRATIME;

	sbi = kzalloc(sizeof(struct affs_sb_info), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;

	sb->s_fs_info = sbi;
	mutex_init(&sbi->s_bmlock);
	spin_lock_init(&sbi->symlink_lock);

	if (!parse_options(data,&uid,&gid,&i,&reserved,&root_block,
				&blocksize,&sbi->s_prefix,
				sbi->s_volume, &mount_flags)) {
		printk(KERN_ERR "AFFS: Error parsing options\n");
		kfree(sbi->s_prefix);
		kfree(sbi);
		return -EINVAL;
	}
	/* N.B. after this point s_prefix must be released */

	sbi->s_flags   = mount_flags;
	sbi->s_mode    = i;
	sbi->s_uid     = uid;
	sbi->s_gid     = gid;
	sbi->s_reserved= reserved;

	/* Get the size of the device in 512-byte blocks.
	 * If we later see that the partition uses bigger
	 * blocks, we will have to change it.
	 */

	size = sb->s_bdev->bd_inode->i_size >> 9;
	pr_debug("AFFS: initial blocksize=%d, #blocks=%d\n", 512, size);

	affs_set_blocksize(sb, PAGE_SIZE);
	/* Try to find root block. Its location depends on the block size. */

	i = 512;
	j = 4096;
	if (blocksize > 0) {
		i = j = blocksize;
		size = size / (blocksize / 512);
	}
	for (blocksize = i, key = 0; blocksize <= j; blocksize <<= 1, size >>= 1) {
		sbi->s_root_block = root_block;
		if (root_block < 0)
			sbi->s_root_block = (reserved + size - 1) / 2;
		pr_debug("AFFS: setting blocksize to %d\n", blocksize);
		affs_set_blocksize(sb, blocksize);
		sbi->s_partition_size = size;

		/* The root block location that was calculated above is not
		 * correct if the partition size is an odd number of 512-
		 * byte blocks, which will be rounded down to a number of
		 * 1024-byte blocks, and if there were an even number of
		 * reserved blocks. Ideally, all partition checkers should
		 * report the real number of blocks of the real blocksize,
		 * but since this just cannot be done, we have to try to
		 * find the root block anyways. In the above case, it is one
		 * block behind the calculated one. So we check this one, too.
		 */
		for (num_bm = 0; num_bm < 2; num_bm++) {
			pr_debug("AFFS: Dev %s, trying root=%u, bs=%d, "
				"size=%d, reserved=%d\n",
				sb->s_id,
				sbi->s_root_block + num_bm,
				blocksize, size, reserved);
			root_bh = affs_bread(sb, sbi->s_root_block + num_bm);
			if (!root_bh)
				continue;
			if (!affs_checksum_block(sb, root_bh) &&
			    be32_to_cpu(AFFS_ROOT_HEAD(root_bh)->ptype) == T_SHORT &&
			    be32_to_cpu(AFFS_ROOT_TAIL(sb, root_bh)->stype) == ST_ROOT) {
				sbi->s_hashsize    = blocksize / 4 - 56;
				sbi->s_root_block += num_bm;
				key                        = 1;
				goto got_root;
			}
			affs_brelse(root_bh);
			root_bh = NULL;
		}
	}
	if (!silent)
		printk(KERN_ERR "AFFS: No valid root block on device %s\n",
			sb->s_id);
	goto out_error;

	/* N.B. after this point bh must be released */
got_root:
	root_block = sbi->s_root_block;

	/* Find out which kind of FS we have */
	boot_bh = sb_bread(sb, 0);
	if (!boot_bh) {
		printk(KERN_ERR "AFFS: Cannot read boot block\n");
		goto out_error;
	}
	memcpy(sig, boot_bh->b_data, 4);
	brelse(boot_bh);
	chksum = be32_to_cpu(*(__be32 *)sig);

