GPSFilter::GPSFilter(double noise){ //KalmanFilter alloc_filter_velocity2d(double noise) { /* The state model has four dimensions: x, y, x', y' Each time step we can only observe position, not velocity, so the observation vector has only two dimensions. */ f = alloc_filter(4, 2); /* Assuming the axes are rectilinear does not work well at the poles, but it has the bonus that we don't need to convert between lat/long and more rectangular coordinates. The slight inaccuracy of our physics model is not too important. */ double v2p = 0.001; set_identity_matrix(f.state_transition); set_seconds_per_timestep(1.0); /* We observe (x, y) in each time step */ set_matrix(f.observation_model, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0); /* Noise in the world. */ double pos = 0.000001; set_matrix(f.process_noise_covariance, pos, 0.0, 0.0, 0.0, 0.0, pos, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0); /* Noise in our observation */ set_matrix(f.observation_noise_covariance, pos * noise, 0.0, 0.0, pos * noise); /* The start position is totally unknown, so give a high variance */ set_matrix(f.state_estimate, 0.0, 0.0, 0.0, 0.0); set_identity_matrix(f.estimate_covariance); double trillion = 1000.0 * 1000.0 * 1000.0 * 1000.0; scale_matrix(f.estimate_covariance, trillion); //return f; }
void f_scale (void) { array_t *matrix; double x, y, z; Matrix current_matrix; Matrix scaling_matrix; Matrix final_matrix; int i; if ((sp - 1)->type != T_REAL) { bad_arg(3, F_SCALE); } if (sp->type != T_REAL) { bad_arg(4, F_SCALE); } /* * get arguments from stack. */ matrix = (sp - 3)->u.arr; x = (sp - 2)->u.real; y = (sp - 1)->u.real; z = sp->u.real; sp -= 3; /* * convert vec matrix to float matrix. */ for (i = 0; i < 16; i++) { current_matrix[i] = matrix->item[i].u.real; } /* * create scaling matrix. */ scale_matrix(x, y, z, scaling_matrix); /* * compute transformed matrix. */ mult_matrix(current_matrix, scaling_matrix, final_matrix); /* * convert float matrix to vec matrix. */ for (i = 0; i < 16; i++) { matrix->item[i].u.real = final_matrix[i]; } }
//set view from x,y,z, viewer matrix, and zoom. Must call one of g3_set_view_*() void g3_set_view_matrix(vector *view_pos,matrix *view_matrix,float zoom) { Assert( G3_count == 1 ); View_zoom = zoom; View_position = *view_pos; View_matrix = *view_matrix; Eye_matrix = View_matrix; Eye_position = *view_pos; scale_matrix(); Light_matrix = vmd_identity_matrix; Light_base.xyz.x = 0.0f; Light_base.xyz.y = 0.0f; Light_base.xyz.z = 0.0f; vm_vec_zero(&Object_position); Object_matrix = vmd_identity_matrix; }
int pmrrr (char *jobz, char *range, int *np, double *D, double *E, double *vl, double *vu, int *il, int *iu, int *tryracp, MPI_Comm comm, int *nzp, int *offsetp, double *W, double *Z, int *ldz, int *Zsupp) { /* Input parameter */ int n = *np; bool onlyW = toupper(jobz[0]) == 'N'; bool wantZ = toupper(jobz[0]) == 'V'; bool cntval = toupper(jobz[0]) == 'C'; bool alleig = toupper(range[0]) == 'A'; bool valeig = toupper(range[0]) == 'V'; bool indeig = toupper(range[0]) == 'I'; /* Check input parameters */ if(!(onlyW || wantZ || cntval)) return 1; if(!(alleig || valeig || indeig)) return 1; if(n <= 0) return 1; if (valeig) { if(*vu<=*vl) return 1; } else if (indeig) { if (*il<1 || *il>n || *iu<*il || *iu>n) return 1; } /* MPI & multithreading info */ int is_init, is_final; MPI_Initialized(&is_init); MPI_Finalized(&is_final); if (is_init!=1 || is_final==1) { fprintf(stderr, "ERROR: MPI is not active! (init=%d, final=%d) \n", is_init, is_final); return 1; } MPI_Comm comm_dup; MPI_Comm_dup(comm, &comm_dup); int nproc, pid, thread_support; MPI_Comm_size(comm_dup, &nproc); MPI_Comm_rank(comm_dup, &pid); MPI_Query_thread(&thread_support); int nthreads; if ( !(thread_support == MPI_THREAD_MULTIPLE || thread_support == MPI_THREAD_FUNNELED) ) { /* Disable multithreading; note: to support multithreading with * MPI_THREAD_SERIALIZED the code must be changed slightly; this * is not supported at the moment */ nthreads = 1; } else { char *ompvar = getenv("PMR_NUM_THREADS"); if (ompvar == NULL) { nthreads = DEFAULT_NUM_THREADS; } else { nthreads = atoi(ompvar); } } #if defined(MVAPICH2_VERSION) if (nthreads>1) { int mv2_affinity=1; char *mv2_string = getenv("MV2_ENABLE_AFFINITY"); if (mv2_string != NULL) mv2_affinity = atoi(mv2_string); if (mv2_affinity!