static int dogleg_preloop(const void * vtrust_state, void * vstate) { int status; const gsl_multifit_nlinear_trust_state *trust_state = (const gsl_multifit_nlinear_trust_state *) vtrust_state; dogleg_state_t *state = (dogleg_state_t *) vstate; const gsl_multifit_nlinear_parameters *params = trust_state->params; double u; double alpha; /* ||g||^2 / ||Jg||^2 */ /* initialize linear least squares solver */ status = (params->solver->init)(trust_state, trust_state->solver_state); if (status) return status; /* prepare the linear solver to compute Gauss-Newton step */ status = (params->solver->presolve)(0.0, trust_state, trust_state->solver_state); if (status) return status; /* solve: J dx_gn = -f for Gauss-Newton step */ status = (params->solver->solve)(trust_state->f, state->dx_gn, trust_state, trust_state->solver_state); if (status) return status; /* now calculate the steepest descent step */ /* compute workp = D^{-1} g and its norm */ gsl_vector_memcpy(state->workp, trust_state->g); gsl_vector_div(state->workp, trust_state->diag); state->norm_Dinvg = gsl_blas_dnrm2(state->workp); /* compute workp = D^{-2} g */ gsl_vector_div(state->workp, trust_state->diag); /* compute: workn = J D^{-2} g */ gsl_blas_dgemv(CblasNoTrans, 1.0, trust_state->J, state->workp, 0.0, state->workn); state->norm_JDinv2g = gsl_blas_dnrm2(state->workn); u = state->norm_Dinvg / state->norm_JDinv2g; alpha = u * u; /* dx_sd = -alpha D^{-2} g */ gsl_vector_memcpy(state->dx_sd, state->workp); gsl_vector_scale(state->dx_sd, -alpha); state->norm_Dgn = scaled_enorm(trust_state->diag, state->dx_gn); state->norm_Dsd = scaled_enorm(trust_state->diag, state->dx_sd); return GSL_SUCCESS; }
static double compute_delta (gsl_vector * diag, gsl_vector * x) { double Dx = scaled_enorm (diag, x); double factor = 100; return (Dx > 0) ? factor * Dx : factor; }
static double compute_delta (gsl_vector * diag, gsl_vector * x) { double Dx = scaled_enorm (diag, x); double factor = 100; /* generally recommended value from MINPACK */ return (Dx > 0) ? factor * Dx : factor; }
static double dogleg_beta(const double t, const double delta, const gsl_vector * diag, dogleg_state_t * state) { double beta; double a, b, c; /* compute: workp = t*dx_gn - dx_sd */ scaled_addition(t, state->dx_gn, -1.0, state->dx_sd, state->workp); /* a = || D (t*dx_gn - dx_sd) ||^2 */ a = scaled_enorm(diag, state->workp); a *= a; /* workp = D^T D (t*dx_gn - dx_sd) */ gsl_vector_mul(state->workp, diag); gsl_vector_mul(state->workp, diag); /* b = 2 dx_sd^T D^T D (t*dx_gn - dx-sd) */ gsl_blas_ddot(state->dx_sd, state->workp, &b); b *= 2.0; /* c = || D dx_sd ||^2 - delta^2 = (||D dx_sd|| + delta) (||D dx_sd|| - delta) */ c = (state->norm_Dsd + delta) * (state->norm_Dsd - delta); if (b > 0.0) { beta = (-2.0 * c) / (b + sqrt(b*b - 4.0*a*c)); } else { beta = (-b + sqrt(b*b - 4.0*a*c)) / (2.0 * a); } return beta; }