	/* Dircache filesystems are compatible with non-dircache ones
	 * when reading. As long as they aren't supported, writing is
	 * not recommended.
	 */
	if ((chksum == FS_DCFFS || chksum == MUFS_DCFFS || chksum == FS_DCOFS
	     || chksum == MUFS_DCOFS) && !(sb->s_flags & MS_RDONLY)) {
		printk(KERN_NOTICE "AFFS: Dircache FS - mounting %s read only\n",
			sb->s_id);
		sb->s_flags |= MS_RDONLY;
	}
	switch (chksum) {
		case MUFS_FS:
		case MUFS_INTLFFS:
		case MUFS_DCFFS:
			sbi->s_flags |= SF_MUFS;
			/* fall thru */
		case FS_INTLFFS:
		case FS_DCFFS:
			sbi->s_flags |= SF_INTL;
			break;
		case MUFS_FFS:
			sbi->s_flags |= SF_MUFS;
			break;
		case FS_FFS:
			break;
		case MUFS_OFS:
			sbi->s_flags |= SF_MUFS;
			/* fall thru */
		case FS_OFS:
			sbi->s_flags |= SF_OFS;
			sb->s_flags |= MS_NOEXEC;
			break;
		case MUFS_DCOFS:
		case MUFS_INTLOFS:
			sbi->s_flags |= SF_MUFS;
		case FS_DCOFS:
		case FS_INTLOFS:
			sbi->s_flags |= SF_INTL | SF_OFS;
			sb->s_flags |= MS_NOEXEC;
			break;
		default:
			printk(KERN_ERR "AFFS: Unknown filesystem on device %s: %08X\n",
				sb->s_id, chksum);
			goto out_error;
	}

	if (mount_flags & SF_VERBOSE) {
		u8 len = AFFS_ROOT_TAIL(sb, root_bh)->disk_name[0];
		printk(KERN_NOTICE "AFFS: Mounting volume \"%.*s\": Type=%.3s\\%c, Blocksize=%d\n",
			len > 31 ? 31 : len,
			AFFS_ROOT_TAIL(sb, root_bh)->disk_name + 1,
			sig, sig[3] + '0', blocksize);
	}

	sb->s_flags |= MS_NODEV | MS_NOSUID;

	sbi->s_data_blksize = sb->s_blocksize;
	if (sbi->s_flags & SF_OFS)
		sbi->s_data_blksize -= 24;

	/* Keep super block in cache */
	sbi->s_root_bh = root_bh;
	/* N.B. after this point s_root_bh must be released */

	tmp_flags = sb->s_flags;
	if (affs_init_bitmap(sb, &tmp_flags))
		goto out_error;
	sb->s_flags = tmp_flags;

	/* set up enough so that it can read an inode */

	root_inode = affs_iget(sb, root_block);
	if (IS_ERR(root_inode)) {
		ret = PTR_ERR(root_inode);
		goto out_error_noinode;
	}

	sb->s_root = d_alloc_root(root_inode);
	if (!sb->s_root) {
		printk(KERN_ERR "AFFS: Get root inode failed\n");
		goto out_error;
	}
	sb->s_root->d_op = &affs_dentry_operations;

	pr_debug("AFFS: s_flags=%lX\n",sb->s_flags);
	return 0;

	/*
	 * Begin the cascaded cleanup ...
	 */
out_error:
	if (root_inode)
		iput(root_inode);
out_error_noinode:
	kfree(sbi->s_bitmap);
	affs_brelse(root_bh);
	kfree(sbi->s_prefix);
	kfree(sbi);
	sb->s_fs_info = NULL;
	return ret;
}
Esempio n. 24
0
/*
 *	jfs_extendfs()
 *
 * function: extend file system;
 *
 *   |-------------------------------|----------|----------|
 *   file system space               fsck       inline log
 *                                   workspace  space
 *
 * input:
 *	new LVSize: in LV blocks (required)
 *	new LogSize: in LV blocks (optional)
 *	new FSSize: in LV blocks (optional)
 *
 * new configuration:
 * 1. set new LogSize as specified or default from new LVSize;
 * 2. compute new FSCKSize from new LVSize;
 * 3. set new FSSize as MIN(FSSize, LVSize-(LogSize+FSCKSize)) where
 *    assert(new FSSize >= old FSSize),
 *    i.e., file system must not be shrinked;
 */
int jfs_extendfs(struct super_block *sb, s64 newLVSize, int newLogSize)
{
	int rc = 0;
	struct jfs_sb_info *sbi = JFS_SBI(sb);
	struct inode *ipbmap = sbi->ipbmap;
	struct inode *ipbmap2;
	struct inode *ipimap = sbi->ipimap;
	struct jfs_log *log = sbi->log;
	struct bmap *bmp = sbi->bmap;
	s64 newLogAddress, newFSCKAddress;
	int newFSCKSize;
	s64 newMapSize = 0, mapSize;
	s64 XAddress, XSize, nblocks, xoff, xaddr, t64;
	s64 oldLVSize;
	s64 newFSSize;
	s64 VolumeSize;
	int newNpages = 0, nPages, newPage, xlen, t32;
	int tid;
	int log_formatted = 0;
	struct inode *iplist[1];
	struct jfs_superblock *j_sb, *j_sb2;
	uint old_agsize;
	struct buffer_head *bh, *bh2;