=0) { nthreads = 1; if (pid==0) { fprintf(stderr, "WARNING: PMRRR incurs a significant performance penalty when multithreaded with MVAPICH2 with affinity enabled. The number of threads has been reduced to one; please rerun with MV2_ENABLE_AFFINITY=0 or PMR_NUM_THREADS=1 in the future.\n"); fflush(stderr); } } } #endif /* If only maximal number of local eigenvectors are queried * return if possible here */ *nzp = 0; *offsetp = 0; if (cntval) { if ( alleig || n < DSTEMR_IF_SMALLER ) { *nzp = iceil(n,nproc); MPI_Comm_free(&comm_dup); return 0; } else if (indeig) { *nzp = iceil(*iu-*il+1,nproc); MPI_Comm_free(&comm_dup); return 0; } } /* Check if computation should be done by multiple processes */ int info; if (n < DSTEMR_IF_SMALLER) { info = handle_small_cases(jobz, range, np, D, E, vl, vu, il, iu, tryracp, comm, nzp, offsetp, W, Z, ldz, Zsupp); MPI_Comm_free(&comm_dup); return info; } /* Allocate memory */ double *Werr = (double*)malloc(n*sizeof(double)); assert(Werr!=NULL); double *Wgap = (double*)malloc(n*sizeof(double)); assert(Wgap!=NULL); double *gersch = (double*)malloc(2*n*sizeof(double)); assert(gersch!=NULL); int *iblock = (int*)calloc(n,sizeof(int)); assert(iblock!=NULL); int *iproc = (int*)malloc(n*sizeof(int)); assert(iproc!=NULL); int *Windex = (int*)malloc(n*sizeof(int)); assert(Windex!=NULL); int *isplit = (int*)malloc(n*sizeof(int)); assert(isplit!=NULL); int *Zindex = (int*)malloc(n*sizeof(int)); assert(Zindex!=NULL); proc_t *procinfo = (proc_t*)malloc(sizeof(proc_t)); assert(procinfo!=NULL); in_t *Dstruct = (in_t*)malloc(sizeof(in_t)); assert(Dstruct!=NULL); val_t *Wstruct = (val_t*)malloc(sizeof(val_t)); assert(Wstruct!=NULL); vec_t *Zstruct = (vec_t*)malloc(sizeof(vec_t)); assert(Zstruct!=NULL); tol_t *tolstruct = (tol_t*)malloc(sizeof(tol_t)); assert(tolstruct!=NULL); /* Bundle variables into a structures */ procinfo->pid = pid; procinfo->nproc = nproc; procinfo->comm = comm_dup; procinfo->nthreads = nthreads; procinfo->thread_support = thread_support; Dstruct->n = n; Dstruct->D = D; Dstruct->E = E; Dstruct->isplit = isplit; Wstruct->n = n; Wstruct->vl = vl; Wstruct->vu = vu; Wstruct->il = il; Wstruct->iu = iu; Wstruct->W = W; Wstruct->Werr = Werr; Wstruct->Wgap = Wgap; Wstruct->Windex = Windex; Wstruct->iblock = iblock; Wstruct->iproc = iproc; Wstruct->gersch = gersch; Zstruct->ldz = *ldz; Zstruct->nz = 0; Zstruct->Z = Z; Zstruct->Zsupp = Zsupp; Zstruct->Zindex = Zindex; /* Scale matrix to allowable range, returns 1.0 if not scaled */ double scale = scale_matrix(Dstruct, Wstruct, valeig); /* Test if matrix warrants more expensive computations which * guarantees high relative accuracy */ if (*tryracp) odrrr(&n, D, E, &info); /* 0 - rel acc */ else info = -1; int i; double *Dcopy, *E2copy; if (info == 0) { /* This case is extremely rare in practice */ tolstruct->split = DBL_EPSILON; /* Copy original data needed for refinement later */ Dcopy = (double*)malloc(n*sizeof(double)); assert(Dcopy!=NULL); memcpy(Dcopy, D, n*sizeof(double)); E2copy = (double*)malloc(n*sizeof(double)); assert(E2copy!=NULL); for (i=0; i<n-1; i++) E2copy[i] = E[i]*E[i]; } else { /* Neg. threshold forces old splitting criterion */ tolstruct->split = -DBL_EPSILON; *tryracp = 0; } if (!wantZ) { /* Compute eigenvalues to full precision */ tolstruct->rtol1 = 4.0 * DBL_EPSILON; tolstruct->rtol2 = 4.0 * DBL_EPSILON; } else { /* Do not compute to full accuracy first, but refine later */ tolstruct->rtol1 = sqrt(DBL_EPSILON); tolstruct->rtol1 = fmin(1e-2*MIN_RELGAP, tolstruct->rtol1); tolstruct->rtol2 = sqrt(DBL_EPSILON)*5.0E-3; tolstruct->rtol2 = fmin(5e-6*MIN_RELGAP, tolstruct->rtol2); tolstruct->rtol2 = fmax(4.0 * DBL_EPSILON, tolstruct->rtol2); } /* Compute all eigenvalues: sorted by block */ info = plarre(procinfo,jobz,range,Dstruct,Wstruct,tolstruct,nzp,offsetp); assert(info == 0); /* If just number of local eigenvectors are queried */ if (cntval & valeig) { clean_up(comm_dup, Werr, Wgap, gersch, iblock, iproc, Windex, isplit, Zindex, procinfo, Dstruct, Wstruct, Zstruct, tolstruct); return 0; } /* If only eigenvalues are to be computed */ if (!wantZ) { /* Refine to high relative with respect to input T */ if (*tryracp) { info = refine_to_highrac (procinfo, jobz, Dcopy, E2copy, Dstruct, nzp, Wstruct, tolstruct); assert(info == 0); } /* Sort eigenvalues */ qsort(W, n, sizeof(double), cmp); /* Only