static int iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *qtf = state->qtf; gsl_vector *x_trial = state->x_trial; gsl_vector *f_trial = state->f_trial; gsl_vector *rptdx = state->rptdx; gsl_vector *newton = state->newton; gsl_vector *gradient = state->gradient; gsl_vector *sdiag = state->sdiag; gsl_vector *w = state->w; gsl_vector *work1 = state->work1; gsl_permutation *perm = state->perm; double prered, actred; double pnorm, fnorm1, fnorm1p, gnorm; double ratio; double dirder; int iter = 0; double p1 = 0.1, p25 = 0.25, p5 = 0.5, p75 = 0.75, p0001 = 0.0001; if (state->fnorm == 0.0) { return GSL_SUCCESS; } /* Compute qtf = Q^T f */ gsl_vector_memcpy (qtf, f); gsl_linalg_QR_QTvec (r, tau, qtf); /* Compute norm of scaled gradient */ compute_gradient_direction (r, perm, qtf, diag, gradient); { size_t iamax = gsl_blas_idamax (gradient); gnorm = fabs(gsl_vector_get (gradient, iamax) / state->fnorm); } /* Determine the Levenberg-Marquardt parameter */ lm_iteration: iter++ ; { int status = lmpar (r, perm, qtf, diag, state->delta, &(state->par), newton, gradient, sdiag, dx, w); if (status) return status; } /* Take a trial step */ gsl_vector_scale (dx, -1.0); /* reverse the step to go downhill */ compute_trial_step (x, dx, state->x_trial); pnorm = scaled_enorm (diag, dx); if (state->iter == 1) { if (pnorm < state->delta) { #ifdef DEBUG printf("set delta = pnorm = %g\n" , pnorm); #endif state->delta = pnorm; } } /* Evaluate function at x + p */ /* return immediately if evaluation raised error */ { int status = GSL_MULTIFIT_FN_EVAL_F (fdf, x_trial, f_trial); if (status) return status; } fnorm1 = enorm (f_trial); /* Compute the scaled actual reduction */ actred = compute_actual_reduction (state->fnorm, fnorm1); #ifdef DEBUG printf("lmiterate: fnorm = %g fnorm1 = %g actred = %g\n", state->fnorm, fnorm1, actred); printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d"); printf("dx = "); gsl_vector_fprintf(stdout, dx, "%g"); #endif /* Compute rptdx = R P^T dx, noting that |J dx| = |R P^T dx| */ compute_rptdx (r, perm, dx, rptdx); #ifdef DEBUG printf("rptdx = "); gsl_vector_fprintf(stdout, rptdx, "%g"); #endif fnorm1p = enorm (rptdx); /* Compute the scaled predicted reduction = |J dx|^2 + 2 par |D dx|^2 */ { double t1 = fnorm1p / state->fnorm; double t2 = (sqrt(state->par) * pnorm) / state->fnorm; prered = t1 * t1 + t2 * t2 / p5; dirder = -(t1 * t1 + t2 * t2); } /* compute the ratio of the actual to predicted reduction */ if (prered > 0) { ratio = actred / prered; } else { ratio = 0; } #ifdef DEBUG printf("lmiterate: prered = %g dirder = %g ratio = %g\n", prered, dirder,ratio); #endif /* update the step bound */ if (ratio > p25) { #ifdef DEBUG printf("ratio > p25\n"); #endif if (state->par == 0 || ratio >= p75) { state->delta = pnorm / p5; state->par *= p5; #ifdef DEBUG printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par); #endif } } else { double temp = (actred >= 0) ? p5 : p5*dirder / (dirder + p5 * actred); #ifdef DEBUG printf("ratio < p25\n"); #endif if (p1 * fnorm1 >= state->fnorm || temp < p1 ) { temp = p1; } state->delta = temp * GSL_MIN_DBL (state->delta, pnorm/p1); state->par /= temp; #ifdef DEBUG printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par); #endif } /* test for successful iteration, termination and stringent tolerances */ if (ratio >= p0001) { gsl_vector_memcpy (x, x_trial); gsl_vector_memcpy (f, f_trial); /* return immediately if evaluation raised error */ { int status; if (fdf->df) status = GSL_MULTIFIT_FN_EVAL_DF (fdf, x_trial, J); else status = gsl_multifit_fdfsolver_dif_df(x_trial, fdf, f_trial, J); if (status) return status; } /* wa2_j = diag_j * x_j */ state->xnorm = scaled_enorm(diag, x); state->fnorm = fnorm1; state->iter++; /* Rescale if necessary */ if (scale) { update_diag (J, diag); } { int signum; gsl_matrix_memcpy (r, J); gsl_linalg_QRPT_decomp (r, tau, perm, &signum, work1); } return GSL_SUCCESS; } else if (fabs(actred) <= GSL_DBL_EPSILON && prered <= GSL_DBL_EPSILON && p5 * ratio <= 1.0) { return GSL_ETOLF ; } else if (state->delta <= GSL_DBL_EPSILON * state->xnorm) { return GSL_ETOLX; } else if (gnorm <= GSL_DBL_EPSILON) { return GSL_ETOLG; } else if (iter < 10) { /* Repeat inner loop if unsuccessful */ goto lm_iteration; } return GSL_ENOPROG; }