	/* If the volume hasn't grown, get out now */

	if (sbi->mntflag & JFS_INLINELOG)
		oldLVSize = addressPXD(&sbi->logpxd) + lengthPXD(&sbi->logpxd);
	else
		oldLVSize = addressPXD(&sbi->fsckpxd) +
		    lengthPXD(&sbi->fsckpxd);

	if (oldLVSize >= newLVSize) {
		printk(KERN_WARNING
		       "jfs_extendfs: volume hasn't grown, returning\n");
		goto out;
	}

	VolumeSize = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;

	if (VolumeSize) {
		if (newLVSize > VolumeSize) {
			printk(KERN_WARNING "jfs_extendfs: invalid size\n");
			rc = -EINVAL;
			goto out;
		}
	} else {
		/* check the device */
		bh = sb_bread(sb, newLVSize - 1);
		if (!bh) {
			printk(KERN_WARNING "jfs_extendfs: invalid size\n");
			rc = -EINVAL;
			goto out;
		}
		bforget(bh);
	}

	/* Can't extend write-protected drive */

	if (isReadOnly(ipbmap)) {
		printk(KERN_WARNING "jfs_extendfs: read-only file system\n");
		rc = -EROFS;
		goto out;
	}

	/*
	 *	reconfigure LV spaces
	 *	---------------------
	 *
	 * validate new size, or, if not specified, determine new size
	 */

	/*
	 * reconfigure inline log space:
	 */
	if ((sbi->mntflag & JFS_INLINELOG)) {
		if (newLogSize == 0) {
			/*
			 * no size specified: default to 1/256 of aggregate
			 * size; rounded up to a megabyte boundary;
			 */
			newLogSize = newLVSize >> 8;
			t32 = (1 << (20 - sbi->l2bsize)) - 1;
			newLogSize = (newLogSize + t32) & ~t32;
			newLogSize =
			    min(newLogSize, MEGABYTE32 >> sbi->l2bsize);
		} else {
Esempio n. 25
0
int uxfs_mkdir(struct inode *dip, struct dentry *dentry, umode_t mode)
{
	struct uxfs_inode *nip;
	struct buffer_head *bh;
	struct super_block *sb = dip->i_sb;
	struct uxfs_dirent *dirent;
	struct inode *inode;
	ino_t inum = 0;
	int blk;

	/*
	 * Make sure there isn't already an entry. If not, 
	 * allocate one, a new inode and new incore inode.
	 */

	inum = uxfs_find_entry(dip, (char *)dentry->d_name.name);
	if (inum)
		return -EEXIST;
	inode = new_inode(sb);
	if (!inode)
		return -ENOSPC;
	inum = uxfs_ialloc(sb);
	if (!inum) {
		iput(inode);
		return -ENOSPC;
	}
	uxfs_diradd(dip, (char *)dentry->d_name.name, inum);

	inode->i_uid = current_fsuid();
	inode->i_gid =
	    (dip->i_mode & S_ISGID) ? dip->i_gid : current_fsgid();
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->i_blocks = 1;
//      inode->i_blksize = UXFS_BSIZE;
	inode->i_op = &uxfs_dir_inops;
	inode->i_fop = &uxfs_dir_operations;
	inode->i_mapping->a_ops = &uxfs_aops;
	inode->i_mode = mode | S_IFDIR;
	inode->i_ino = inum;
	inode->i_size = UXFS_BSIZE;
	inode->i_private = uxfs_i(inode);	//initialize private, again!
	set_nlink(inode, 2);

	nip = (struct uxfs_inode *)inode->i_private;
	nip->i_mode = mode | S_IFDIR;
	nip->i_nlink = 2;
	nip->i_atime = nip->i_ctime = nip->i_mtime = CURRENT_TIME.tv_sec;
	nip->i_uid = current_fsuid();
	nip->i_gid =
	    (dip->i_mode & S_ISGID) ? dip->i_gid : current_fsgid();
	nip->i_size = 512;
	nip->i_blocks = 1;
	memset(nip->i_addr, 0,
	       UXFS_DIRECT_BLOCKS * sizeof(nip->i_addr[0]));

	blk = uxfs_block_alloc(sb);
	nip->i_addr[0] = blk;
	bh = sb_bread(sb, blk);
	memset(bh->b_data, 0, UXFS_BSIZE);
	dirent = (struct uxfs_dirent *)bh->b_data;
	dirent->d_ino = inum;
	strcpy(dirent->d_name, ".");
	dirent++;
	dirent->d_ino = inode->i_ino;
	strcpy(dirent->d_name, "..");

	mark_buffer_dirty(bh);
	brelse(bh);
	insert_inode_hash(inode);
	d_instantiate(dentry, inode);
	mark_inode_dirty(inode);