keep subset ifirst:ilast */ int ifirst, ilast, isize; int iil = *il; int iiu = *iu; int ifirst_tmp=iil; for (i=0; i<nproc; i++) { int chunk = (iiu-iil+1)/nproc + (i < (iiu-iil+1)%nproc); int ilast_tmp; if (i == nproc-1) { ilast_tmp = iiu; } else { ilast_tmp = ifirst_tmp + chunk - 1; ilast_tmp = imin(ilast_tmp, iiu); } if (i == pid) { ifirst = ifirst_tmp; ilast = ilast_tmp; isize = ilast - ifirst + 1; *offsetp = ifirst - iil; *nzp = isize; } ifirst_tmp = ilast_tmp + 1; ifirst_tmp = imin(ifirst_tmp, iiu + 1); } if (isize > 0) { memmove(W, &W[ifirst-1], *nzp * sizeof(double)); } /* If matrix was scaled, rescale eigenvalues */ invscale_eigenvalues(Wstruct, scale, *nzp); clean_up (comm_dup, Werr, Wgap, gersch, iblock, iproc, Windex, isplit, Zindex, procinfo, Dstruct, Wstruct, Zstruct, tolstruct); return 0; } /* end of only eigenvalues to compute */ /* Compute eigenvectors */ info = plarrv(procinfo, Dstruct, Wstruct, Zstruct, tolstruct, nzp, offsetp); assert(info == 0); /* Refine to high relative with respect to input matrix */ if (*tryracp) { info = refine_to_highrac(procinfo, jobz, Dcopy, E2copy, Dstruct, nzp, Wstruct, tolstruct); assert(info == 0); } /* If matrix was scaled, rescale eigenvalues */ invscale_eigenvalues(Wstruct, scale, n); /* Make the first nz elements of W contains the eigenvalues * associated to the process */ int j, im=0; for (j=0; j<n; j++) { if (iproc[j] == pid) { W[im] = W[j]; Windex[im] = Windex[j]; Zindex[im] = Zindex[j]; im++; } } clean_up(comm_dup, Werr, Wgap, gersch, iblock, iproc, Windex, isplit, Zindex, procinfo, Dstruct, Wstruct, Zstruct, tolstruct); if (*tryracp) { free(Dcopy); free(E2copy); } return 0; } /* end pmrrr */
int rank_double_tab(double** matrix_in, int x, int y) { double **matrix; /* int n[2], rank; readmatrix(matrix, n); printf("\tThe matrix you have entered is shown below\n\n"); printmatrix(matrix,n); rank = rank_double_vec(matrix, n[0], n[1]); */ int n[2], i, retest=1, grp, p, r, j, rank; int* initzeros; matrix = get_double_tab(x,y); copy_double_tab(matrix_in, matrix,x, y); n[0] = x; n[1] = y; initzeros = get_int_vec(y); /* printf("\tThe matrix you have entered is shown below %d , %d\n\n", x, y); printmatrix(matrix,n); //*/ update_initzeros(initzeros,matrix,n); arrange_matrix(matrix,n,initzeros); /*printf("\tThe matrix after arrange %d , %d\n\n", x, y); printmatrix(matrix,n); if(matrix[0][0]==0) { printf("\n\tError: Invalid Marix \n\n"); } */ update_initzeros(initzeros,matrix,n); scale_matrix(matrix,n,initzeros); while(retest==1) { grp=0; for(i=0;i<n[0];++i) { p=0; while(initzeros[i+p]==initzeros[i+p+1]&&(i+p+1)<n[0]) { grp=grp+1; p=p+1; } if(grp!=0) { while(grp!=0) { for(j=0;j<n[1];++j) { matrix[i+grp][j]=matrix[i+grp][j]-matrix[i][j]; } grp=grp-1; } break; } } update_initzeros(initzeros,matrix,n); arrange_matrix(matrix,n,initzeros); update_initzeros(initzeros,matrix,n); scale_matrix(matrix,n,initzeros); retest=0; for(r=0;r<n[0];++r) { if(initzeros[r]==initzeros[r+1]&&r+1<n[0]) { if(initzeros[r]!=n[1]) retest=1; } } } //printf("\n\n\t Reduced matrix is as shown below\n\n"); //printmatrix(matrix,n); rank =0; for (i=0;i<n[0];++i) { if (initzeros[i]!=n[1]) { ++rank; } } free_double_tab(matrix, n[0]); //printf("\n Rank Of The Matrix = %d\n\n", rank); return rank; }
static int calccoef(struct Control_Points_3D *cp, double OR[], int ndims) { double **src_mat = NULL; double **src_mat_T = NULL; double **dest_mat = NULL; double **dest_mat_T = NULL; double **src_dest_mat = NULL; double *S_vec = NULL; double **R_mat = NULL; double **R_mat_T = NULL; double **mat_mn1 = NULL; double **mat_mn2 = NULL; double **mat_nm1 = NULL; double **mat_nm2 = NULL; double **mat_nn1 = NULL; double **E_mat = NULL; double **P_mat = NULL; double **Q_mat = NULL; double *D_vec = NULL; double *one_vec = NULL; double trace1 = 0.0; double trace2 = 0.0; int numactive; /* NUMBER OF ACTIVE CONTROL POINTS */ int m, n, i, j; int status; /* CALCULATE THE NUMBER OF VALID CONTROL POINTS */ for (i = numactive = 0; i < cp->count; i++) { if (cp->status[i] > 0) numactive++; } m = numactive; n = ndims; src_mat = G_alloc_matrix(m, n); dest_mat = G_alloc_matrix(m, n); for (i = numactive = 0; i < cp->count; i++) { if (cp->status[i] > 0) { src_mat[numactive][0] = cp->e1[i]; src_mat[numactive][1] = cp->n1[i]; src_mat[numactive][2] = cp->z1[i]; dest_mat[numactive][0] = cp->e2[i]; dest_mat[numactive][1] = cp->n2[i]; dest_mat[numactive][2] = cp->z2[i]; numactive++; } } D_vec = G_alloc_vector(ndims); src_mat_T = G_alloc_matrix(n, m); dest_mat_T = G_alloc_matrix(n, m); src_dest_mat = G_alloc_matrix(n, n); R_mat = G_alloc_matrix(n, n); R_mat_T = G_alloc_matrix(n, n); mat_mn1 = G_alloc_matrix(m, n); mat_mn2 = G_alloc_matrix(m, n); mat_nm1 = G_alloc_matrix(n, m); mat_nm2 = G_alloc_matrix(n, m); mat_nn1 = G_alloc_matrix(n, n); E_mat = G_alloc_matrix(m, m); P_mat = G_alloc_matrix(ndims, ndims); Q_mat = G_alloc_matrix(ndims, ndims); transpose_matrix(m, n, dest_mat, dest_mat_T); for (i = 0; i < m; i++) { for (j = 0; j < m; j++) { if (i != j) { E_mat[i][j] = -1.0 / (double)m; } else{ E_mat[i][j] = 1.0 - 1.0 / (double)m; } } } matmult(n, m, m, dest_mat_T, E_mat, mat_nm1); matmult(n, m, n, mat_nm1, src_mat, src_dest_mat); copy_matrix(n, n, src_dest_mat, P_mat); copy_matrix(n, n, src_dest_mat, mat_nn1); status = G_math_svduv(D_vec, mat_nn1, P_mat, n, Q_mat, n); if (status == 0) status = MSUCCESS; transpose_matrix(n, n, P_mat, mat_nn1); /* rotation matrix */ matmult(n, n, n, Q_mat, mat_nn1, R_mat_T); transpose_matrix(n, n, R_mat_T, R_mat); /* scale */ matmult(n, n, n, src_dest_mat, R_mat_T, mat_nn1); trace1 = trace(n, n, mat_nn1); transpose_matrix(m, n, src_mat, src_mat_T); matmult(n, m, m, src_mat_T, E_mat, mat_nm1); matmult(n, m, n, mat_nm1, src_mat, mat_nn1); trace2 = trace(n, n, mat_nn1); OR[14] = trace1 / trace2; /* shifts */ matmult(m, n, n, src_mat, R_mat_T, mat_mn1); scale_matrix(m, n, OR[14], mat_mn1, mat_mn2); subtract_matrix(m, n, dest_mat, mat_mn2, mat_mn1); scale_matrix(m, n, 1.0 / m, mat_mn1, mat_mn2); transpose_matrix(m, n, mat_mn2, mat_nm1); S_vec = G_alloc_vector(n); one_vec = G_alloc_vector(m); for (i = 0; i < m; i++){ one_vec[i] = 1.0; } matrix_multiply(n, m, mat_nm1, one_vec, S_vec); /* matrix to vector */ for (i = 0; i < ndims; i++) { for (j = 0; j < ndims; j++) { OR[i * ndims + j] = R_mat[i][j]; } } G_free_matrix(src_mat); G_free_matrix(src_mat_T); G_free_matrix(dest_mat); G_free_matrix(dest_mat_T); G_free_matrix(src_dest_mat); G_free_vector(D_vec); G_free_matrix(E_mat); G_free_matrix(P_mat); G_free_matrix(Q_mat); G_free_matrix(R_mat); G_free_matrix(R_mat_T); G_free_matrix(mat_mn1); G_free_matrix(mat_mn2); G_free_matrix(mat_nm1); G_free_matrix(mat_nm2); G_free_matrix(mat_nn1); G_free_vector(S_vec); G_free_vector(one_vec); return status; }
void convert_model_material(model_uniform_data* data_out, const model_material& material, const matrix4& model_transform, const vec3d& scale, size_t transform_buffer_offset) { auto shader_flags = material.get_shader_flags(); Assertion(gr_model_matrix_stack.depth() == 1, "Uniform conversion does not respect previous transforms! " "Model matrix stack must be empty!"); matrix4 scaled_matrix = model_transform; scale_matrix(scaled_matrix, scale); data_out->modelMatrix = scaled_matrix; data_out->viewMatrix = gr_view_matrix; vm_matrix4_x_matrix4(&data_out->modelViewMatrix, &data_out->viewMatrix, &data_out->modelMatrix); data_out->projMatrix = gr_projection_matrix; data_out->textureMatrix = gr_texture_matrix; data_out->color = material.get_color(); if (shader_flags & SDR_FLAG_MODEL_ANIMATED) { data_out->anim_timer = material.get_animated_effect_time(); data_out->effect_num = material.get_animated_effect(); data_out->vpwidth = 1.0f / i2fl(gr_screen.max_w); data_out->vpheight = 1.0f / i2fl(gr_screen.max_h); } if (shader_flags & SDR_FLAG_MODEL_CLIP) { if (material.is_clipped()) { auto& clip_info = material.get_clip_plane(); data_out->use_clip_plane = true; vec4 clip_equation; clip_equation.xyzw.x = clip_info.normal.xyz.x; clip_equation.xyzw.y = clip_info.normal.xyz.y; clip_equation.xyzw.z = clip_info.normal.xyz.z; clip_equation.xyzw.w = -vm_vec_dot(&clip_info.normal, &clip_info.position); data_out->clip_equation = clip_equation; } else { data_out->use_clip_plane = false; } } if (shader_flags & SDR_FLAG_MODEL_LIGHT) { int num_lights = MIN(Num_active_gr_lights, (int)graphics::MAX_UNIFORM_LIGHTS); data_out->n_lights = num_lights; std::copy(std::begin(gr_light_uniforms), std::end(gr_light_uniforms), std::begin(data_out->lights)); float light_factor = material.get_light_factor(); data_out->diffuseFactor.xyz.x = gr_light_color[0] * light_factor; data_out->diffuseFactor.xyz.y = gr_light_color[1] * light_factor; data_out->diffuseFactor.xyz.z = gr_light_color[2] * light_factor; data_out->ambientFactor.xyz.x = gr_light_ambient[0]; data_out->ambientFactor.xyz.y = gr_light_ambient[1]; data_out->ambientFactor.xyz.z = gr_light_ambient[2]; if (material.get_light_factor() > 0.25f && !Cmdline_no_emissive) { data_out->emissionFactor.xyz.x = gr_light_emission[0]; data_out->emissionFactor.xyz.y = gr_light_emission[1]; data_out->emissionFactor.xyz.z = gr_light_emission[2]; } else { data_out->emissionFactor.xyz.x = gr_light_zero[0]; data_out->emissionFactor.xyz.y = gr_light_zero[1]; data_out->emissionFactor.xyz.z = gr_light_zero[2]; } if (Gloss_override_set) { data_out->defaultGloss = Gloss_override; } else { data_out->defaultGloss = 0.6f; } } if (shader_flags & SDR_FLAG_MODEL_DIFFUSE_MAP) { if (material.is_desaturated()) { data_out->desaturate = 1; } else { data_out->desaturate = 0; } if (Basemap_color_override_set) { data_out->overrideDiffuse = 1; data_out->diffuseClr.xyz.x = Basemap_color_override[0]; data_out->diffuseClr.xyz.y = Basemap_color_override[1]; data_out->diffuseClr.xyz.z = Basemap_color_override[2]; } else { data_out->overrideDiffuse = 0; } switch (material.get_blend_mode()) { case ALPHA_BLEND_PREMULTIPLIED: data_out->blend_alpha = 1; break; case ALPHA_BLEND_ADDITIVE: data_out->blend_alpha = 2; break; default: data_out->blend_alpha = 0; break; } data_out->sBasemapIndex = bm_get_array_index(material.get_texture_map(TM_BASE_TYPE)); } if (shader_flags & SDR_FLAG_MODEL_GLOW_MAP) { if (Glowmap_color_override_set) { data_out->overrideGlow = 1; data_out->glowClr.xyz.x = Glowmap_color_override[0]; data_out->glowClr.xyz.y = Glowmap_color_override[1]; data_out->glowClr.xyz.z = Glowmap_color_override[2]; } else { data_out->overrideGlow = 0; } data_out->sGlowmapIndex = bm_get_array_index(material.get_texture_map(TM_GLOW_TYPE)); } if (shader_flags & SDR_FLAG_MODEL_SPEC_MAP) { if (Specmap_color_override_set) { data_out->overrideSpec = 1; data_out->specClr.xyz.x = Specmap_color_override[0]; data_out->specClr.xyz.y = Specmap_color_override[1]; data_out->specClr.xyz.z = Specmap_color_override[2]; } else { data_out->overrideSpec = 0; } if (material.get_texture_map(TM_SPEC_GLOSS_TYPE) > 0) { data_out->sSpecmapIndex = bm_get_array_index(material.get_texture_map(TM_SPEC_GLOSS_TYPE)); data_out->gammaSpec = 1; if (Gloss_override_set) { data_out->alphaGloss = 0; } else { data_out->alphaGloss = 1; } } else { data_out->sSpecmapIndex = bm_get_array_index(material.get_texture_map(TM_SPECULAR_TYPE)); data_out->gammaSpec = 0; data_out->alphaGloss = 0; } if (shader_flags & SDR_FLAG_MODEL_ENV_MAP) { if (material.get_texture_map(TM_SPEC_GLOSS_TYPE) > 0 || Gloss_override_set) { data_out->envGloss = 1; } else { data_out->envGloss = 0; } data_out->envMatrix = gr_env_texture_matrix; } } if ( shader_flags & SDR_FLAG_MODEL_NORMAL_MAP ) { data_out->sNormalmapIndex = bm_get_array_index(material.get_texture_map(TM_NORMAL_TYPE)); } if ( shader_flags & SDR_FLAG_MODEL_AMBIENT_MAP ) { data_out->sAmbientmapIndex = bm_get_array_index(material.get_texture_map(TM_AMBIENT_TYPE)); } if ( shader_flags & SDR_FLAG_MODEL_MISC_MAP ) { data_out->sMiscmapIndex = bm_get_array_index(material.get_texture_map(TM_MISC_TYPE)); } if (shader_flags & SDR_FLAG_MODEL_SHADOWS) { data_out->shadow_mv_matrix = Shadow_view_matrix; for (size_t i = 0; i < MAX_SHADOW_CASCADES; ++i) { data_out->shadow_proj_matrix[i] = Shadow_proj_matrix[i]; } data_out->veryneardist = Shadow_cascade_distances[0]; data_out->neardist = Shadow_cascade_distances[1]; data_out->middist = Shadow_cascade_distances[2]; data_out->fardist = Shadow_cascade_distances[3]; } if (shader_flags & SDR_FLAG_MODEL_SHADOW_MAP) { for (size_t i = 0; i < MAX_SHADOW_CASCADES; ++i) { data_out->shadow_proj_matrix[i] = Shadow_proj_matrix[i]; } } if (shader_flags & SDR_FLAG_MODEL_TRANSFORM) { data_out->buffer_matrix_offset = (int) transform_buffer_offset; } // Team colors are passed to the shader here, but the shader needs to handle their application. // By default, this is handled through the r and g channels of the misc map, but this can be changed // in the shader; test versions of this used the normal map r and b channels if (shader_flags & SDR_FLAG_MODEL_TEAMCOLOR) { auto& tm_clr = material.get_team_color(); vec3d stripe_color; vec3d base_color; stripe_color.xyz.x = tm_clr.stripe.r; stripe_color.xyz.y = tm_clr.stripe.g; stripe_color.xyz.z = tm_clr.stripe.b; base_color.xyz.x = tm_clr.base.r; base_color.xyz.y = tm_clr.base.g; base_color.xyz.z = tm_clr.base.b; data_out->stripe_color = stripe_color; data_out->base_color = base_color; } if (shader_flags & SDR_FLAG_MODEL_THRUSTER) { data_out->thruster_scale = material.get_thrust_scale(); } if (shader_flags & SDR_FLAG_MODEL_FOG) { material::fog fog_params = material.get_fog(); if (fog_params.enabled) { data_out->fogStart = fog_params.dist_near; data_out->fogScale = 1.0f / (fog_params.dist_far - fog_params.dist_near); data_out->fogColor.xyzw.x = i2fl(fog_params.r) / 255.0f; data_out->fogColor.xyzw.y = i2fl(fog_params.g) / 255.0f; data_out->fogColor.xyzw.z = i2fl(fog_params.b) / 255.0f; data_out->fogColor.xyzw.w = 1.0f; } } if (shader_flags & SDR_FLAG_MODEL_NORMAL_ALPHA) { data_out->normalAlphaMinMax.x = material.get_normal_alpha_min(); data_out->normalAlphaMinMax.y = material.get_normal_alpha_max(); } if (shader_flags & SDR_FLAG_MODEL_NORMAL_EXTRUDE) { data_out->extrudeWidth = material.get_normal_extrude_width(); } }
static void test_color_brush(void) { D2D1_MATRIX_3X2_F matrix, tmp_matrix; D2D1_BRUSH_PROPERTIES brush_desc; D2D1_COLOR_F color, tmp_color; ID2D1SolidColorBrush *brush; IDXGISwapChain *swapchain; ID2D1RenderTarget *rt; ID3D10Device1 *device; IDXGISurface *surface; D2D1_RECT_F rect; float opacity; HWND window; HRESULT hr; if (!(device = create_device())) { skip("Failed to create device, skipping tests.\n"); return; } window = CreateWindowA("static", "d2d1_test", WS_OVERLAPPEDWINDOW | WS_VISIBLE, 0, 0, 640, 480, NULL, NULL, NULL, NULL); swapchain = create_swapchain(device, window, TRUE); hr = IDXGISwapChain_GetBuffer(swapchain, 0, &IID_IDXGISurface, (void **)&surface); ok(SUCCEEDED(hr), "Failed to get buffer, hr %#x.\n", hr); rt = create_render_target(surface); ok(!!rt, "Failed to create render target.\n"); ID2D1RenderTarget_SetDpi(rt, 192.0f, 48.0f); ID2D1RenderTarget_SetAntialiasMode(rt, D2D1_ANTIALIAS_MODE_ALIASED); set_color(&color, 0.0f, 0.0f, 0.0f, 0.0f); hr = ID2D1RenderTarget_CreateSolidColorBrush(rt, &color, NULL, &brush); ok(SUCCEEDED(hr), "Failed to create brush, hr %#x.\n", hr); opacity = ID2D1SolidColorBrush_GetOpacity(brush); ok(opacity == 1.0f, "Got unexpected opacity %.8e.\n", opacity); set_matrix_identity(&matrix); ID2D1SolidColorBrush_GetTransform(brush, &tmp_matrix); ok(!memcmp(&tmp_matrix, &matrix, sizeof(matrix)), "Got unexpected matrix {%.8e, %.8e, %.8e, %.8e, %.8e, %.8e}.\n", tmp_matrix._11, tmp_matrix._12, tmp_matrix._21, tmp_matrix._22, tmp_matrix._31, tmp_matrix._32); tmp_color = ID2D1SolidColorBrush_GetColor(brush); ok(!memcmp(&tmp_color, &color, sizeof(color)), "Got unexpected color {%.8e, %.8e, %.8e, %.8e}.\n", tmp_color.r, tmp_color.g, tmp_color.b, tmp_color.a); ID2D1SolidColorBrush_Release(brush); set_color(&color, 0.0f, 1.0f, 0.0f, 0.8f); brush_desc.opacity = 0.3f; set_matrix_identity(&matrix); scale_matrix(&matrix, 2.0f, 2.0f); brush_desc.transform = matrix; hr = ID2D1RenderTarget_CreateSolidColorBrush(rt, &color, &brush_desc, &brush); ok(SUCCEEDED(hr), "Failed to create brush, hr %#x.\n", hr); opacity = ID2D1SolidColorBrush_GetOpacity(brush); ok(opacity == 0.3f, "Got unexpected opacity %.8e.\n", opacity); ID2D1SolidColorBrush_GetTransform(brush, &tmp_matrix); ok(!memcmp(&tmp_matrix, &matrix, sizeof(matrix)), "Got unexpected matrix {%.8e, %.8e, %.8e, %.8e, %.8e, %.8e}.\n", tmp_matrix._11, tmp_matrix._12, tmp_matrix._21, tmp_matrix._22, tmp_matrix._31, tmp_matrix._32); tmp_color = ID2D1SolidColorBrush_GetColor(brush); ok(!memcmp(&tmp_color, &color, sizeof(color)), "Got unexpected color {%.8e, %.8e, %.8e, %.8e}.\n", tmp_color.r, tmp_color.g, tmp_color.b, tmp_color.a); ID2D1RenderTarget_BeginDraw(rt); set_color(&color, 0.0f, 0.0f, 1.0f, 1.0f); ID2D1RenderTarget_Clear(rt, &color); ID2D1SolidColorBrush_SetOpacity(brush, 1.0f); set_rect(&rect, 40.0f, 120.0f, 120.0f, 360.0f); ID2D1RenderTarget_FillRectangle(rt, &rect, (ID2D1Brush *)brush); set_matrix_identity(&matrix); scale_matrix(&matrix, 0.5f, 2.0f); translate_matrix(&matrix, 320.0f, 240.0f); rotate_matrix(&matrix, M_PI / 4.0f); ID2D1RenderTarget_SetTransform(rt, &matrix); set_color(&color, 1.0f, 0.0f, 0.0f, 0.625f); ID2D1SolidColorBrush_SetColor(brush, &color); ID2D1SolidColorBrush_SetOpacity(brush, 0.75f); set_rect(&rect, -80.0f, -60.0f, 80.0f, 60.0f); ID2D1RenderTarget_FillRectangle(rt, &rect, (ID2D1Brush *)brush); hr = ID2D1RenderTarget_EndDraw(rt, NULL, NULL); ok(SUCCEEDED(hr), "Failed to end draw, hr %#x.\n", hr); ok(compare_surface(surface, "6d1218fca5e21fb7e287b3a439d60dbc251f5ceb"), "Surface does not match.\n"); ID2D1SolidColorBrush_Release(brush); ID2D1RenderTarget_Release(rt); IDXGISurface_Release(surface); IDXGISwapChain_Release(swapchain); ID3D10Device1_Release(device); DestroyWindow(window); }