static int dogleg (const gsl_matrix * r, const gsl_vector * qtf, const gsl_vector * diag, double delta, gsl_vector * newton, gsl_vector * gradient, gsl_vector * p) { double qnorm, gnorm, sgnorm, bnorm, temp; newton_direction (r, qtf, newton); #ifdef DEBUG printf("newton = "); gsl_vector_fprintf(stdout, newton, "%g"); printf("\n"); #endif qnorm = scaled_enorm (diag, newton); if (qnorm <= delta) { gsl_vector_memcpy (p, newton); #ifdef DEBUG printf("took newton (qnorm = %g <= delta = %g)\n", qnorm, delta); #endif return GSL_SUCCESS; } gradient_direction (r, qtf, diag, gradient); #ifdef DEBUG printf("grad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); #endif gnorm = enorm (gradient); if (gnorm == 0) { double alpha = delta / qnorm; double beta = 0; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took scaled newton because gnorm = 0\n"); #endif return GSL_SUCCESS; } minimum_step (gnorm, diag, gradient); compute_Rg (r, gradient, p); /* Use p as temporary space to compute Rg */ #ifdef DEBUG printf("mingrad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); printf("Rg = "); gsl_vector_fprintf(stdout, p, "%g"); printf("\n"); #endif temp = enorm (p); sgnorm = (gnorm / temp) / temp; if (sgnorm > delta) { double alpha = 0; double beta = delta; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took gradient\n"); #endif return GSL_SUCCESS; } bnorm = enorm (qtf); { double bg = bnorm / gnorm; double bq = bnorm / qnorm; double dq = delta / qnorm; double dq2 = dq * dq; double sd = sgnorm / delta; double sd2 = sd * sd; double t1 = bg * bq * sd; double u = t1 - dq; double t2 = t1 - dq * sd2 + sqrt (u * u + (1-dq2) * (1 - sd2)); double alpha = dq * (1 - sd2) / t2; double beta = (1 - alpha) * sgnorm; #ifdef DEBUG printf("bnorm = %g\n", bnorm); printf("gnorm = %g\n", gnorm); printf("qnorm = %g\n", qnorm); printf("delta = %g\n", delta); printf("alpha = %g beta = %g\n", alpha, beta); printf("took scaled combination of newton and gradient\n"); #endif scaled_addition (alpha, newton, beta, gradient, p); } return GSL_SUCCESS; }
static int iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale) { hybrid_state_t *state = (hybrid_state_t *) vstate; const double fnorm = state->fnorm; gsl_matrix *J = state->J; gsl_matrix *q = state->q; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *qtf = state->qtf; gsl_vector *x_trial = state->x_trial; gsl_vector *f_trial = state->f_trial; gsl_vector *df = state->df; gsl_vector *qtdf = state->qtdf; gsl_vector *rdx = state->rdx; gsl_vector *w = state->w; gsl_vector *v = state->v; double prered, actred; double pnorm, fnorm1, fnorm1p; double ratio; double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001; /* Compute qtf = Q^T f */ compute_qtf (q, f, qtf); /* Compute dogleg step */ dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx); /* Take a trial