	/*
	 * Increment the link count of the parent directory.
	 */

	inode_inc_link_count(dip);
	mark_inode_dirty(dip);
	return 0;
}
Esempio n. 26
0
struct inode *bfs_iget(struct super_block *sb, unsigned long ino)
{
	struct bfs_inode *di;
	struct inode *inode;
	struct buffer_head *bh;
	int block, off;

	inode = iget_locked(sb, ino);
	if (IS_ERR(inode))
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	if ((ino < BFS_ROOT_INO) || (ino > BFS_SB(inode->i_sb)->si_lasti)) {
		printf("Bad inode number %s:%08lx\n", inode->i_sb->s_id, ino);
		goto error;
	}

	block = (ino - BFS_ROOT_INO) / BFS_INODES_PER_BLOCK + 1;
	bh = sb_bread(inode->i_sb, block);
	if (!bh) {
		printf("Unable to read inode %s:%08lx\n", inode->i_sb->s_id,
									ino);
		goto error;
	}

	off = (ino - BFS_ROOT_INO) % BFS_INODES_PER_BLOCK;
	di = (struct bfs_inode *)bh->b_data + off;

	inode->i_mode = 0x0000FFFF & le32_to_cpu(di->i_mode);
	if (le32_to_cpu(di->i_vtype) == BFS_VDIR) {
		inode->i_mode |= S_IFDIR;
		inode->i_op = &bfs_dir_inops;
		inode->i_fop = &bfs_dir_operations;
	} else if (le32_to_cpu(di->i_vtype) == BFS_VREG) {
		inode->i_mode |= S_IFREG;
		inode->i_op = &bfs_file_inops;
		inode->i_fop = &bfs_file_operations;
		inode->i_mapping->a_ops = &bfs_aops;
	}

	BFS_I(inode)->i_sblock =  le32_to_cpu(di->i_sblock);
	BFS_I(inode)->i_eblock =  le32_to_cpu(di->i_eblock);
	BFS_I(inode)->i_dsk_ino = le16_to_cpu(di->i_ino);
	inode->i_uid =  le32_to_cpu(di->i_uid);
	inode->i_gid =  le32_to_cpu(di->i_gid);
	inode->i_nlink =  le32_to_cpu(di->i_nlink);
	inode->i_size = BFS_FILESIZE(di);
	inode->i_blocks = BFS_FILEBLOCKS(di);
	inode->i_atime.tv_sec =  le32_to_cpu(di->i_atime);
	inode->i_mtime.tv_sec =  le32_to_cpu(di->i_mtime);
	inode->i_ctime.tv_sec =  le32_to_cpu(di->i_ctime);
	inode->i_atime.tv_nsec = 0;
	inode->i_mtime.tv_nsec = 0;
	inode->i_ctime.tv_nsec = 0;

	brelse(bh);
	unlock_new_inode(inode);
	return inode;

error:
	iget_failed(inode);
	return ERR_PTR(-EIO);
}
Esempio n. 27
0
static int bfs_fill_super(struct super_block *s, void *data, int silent)
{
	struct buffer_head *bh, *sbh;
	struct bfs_super_block *bfs_sb;
	struct inode *inode;
	unsigned i, imap_len;
	struct bfs_sb_info *info;
	int ret = -EINVAL;
	unsigned long i_sblock, i_eblock, i_eoff, s_size;

	info = kzalloc(sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;
	mutex_init(&info->bfs_lock);
	s->s_fs_info = info;

	sb_set_blocksize(s, BFS_BSIZE);

	sbh = sb_bread(s, 0);
	if (!sbh)
		goto out;
	bfs_sb = (struct bfs_super_block *)sbh->b_data;
	if (le32_to_cpu(bfs_sb->s_magic) != BFS_MAGIC) {
		if (!silent)
			printf("No BFS filesystem on %s (magic=%08x)\n", 
				s->s_id,  le32_to_cpu(bfs_sb->s_magic));
		goto out1;
	}
	if (BFS_UNCLEAN(bfs_sb, s) && !silent)
		printf("%s is unclean, continuing\n", s->s_id);