void scale(double sx, double sy, double sz, matrix m) { matrix temp = mat_mat_multiply(scale_matrix(sx, sy, sz), m); memcpy(m, temp, 16 * sizeof(double)); free(temp); }
static void set_view_trans_mat( /*****************************/ /* This function examines the values in view and fills in the ViewTrans */ /* matrix. This will be either the Nper' or Npar matrix described in */ /* sections 6.5.1 and 6.5.2. The Nper' matrix include the perspective */ /* transformation matrix. */ pipe_view *view ) { matrix4 *mat1,*mat2,*mat3; /* temporary matricies */ vector dop; /* direction of projection after */ /* trans and rotation */ float vrpz1; /* vprz' used only for perspective */ /* allocate the temporary matricies */ _new( mat1, 1 ); _new( mat2, 1 ); _new( mat3, 1 ); /* these matrices are common to both types of projection */ trans_matrix( mat1->m, -view->ViewRefPt.p[0], -view->ViewRefPt.p[1], -view->ViewRefPt.p[2] ); form_rotation_matrix( mat2->m, view->ViewPlNorm, view->VUp ); matrix_mult( mat2->m, mat1->m, mat3->m ); /* we can reuse mat2->m and mat1->m now */ if (view->type == PROJ_PARALLEL) { /* form the Npar matrix */ dop.v[0] = (view->umax + view->umin) / 2.0 - view->ProjRefPt.p[0]; dop.v[1] = (view->vmax + view->vmin) / 2.0 - view->ProjRefPt.p[1]; dop.v[2] = -view->ProjRefPt.p[2]; dop.v[3] = 0; shear_xy_matrix( mat1->m, -dop.v[0]/dop.v[2], -dop.v[1]/dop.v[2] ); matrix_mult( mat1->m, mat3->m, mat2->m ); /* reuse 1 and 3 */ trans_matrix( mat1->m, (-view->umax - view->umin) / 2.0, (-view->vmax - view->vmin) / 2.0, -view->FrontClip ); matrix_mult( mat1->m, mat2->m, mat3->m ); /* reuse 1 and 2 */ scale_matrix( mat1->m, 2.0 / (view->umax - view->umin), 2.0 / (view->vmax - view->vmin), 1. / (view->FrontClip - view->BackClip) ); matrix_mult( mat1->m, mat3->m, ViewTrans ); } else { /* form the Nper' matrix including the perspective transformation */ trans_matrix( mat1->m, -view->ProjRefPt.p[0], -view->ProjRefPt.p[1], -view->ProjRefPt.p[2] ); matrix_mult( mat1->m, mat3->m, mat2->m ); /* reuse 1 and 3 */ /* This is the same shear as for Npar. See p. 269 for why. */ dop.v[0] = (view->umax + view->umin) / 2.0 - view->ProjRefPt.p[0]; dop.v[1] = (view->vmax + view->vmin) / 2.0 - view->ProjRefPt.p[1]; dop.v[2] = -view->ProjRefPt.p[2]; dop.v[3] = 0; shear_xy_matrix( mat1->m, -dop.v[0]/dop.v[2], -dop.v[1]/dop.v[2] ); matrix_mult( mat1->m, mat2->m, mat3->m ); /* reuse 1 and 2 */ vrpz1 = -view->ProjRefPt.p[2]; scale_matrix( mat1->m, 2.0*vrpz1 / ((view->umax - view->umin)*(vrpz1 + view->BackClip)), 2.0*vrpz1 / ((view->vmax - view->vmin)*(vrpz1 + view->BackClip)), -1.0 / (vrpz1 + view->BackClip) ); matrix_mult( mat1->m, mat3->m, mat2->m ); /* reuse 1 and 3 */ persp_trans_matrix( mat1->m, -(vrpz1 + view->FrontClip)/(vrpz1 + view->BackClip) ); matrix_mult( mat1->m, mat2->m, ViewTrans ); } /* free the temporary matrices */ _free( mat1 ); _free( mat2 ); _free( mat3 ); }
static void test_bitmap_brush(void) { D2D1_BITMAP_INTERPOLATION_MODE interpolation_mode; D2D1_MATRIX_3X2_F matrix, tmp_matrix; D2D1_BITMAP_PROPERTIES bitmap_desc; ID2D1Bitmap *bitmap, *tmp_bitmap; D2D1_RECT_F src_rect, dst_rect; D2D1_EXTEND_MODE extend_mode; IDXGISwapChain *swapchain; ID2D1BitmapBrush *brush; ID2D1RenderTarget *rt; ID3D10Device1 *device; IDXGISurface *surface; D2D1_COLOR_F color; D2D1_SIZE_U size; ULONG refcount; float opacity; HWND window; HRESULT hr; static const DWORD bitmap_data[] = { 0xffff0000, 0xffffff00, 0xff00ff00, 0xff00ffff, 0xff0000ff, 0xffff00ff, 0xff000000, 0xff7f7f7f, 0xffffffff, 0xffffffff, 0xffffffff, 0xff000000, 0xffffffff, 0xff000000, 0xff000000, 0xff000000, }; if (!(device = create_device())) { skip("Failed to create device, skipping tests.\n"); return; } window = CreateWindowA("static", "d2d1_test", WS_OVERLAPPEDWINDOW | WS_VISIBLE, 0, 0, 640, 480, NULL, NULL, NULL, NULL); swapchain = create_swapchain(device, window, TRUE); hr = IDXGISwapChain_GetBuffer(swapchain, 0, &IID_IDXGISurface, (void **)&surface); ok(SUCCEEDED(hr), "Failed to get buffer, hr %#x.