step */ compute_trial_step (x, dx, state->x_trial); pnorm = scaled_enorm (diag, dx); if (state->iter == 1) { if (pnorm < state->delta) { state->delta = pnorm; } } /* Evaluate function at x + p */ { int status = GSL_MULTIROOT_FN_EVAL (func, x_trial, f_trial); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } /* Set df = f_trial - f */ compute_df (f_trial, f, df); /* Compute the scaled actual reduction */ fnorm1 = enorm (f_trial); actred = compute_actual_reduction (fnorm, fnorm1); /* Compute rdx = R dx */ compute_rdx (r, dx, rdx); /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */ fnorm1p = enorm_sum (qtf, rdx); prered = compute_predicted_reduction (fnorm, fnorm1p); /* Compute the ratio of the actual to predicted reduction */ if (prered > 0) { ratio = actred / prered; } else { ratio = 0; } /* Update the step bound */ if (ratio < p1) { state->ncsuc = 0; state->ncfail++; state->delta *= p5; } else { state->ncfail = 0; state->ncsuc++; if (ratio >= p5 || state->ncsuc > 1) state->delta = GSL_MAX (state->delta, pnorm / p5); if (fabs (ratio - 1) <= p1) state->delta = pnorm / p5; } /* Test for successful iteration */ if (ratio >= p0001) { gsl_vector_memcpy (x, x_trial); gsl_vector_memcpy (f, f_trial); state->fnorm = fnorm1; state->iter++; } /* Determine the progress of the iteration */ state->nslow1++; if (actred >= p001) state->nslow1 = 0; if (actred >= p1) state->nslow2 = 0; if (state->ncfail == 2) { gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J) ; state->nslow2++; if (state->iter == 1) { if (scale) compute_diag (J, diag); state->delta = compute_delta (diag, x); } else { if (scale) update_diag (J, diag); } /* Factorize J into QR decomposition */ gsl_linalg_QR_decomp (J, tau); gsl_linalg_QR_unpack (J, tau, q, r); return GSL_SUCCESS; } /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|, v = D^2 dx/|dx| */ compute_qtf (q, df, qtdf); compute_wv (qtdf, rdx, dx, diag, pnorm, w, v); /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */ gsl_linalg_QR_update (q, r, w, v); /* No progress as measured by jacobian evaluations */ if (state->nslow2 == 5) { return GSL_ENOPROGJ; } /* No progress as measured by function evaluations */ if (state->nslow1 == 10) { return GSL_ENOPROG; } return GSL_SUCCESS; }
static int trust_iterate(void *vstate, const gsl_vector *swts, gsl_multilarge_nlinear_fdf *fdf, gsl_vector *x, gsl_vector *f, gsl_vector *g, gsl_matrix *JTJ, gsl_vector *dx) { int status; trust_state_t *state = (trust_state_t *) vstate; const gsl_multilarge_nlinear_parameters *params = &(state->params); const gsl_multilarge_nlinear_trs *trs = params->trs; /* collect all state parameters needed by low level methods */ const gsl_multilarge_nlinear_trust_state trust_state = { x, f, g, JTJ, state->diag, swts, &(state->mu), params, state->solver_state, fdf, &(state->avratio) }; gsl_vector *x_trial = state->x_trial; /* trial x + dx */ gsl_vector *f_trial = state->f_trial; /* trial f(x + dx) */ double rho; /* ratio actual_reduction/predicted_reduction */ int foundstep = 0; /* found step dx */ int bad_steps = 0; /* consecutive rejected steps */ /* initialize trust region subproblem with this Jacobian */ status = (trs->preloop)(&trust_state, state->trs_state); if (status) return status; /* loop until we find an acceptable step dx */ while (!foundstep) { /* calculate new