	s->s_magic = BFS_MAGIC;

	if (le32_to_cpu(bfs_sb->s_start) > le32_to_cpu(bfs_sb->s_end)) {
		printf("Superblock is corrupted\n");
		goto out1;
	}

	info->si_lasti = (le32_to_cpu(bfs_sb->s_start) - BFS_BSIZE) /
					sizeof(struct bfs_inode)
					+ BFS_ROOT_INO - 1;
	imap_len = (info->si_lasti / 8) + 1;
	info->si_imap = kzalloc(imap_len, GFP_KERNEL);
	if (!info->si_imap)
		goto out1;
	for (i = 0; i < BFS_ROOT_INO; i++)
		set_bit(i, info->si_imap);

	s->s_op = &bfs_sops;
	inode = bfs_iget(s, BFS_ROOT_INO);
	if (IS_ERR(inode)) {
		ret = PTR_ERR(inode);
		goto out2;
	}
	s->s_root = d_alloc_root(inode);
	if (!s->s_root) {
		iput(inode);
		ret = -ENOMEM;
		goto out2;
	}

	info->si_blocks = (le32_to_cpu(bfs_sb->s_end) + 1) >> BFS_BSIZE_BITS;
	info->si_freeb = (le32_to_cpu(bfs_sb->s_end) + 1
			- le32_to_cpu(bfs_sb->s_start)) >> BFS_BSIZE_BITS;
	info->si_freei = 0;
	info->si_lf_eblk = 0;

	/* can we read the last block? */
	bh = sb_bread(s, info->si_blocks - 1);
	if (!bh) {
		printf("Last block not available: %lu\n", info->si_blocks - 1);
		ret = -EIO;
		goto out3;
	}
	brelse(bh);

	bh = NULL;
	for (i = BFS_ROOT_INO; i <= info->si_lasti; i++) {
		struct bfs_inode *di;
		int block = (i - BFS_ROOT_INO) / BFS_INODES_PER_BLOCK + 1;
		int off = (i - BFS_ROOT_INO) % BFS_INODES_PER_BLOCK;
		unsigned long eblock;

		if (!off) {
			brelse(bh);
			bh = sb_bread(s, block);
		}

		if (!bh)
			continue;

		di = (struct bfs_inode *)bh->b_data + off;

		/* test if filesystem is not corrupted */

		i_eoff = le32_to_cpu(di->i_eoffset);
		i_sblock = le32_to_cpu(di->i_sblock);
		i_eblock = le32_to_cpu(di->i_eblock);
		s_size = le32_to_cpu(bfs_sb->s_end);

		if (i_sblock > info->si_blocks ||
			i_eblock > info->si_blocks ||
			i_sblock > i_eblock ||
			i_eoff > s_size ||
			i_sblock * BFS_BSIZE > i_eoff) {

			printf("Inode 0x%08x corrupted\n", i);

			brelse(bh);
			ret = -EIO;
			goto out3;
		}

		if (!di->i_ino) {
			info->si_freei++;
			continue;
		}
		set_bit(i, info->si_imap);
		info->si_freeb -= BFS_FILEBLOCKS(di);

		eblock =  le32_to_cpu(di->i_eblock);
		if (eblock > info->si_lf_eblk)
			info->si_lf_eblk = eblock;
	}
	brelse(bh);
	brelse(sbh);
	dump_imap("read_super", s);
	return 0;

out3:
	dput(s->s_root);
	s->s_root = NULL;
out2:
	kfree(info->si_imap);
out1:
	brelse(sbh);
out:
	mutex_destroy(&info->bfs_lock);
	kfree(info);
	s->s_fs_info = NULL;
	return ret;
}
Esempio n. 28
0
static int minix_fill_super(struct super_block *s, void *data, int silent)
{
	struct buffer_head *bh;
	struct buffer_head **map;
	struct minix_super_block *ms;
	struct minix3_super_block *m3s = NULL;
	unsigned long i, block;
	struct inode *root_inode;
	struct minix_sb_info *sbi;
	int ret = -EINVAL;

	sbi = kzalloc(sizeof(struct minix_sb_info), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;
	s->s_fs_info = sbi;