\n", hr); rt = create_render_target(surface); ok(!!rt, "Failed to create render target.\n"); ID2D1RenderTarget_SetDpi(rt, 192.0f, 48.0f); ID2D1RenderTarget_SetAntialiasMode(rt, D2D1_ANTIALIAS_MODE_ALIASED); set_size_u(&size, 4, 4); bitmap_desc.pixelFormat.format = DXGI_FORMAT_B8G8R8A8_UNORM; bitmap_desc.pixelFormat.alphaMode = D2D1_ALPHA_MODE_IGNORE; bitmap_desc.dpiX = 96.0f; bitmap_desc.dpiY = 96.0f; hr = ID2D1RenderTarget_CreateBitmap(rt, size, bitmap_data, 4 * sizeof(*bitmap_data), &bitmap_desc, &bitmap); ok(SUCCEEDED(hr), "Failed to create bitmap, hr %#x.\n", hr); /* Creating a brush with a NULL bitmap crashes on Vista, but works fine on * Windows 7+. */ hr = ID2D1RenderTarget_CreateBitmapBrush(rt, bitmap, NULL, NULL, &brush); ok(SUCCEEDED(hr), "Failed to create brush, hr %#x.\n", hr); ID2D1BitmapBrush_GetBitmap(brush, &tmp_bitmap); ok(tmp_bitmap == bitmap, "Got unexpected bitmap %p, expected %p.\n", tmp_bitmap, bitmap); ID2D1Bitmap_Release(tmp_bitmap); opacity = ID2D1BitmapBrush_GetOpacity(brush); ok(opacity == 1.0f, "Got unexpected opacity %.8e.\n", opacity); set_matrix_identity(&matrix); ID2D1BitmapBrush_GetTransform(brush, &tmp_matrix); ok(!memcmp(&tmp_matrix, &matrix, sizeof(matrix)), "Got unexpected matrix {%.8e, %.8e, %.8e, %.8e, %.8e, %.8e}.\n", tmp_matrix._11, tmp_matrix._12, tmp_matrix._21, tmp_matrix._22, tmp_matrix._31, tmp_matrix._32); extend_mode = ID2D1BitmapBrush_GetExtendModeX(brush); ok(extend_mode == D2D1_EXTEND_MODE_CLAMP, "Got unexpected extend mode %#x.\n", extend_mode); extend_mode = ID2D1BitmapBrush_GetExtendModeY(brush); ok(extend_mode == D2D1_EXTEND_MODE_CLAMP, "Got unexpected extend mode %#x.\n", extend_mode); interpolation_mode = ID2D1BitmapBrush_GetInterpolationMode(brush); ok(interpolation_mode == D2D1_BITMAP_INTERPOLATION_MODE_LINEAR, "Got unexpected interpolation mode %#x.\n", interpolation_mode); ID2D1BitmapBrush_Release(brush); hr = ID2D1RenderTarget_CreateBitmapBrush(rt, bitmap, NULL, NULL, &brush); ok(SUCCEEDED(hr), "Failed to create brush, hr %#x.\n", hr); set_matrix_identity(&matrix); translate_matrix(&matrix, 40.0f, 120.0f); scale_matrix(&matrix, 20.0f, 60.0f); ID2D1BitmapBrush_SetTransform(brush, &matrix); ID2D1BitmapBrush_SetInterpolationMode(brush, D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR); ID2D1RenderTarget_BeginDraw(rt); set_color(&color, 0.0f, 0.0f, 1.0f, 1.0f); ID2D1RenderTarget_Clear(rt, &color); set_rect(&dst_rect, 40.0f, 120.0f, 120.0f, 360.0f); ID2D1RenderTarget_FillRectangle(rt, &dst_rect, (ID2D1Brush *)brush); set_matrix_identity(&matrix); scale_matrix(&matrix, 0.5f, 2.0f); translate_matrix(&matrix, 320.0f, 240.0f); rotate_matrix(&matrix, M_PI / 4.0f); ID2D1RenderTarget_SetTransform(rt, &matrix); set_matrix_identity(&matrix); translate_matrix(&matrix, -80.0f, -60.0f); scale_matrix(&matrix, 40.0f, 30.0f); ID2D1BitmapBrush_SetTransform(brush, &matrix); ID2D1BitmapBrush_SetOpacity(brush, 0.75f); set_rect(&dst_rect, -80.0f, -60.0f, 80.0f, 60.0f); ID2D1RenderTarget_FillRectangle(rt, &dst_rect, (ID2D1Brush *)brush); set_matrix_identity(&matrix); translate_matrix(&matrix, 200.0f, 120.0f); scale_matrix(&matrix, 20.0f, 60.0f); ID2D1RenderTarget_SetTransform(rt, &matrix); ID2D1RenderTarget_DrawBitmap(rt, bitmap, NULL, 0.25f, D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR, NULL); set_rect(&dst_rect, -4.0f, 12.0f, -8.0f, 8.0f); ID2D1RenderTarget_DrawBitmap(rt, bitmap, &dst_rect, 0.75f, D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR, NULL); set_rect(&dst_rect, 0.0f, 8.0f, 4.0f, 12.0f); set_rect(&src_rect, 2.0f, 1.0f, 4.0f, 3.0f); ID2D1RenderTarget_DrawBitmap(rt, bitmap, &dst_rect, 1.0f, D2D1_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR, &src_rect); hr = ID2D1RenderTarget_EndDraw(rt, NULL, NULL); ok(SUCCEEDED(hr), "Failed to end draw, hr %#x.\n", hr); ok(compare_surface(surface, "393636185359a550d459e1e5f0e25411814f724c"), "Surface does not match.\n"); ID2D1BitmapBrush_Release(brush); refcount = ID2D1Bitmap_Release(bitmap); ok(!refcount, "Bitmap has %u references left.\n", refcount); ID2D1RenderTarget_Release(rt); IDXGISurface_Release(surface); IDXGISwapChain_Release(swapchain); ID3D10Device1_Release(device); DestroyWindow(window); }