step */ status = (trs->step)(&trust_state, state->delta, dx, state->trs_state); /* occasionally the iterative methods (ie: CG Steihaug) can fail to find a step, * so in this case skip rho calculation and count it as a rejected step */ if (status == GSL_SUCCESS) { /* compute x_trial = x + dx */ trust_trial_step(x, dx, x_trial); /* compute f_trial = f(x + dx) */ status = gsl_multilarge_nlinear_eval_f(fdf, x_trial, swts, f_trial); if (status) return status; /* check if step should be accepted or rejected */ status = trust_eval_step(&trust_state, f_trial, dx, &rho, state); if (status == GSL_SUCCESS) foundstep = 1; #if 0 /*XXX*/ fprintf(stdout, "delta = %.12e |D dx| = %.12e |dx| = %.12e, dx0 = %.12e dx1 = %.12e |x_trial| = %.12e |f_trial| = %.12e rho = %.12e\n", state->delta, scaled_enorm(state->diag, dx), gsl_blas_dnrm2(dx), gsl_vector_get(dx, 0), gsl_vector_get(dx, 1), gsl_blas_dnrm2(x_trial), gsl_blas_dnrm2(f_trial), rho); #endif } else { /* an iterative TRS method failed to find a step vector */ rho = -1.0; } /* * update trust region radius: if rho is large, * then the quadratic model is a good approximation * to the objective function, enlarge trust region. * If rho is small (or negative), the model function * is a poor approximation so decrease trust region. This * can happen even if the step is accepted. */ if (rho > 0.75) state->delta *= params->factor_up; else if (rho < 0.25) state->delta /= params->factor_down; if (foundstep) { /* step was accepted */ /* update x <- x + dx */ gsl_vector_memcpy(x, x_trial); /* update f <- f(x + dx) */ gsl_vector_memcpy(f, f_trial); /* compute new g = J^T f and J^T J */ status = gsl_multilarge_nlinear_eval_df(CblasTrans, x, f, f, swts, params->h_df, params->fdtype, fdf, g, JTJ, state->workn); if (status) return status; /* update scaling matrix D */ if (JTJ != NULL) (params->scale->update)(JTJ, state->diag); /* step accepted, decrease LM parameter */ nielsen_accept(rho, &(state->mu), &(state->nu)); bad_steps = 0; } else { /* step rejected, increase LM parameter */ nielsen_reject(&(state->mu), &(state->nu)); /* if more than 15 consecutive rejected steps, report no progress */ if (++bad_steps > 15) { return GSL_ENOPROG; } } } return GSL_SUCCESS; } /* trust_iterate() */
static int set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *work1 = state->work1; gsl_permutation *perm = state->perm; int signum; /* Evaluate function at x */ /* return immediately if evaluation raised error */ { int status = GSL_MULTIFIT_FN_EVAL_F_DF (fdf, x, f, J); if (status) return status; } state->par = 0; state->iter = 1; state->fnorm = enorm (f); gsl_vector_set_all (dx, 0.0); /* store column norms in diag */ if (scale) { compute_diag (J, diag); } else { gsl_vector_set_all (diag, 1.0); } /* set delta to 100 |D x| or to 100 if |D x| is zero */ state->xnorm = scaled_enorm (diag, x); state->delta = compute_delta (diag, x); /* Factorize J into QR decomposition */ gsl_matrix_memcpy (r, J); gsl_linalg_QRPT_decomp (r, tau, perm, &signum, work1); gsl_vector_set_zero (state->rptdx); gsl_vector_set_zero (state->w); /* Zero the trial vector, as in the alloc function */ gsl_vector_set_zero (state->f_trial); #ifdef DEBUG printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d"); printf("tau = "); gsl_vector_fprintf(stdout, tau, "%g"); #endif return GSL_SUCCESS; }