	BUILD_BUG_ON(32 != sizeof (struct minix_inode));
	BUILD_BUG_ON(64 != sizeof(struct minix2_inode));

	if (!sb_set_blocksize(s, BLOCK_SIZE))
		goto out_bad_hblock;

	if (!(bh = sb_bread(s, 1)))
		goto out_bad_sb;

	ms = (struct minix_super_block *) bh->b_data;
	sbi->s_ms = ms;
	sbi->s_sbh = bh;
	sbi->s_mount_state = ms->s_state;
	sbi->s_ninodes = ms->s_ninodes;
	sbi->s_nzones = ms->s_nzones;
	sbi->s_imap_blocks = ms->s_imap_blocks;
	sbi->s_zmap_blocks = ms->s_zmap_blocks;
	sbi->s_firstdatazone = ms->s_firstdatazone;
	sbi->s_log_zone_size = ms->s_log_zone_size;
	sbi->s_max_size = ms->s_max_size;
	s->s_magic = ms->s_magic;
	if (s->s_magic == MINIX_SUPER_MAGIC) {
		sbi->s_version = MINIX_V1;
		sbi->s_dirsize = 16;
		sbi->s_namelen = 14;
		s->s_max_links = MINIX_LINK_MAX;
	} else if (s->s_magic == MINIX_SUPER_MAGIC2) {
		sbi->s_version = MINIX_V1;
		sbi->s_dirsize = 32;
		sbi->s_namelen = 30;
		s->s_max_links = MINIX_LINK_MAX;
	} else if (s->s_magic == MINIX2_SUPER_MAGIC) {
		sbi->s_version = MINIX_V2;
		sbi->s_nzones = ms->s_zones;
		sbi->s_dirsize = 16;
		sbi->s_namelen = 14;
		s->s_max_links = MINIX2_LINK_MAX;
	} else if (s->s_magic == MINIX2_SUPER_MAGIC2) {
		sbi->s_version = MINIX_V2;
		sbi->s_nzones = ms->s_zones;
		sbi->s_dirsize = 32;
		sbi->s_namelen = 30;
		s->s_max_links = MINIX2_LINK_MAX;
	} else if ( *(__u16 *)(bh->b_data + 24) == MINIX3_SUPER_MAGIC) {
		m3s = (struct minix3_super_block *) bh->b_data;
		s->s_magic = m3s->s_magic;
		sbi->s_imap_blocks = m3s->s_imap_blocks;
		sbi->s_zmap_blocks = m3s->s_zmap_blocks;
		sbi->s_firstdatazone = m3s->s_firstdatazone;
		sbi->s_log_zone_size = m3s->s_log_zone_size;
		sbi->s_max_size = m3s->s_max_size;
		sbi->s_ninodes = m3s->s_ninodes;
		sbi->s_nzones = m3s->s_zones;
		sbi->s_dirsize = 64;
		sbi->s_namelen = 60;
		sbi->s_version = MINIX_V3;
		sbi->s_mount_state = MINIX_VALID_FS;
		sb_set_blocksize(s, m3s->s_blocksize);
		s->s_max_links = MINIX2_LINK_MAX;
	} else
		goto out_no_fs;

	/*
	 * Allocate the buffer map to keep the superblock small.
	 */
	if (sbi->s_imap_blocks == 0 || sbi->s_zmap_blocks == 0)
		goto out_illegal_sb;
	i = (sbi->s_imap_blocks + sbi->s_zmap_blocks) * sizeof(bh);
	map = kzalloc(i, GFP_KERNEL);
	if (!map)
		goto out_no_map;
	sbi->s_imap = &map[0];
	sbi->s_zmap = &map[sbi->s_imap_blocks];

	block=2;
	for (i=0 ; i < sbi->s_imap_blocks ; i++) {
		if (!(sbi->s_imap[i]=sb_bread(s, block)))
			goto out_no_bitmap;
		block++;
	}
	for (i=0 ; i < sbi->s_zmap_blocks ; i++) {
		if (!(sbi->s_zmap[i]=sb_bread(s, block)))
			goto out_no_bitmap;
		block++;
	}

	minix_set_bit(0,sbi->s_imap[0]->b_data);
	minix_set_bit(0,sbi->s_zmap[0]->b_data);

	/* Apparently minix can create filesystems that allocate more blocks for
	 * the bitmaps than needed.  We simply ignore that, but verify it didn't
	 * create one with not enough blocks and bail out if so.
	 */
	block = minix_blocks_needed(sbi->s_ninodes, s->s_blocksize);
	if (sbi->s_imap_blocks < block) {
		printk("MINIX-fs: file system does not have enough "
				"imap blocks allocated.  Refusing to mount\n");
		goto out_no_bitmap;
	}

	block = minix_blocks_needed(
			(sbi->s_nzones - (sbi->s_firstdatazone + 1)),
			s->s_blocksize);
	if (sbi->s_zmap_blocks < block) {
		printk("MINIX-fs: file system does not have enough "
				"zmap blocks allocated.  Refusing to mount.\n");
		goto out_no_bitmap;
	}

	/* set up enough so that it can read an inode */
	s->s_op = &minix_sops;
	root_inode = minix_iget(s, MINIX_ROOT_INO);
	if (IS_ERR(root_inode)) {
		ret = PTR_ERR(root_inode);
		goto out_no_root;
	}

	ret = -ENOMEM;
	s->s_root = d_make_root(root_inode);
	if (!s->s_root)
		goto out_no_root;

	if (!(s->s_flags & MS_RDONLY)) {
		if (sbi->s_version != MINIX_V3) /* s_state is now out from V3 sb */
			ms->s_state &= ~MINIX_VALID_FS;
		mark_buffer_dirty(bh);
	}
	if (!(sbi->s_mount_state & MINIX_VALID_FS))
		printk("MINIX-fs: mounting unchecked file system, "
			"running fsck is recommended\n");
	else if (sbi->s_mount_state & MINIX_ERROR_FS)
		printk("MINIX-fs: mounting file system with errors, "
			"running fsck is recommended\n");

	return 0;

out_no_root:
	if (!silent)
		printk("MINIX-fs: get root inode failed\n");
	goto out_freemap;

out_no_bitmap:
	printk("MINIX-fs: bad superblock or unable to read bitmaps\n");
out_freemap:
	for (i = 0; i < sbi->s_imap_blocks; i++)
		brelse(sbi->s_imap[i]);
	for (i = 0; i < sbi->s_zmap_blocks; i++)
		brelse(sbi->s_zmap[i]);
	kfree(sbi->s_imap);
	goto out_release;

out_no_map:
	ret = -ENOMEM;
	if (!silent)
		printk("MINIX-fs: can't allocate map\n");
	goto out_release;

out_illegal_sb:
	if (!silent)
		printk("MINIX-fs: bad superblock\n");
	goto out_release;

out_no_fs:
	if (!silent)
		printk("VFS: Can't find a Minix filesystem V1 | V2 | V3 "
		       "on device %s.\n", s->s_id);
out_release:
	brelse(bh);
	goto out;

out_bad_hblock:
	printk("MINIX-fs: blocksize too small for device\n");
	goto out;

out_bad_sb:
	printk("MINIX-fs: unable to read superblock\n");
out:
	s->s_fs_info = NULL;
	kfree(sbi);
	return ret;
}
Esempio n. 29
0
/*
 * add a new entry to a directory
 *
 * @dir_vi: the VFS inode of the directory
 * @inode_no: inode number of the new entry
 * @filename: name of the new entry
 * @length: size of name
 *
 * return: 0 on success, error code otherwise
 */
int wtfs_add_entry(struct inode * dir_vi, uint64_t inode_no,
	const char * filename, size_t length)
{
	struct super_block * vsb = dir_vi->i_sb;
	struct wtfs_sb_info * sbi = WTFS_SB_INFO(vsb);
	struct wtfs_inode_info * dir_info = WTFS_INODE_INFO(dir_vi);
	struct wtfs_dir_block * blk = NULL;
	struct buffer_head * bh = NULL, * bh2 = NULL;
	uint64_t next = dir_info->first_block, blk_no = 0;
	int i;
	int ret = -EIO;

	/* check name */
	if (length == 0) {
		wtfs_error("no dentry name specified\n");
		ret = -ENOENT;
		goto error;
	}
	if (length >= WTFS_FILENAME_MAX) {
		wtfs_error("dentry name too long %s\n", filename);
		ret = -ENAMETOOLONG;
		goto error;
	}

	/* find an empty entry in existing entries */
	while (1) {
		if ((bh = sb_bread(vsb, next)) == NULL) {
			wtfs_error("unable to read the block %llu\n", next);
			goto error;
		}
		blk = (struct wtfs_dir_block *)bh->b_data;
		for (i = 0; i < WTFS_INODE_COUNT_PER_TABLE; ++i) {
			/* find it */
			if (blk->entries[i].inode_no == 0) {
				blk->entries[i].inode_no = inode_no;
				strncpy(blk->entries[i].filename, filename,
					length);
				mark_buffer_dirty(bh);
				brelse(bh);
				dir_vi->i_ctime = CURRENT_TIME_SEC;
				dir_vi->i_mtime = CURRENT_TIME_SEC;
				++dir_info->dir_entry_count;
				mark_inode_dirty(dir_vi);
				return 0;
			}
		}
		next = wtfs64_to_cpu(blk->next);
		/*
		 * do not release the last block because we are to set its
		 * pointer
		 */
		if (next == 0) {
			break;
		}
		brelse(bh);
	}

	/* entries used up, so we have to create a new data block */
	if ((blk_no = wtfs_alloc_block(vsb)) == 0) {
		ret = -ENOSPC;
		goto error;
	}
	bh2 = wtfs_init_linked_block(vsb, blk_no, bh);
	if (IS_ERR(bh2)) {
		ret = PTR_ERR(bh2);
		bh2 = NULL;
		goto error;
	}
	brelse(bh); /* now we can release the previous block */
	blk = (struct wtfs_dir_block *)bh2->b_data;
	blk->entries[0].inode_no = inode_no;
	strncpy(blk->entries[0].filename, filename, length);
	mark_buffer_dirty(bh2);
	brelse(bh2);

	/* update parent directory's information */
	dir_vi->i_ctime = dir_vi->i_mtime = CURRENT_TIME_SEC;
	++dir_vi->i_blocks;
	i_size_write(dir_vi, i_size_read(dir_vi) + sbi->block_size);
	++dir_info->dir_entry_count;
	mark_inode_dirty(dir_vi);
	return 0;

error:
	if (bh != NULL) {
		brelse(bh);
	}
	if (bh2 != NULL) {
		brelse(bh2);
	}
	if (blk_no != 0) {
		wtfs_free_block(vsb, blk_no);
	}
	return ret;
}
Esempio n. 30
0
static int v7_fill_super(struct super_block *sb, void *data, int silent)
{
	struct sysv_sb_info *sbi;
	struct buffer_head *bh, *bh2 = NULL;
	struct v7_super_block *v7sb;
	struct sysv_inode *v7i;

	if (440 != sizeof (struct v7_super_block))
		panic("V7 FS: bad super-block size");
	if (64 != sizeof (struct sysv_inode))
		panic("sysv fs: bad i-node size");

	sbi = kmalloc(sizeof(struct sysv_sb_info), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;
	memset(sbi, 0, sizeof(struct sysv_sb_info));

	sbi->s_sb = sb;
	sbi->s_block_base = 0;
	sbi->s_type = FSTYPE_V7;
	sbi->s_bytesex = BYTESEX_PDP;
	sb->s_fs_info = sbi;
	
	sb_set_blocksize(sb, 512);

	if ((bh = sb_bread(sb, 1)) == NULL) {
		if (!silent)
			printk("VFS: unable to read V7 FS superblock on "
			       "device %s.\n", sb->s_id);
		goto failed;
	}

	/* plausibility check on superblock */
	v7sb = (struct v7_super_block *) bh->b_data;
	if (fs16_to_cpu(sbi, v7sb->s_nfree) > V7_NICFREE ||
	    fs16_to_cpu(sbi, v7sb->s_ninode) > V7_NICINOD ||
	    fs32_to_cpu(sbi, v7sb->s_time) == 0)
		goto failed;

	/* plausibility check on root inode: it is a directory,
	   with a nonzero size that is a multiple of 16 */
	if ((bh2 = sb_bread(sb, 2)) == NULL)
		goto failed;
	v7i = (struct sysv_inode *)(bh2->b_data + 64);
	if ((fs16_to_cpu(sbi, v7i->i_mode) & ~0777) != S_IFDIR ||
	    (fs32_to_cpu(sbi, v7i->i_size) == 0) ||
	    (fs32_to_cpu(sbi, v7i->i_size) & 017) != 0)
		goto failed;
	brelse(bh2);
	bh2 = NULL;

	sbi->s_bh1 = bh;
	sbi->s_bh2 = bh;
	if (complete_read_super(sb, silent, 1))
		return 0;

failed:
	brelse(bh2);
	brelse(bh);
	kfree(sbi);
	return -EINVAL;
}