Esempio n. 1
0
/* Retypes an untyped object to the specified object of specified size, storing a cap to that object
 * in the specified slot of the cspace whose root is root_cnode. This requires that the root_cnode
 * argument is also the root cnode of the cspace of the calling thread.
 */
int untyped_retype_root(seL4_CPtr untyped, seL4_ObjectType type, int size_bits, seL4_CPtr root_cnode, seL4_CPtr slot) {
    return seL4_Untyped_Retype(untyped /* untyped cap */,
                               type /* type */,
                               size_bits /* size */,
                               root_cnode /* root cnode cap */,
                               root_cnode /* destination cspace */,
                               32 /* depth */,
                               slot /* offset */,
                               1 /* num objects */);
}
Esempio n. 2
0
seL4_Error simple_default_get_frame_cap(void *data, void *paddr, int size_bits, cspacepath_t *path) {
    unsigned int i;
    seL4_BootInfo *bi = (seL4_BootInfo *) data;
    assert(bi && paddr);

    for (i = 0; i < bi->untyped.end - bi->untyped.start; i++) {
        if (bi->untypedList[i].paddr == (seL4_Word)paddr &&
            bi->untypedList[i].sizeBits >= size_bits) {
            return seL4_Untyped_Retype(bi->untyped.start + i, kobject_get_type(KOBJECT_FRAME, size_bits),
                                       size_bits, path->root, path->dest, path->destDepth, path->offset, 1);
        }
    }
    return seL4_FailedLookup;
}
Esempio n. 3
0
uint32_t _utspace_split_alloc(allocman_t *alloc, void *_split, uint32_t size_bits, seL4_Word type, cspacepath_t *slot, int *error)
{
    utspace_split_t *split = (utspace_split_t*)_split;
    uint32_t sel4_size_bits;
    int sel4_error;
    struct utspace_split_node *node;
    /* get size of untyped call */
    sel4_size_bits = get_sel4_object_size(type, size_bits);
    if (size_bits != vka_get_object_size(type, sel4_size_bits) || size_bits == 0) {
        SET_ERROR(error, 1);
        return 0;
    }
    /* make sure we have an available untyped */
    if (_refill_pool(alloc, split, size_bits)) {
        /* out of memory? */
        SET_ERROR(error, 1);
        return 0;
    }
    /* use the first node for lack of a better one */
    node = split->heads[size_bits];
    /* Perform the untyped retype */
#if defined(CONFIG_KERNEL_STABLE)
    sel4_error = seL4_Untyped_RetypeAtOffset(node->ut.capPtr, type, 0, sel4_size_bits, slot->root, slot->dest, slot->destDepth, slot->offset, 1);
#else
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, type, sel4_size_bits, slot->root, slot->dest, slot->destDepth, slot->offset, 1);
#endif
    if (sel4_error != seL4_NoError) {
        /* Well this shouldn't happen */
        SET_ERROR(error, 1);
        return 0;
    }
    /* remove the node */
    _remove_node(&split->heads[size_bits], node);
    SET_ERROR(error, 0);
    /* return the node as a cookie */
    return (uint32_t)node;
}
Esempio n. 4
0
seL4_Word _utspace_split_alloc(allocman_t *alloc, void *_split, size_t size_bits, seL4_Word type, const cspacepath_t *slot, uintptr_t paddr, bool canBeDev, int *error)
{
    utspace_split_t *split = (utspace_split_t*)_split;
    size_t sel4_size_bits;
    int sel4_error;
    struct utspace_split_node *node;
    /* get size of untyped call */
    sel4_size_bits = get_sel4_object_size(type, size_bits);
    if (size_bits != vka_get_object_size(type, sel4_size_bits) || size_bits == 0) {
        SET_ERROR(error, 1);
        return 0;
    }
    struct utspace_split_node **head = NULL;
    /* if we're allocating at a particular paddr then we will just trawl through every pool
     * and see if we can find out which one has what we want */
    if (paddr != ALLOCMAN_NO_PADDR) {
        if (canBeDev) {
            head = find_head_for_paddr(split->dev_heads, paddr, size_bits);
            if (!head) {
                head = find_head_for_paddr(split->dev_mem_heads, paddr, size_bits);
            }
        }
        if (!head) {
            head = find_head_for_paddr(split->heads, paddr, size_bits);
        }
        if (!head) {
            SET_ERROR(error, 1);
            ZF_LOGE("Failed to find any untyped capable of creating an object at address %p", (void*)paddr);
            return 0;
        }
        if (_refill_pool(alloc, split, head, size_bits, paddr)) {
            /* out of memory? */
            SET_ERROR(error, 1);
            ZF_LOGV("Failed to refill pool to allocate object of size %zu", size_bits);
            return 0;
        }
        /* search for the node we want to use. We have the advantage of knowing that
         * due to objects being size aligned that the base paddr of the untyped will
         * be exactly the paddr we want */
        for (node = head[size_bits]; node && node->paddr != paddr; node = node->next);
        /* _refill_pool should not have returned if this wasn't possible */
        assert(node);
    } else {
        /* if we can use device memory then preference allocating from there */
        if (canBeDev) {
            if (_refill_pool(alloc, split, split->dev_mem_heads, size_bits, ALLOCMAN_NO_PADDR)) {
                /* out of memory? */
                SET_ERROR(error, 1);
                ZF_LOGV("Failed to refill pool to allocate object of size %zu", size_bits);
                return 0;
            }
            head = split->dev_mem_heads;
        }
        if (!head) {
            head = split->heads;
            if (_refill_pool(alloc, split, head, size_bits, ALLOCMAN_NO_PADDR)) {
                /* out of memory? */
                SET_ERROR(error, 1);
                ZF_LOGV("Failed to refill pool to allocate object of size %zu", size_bits);
                return 0;
            }
        }
        /* use the first node for lack of a better one */
        node = head[size_bits];
    }
    /* Perform the untyped retype */
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, type, sel4_size_bits, slot->root, slot->dest, slot->destDepth, slot->offset, 1);
    if (sel4_error != seL4_NoError) {
        /* Well this shouldn't happen */
        ZF_LOGE("Failed to retype untyped, error %d\n", sel4_error);
        SET_ERROR(error, 1);
        return 0;
    }
    /* remove the node */
    _remove_node(&head[size_bits], node);
    SET_ERROR(error, 0);
    /* return the node as a cookie */
    return (seL4_Word)node;
}
Esempio n. 5
0
static int _refill_pool(allocman_t *alloc, utspace_split_t *split, struct utspace_split_node **heads, size_t size_bits, uintptr_t paddr) {
    struct utspace_split_node *node;
    struct utspace_split_node *left, *right;
    int sel4_error;
    if (paddr == ALLOCMAN_NO_PADDR) {
        /* see if pool is actually empty */
        if (heads[size_bits]) {
            return 0;
        }
    } else {
        /* see if the pool has the paddr we want */
        for (node = heads[size_bits]; node; node = node->next) {
            if (node->paddr <= paddr && paddr < node->paddr + BIT(size_bits)) {
                return 0;
            }
        }
    }
    /* ensure we are not the highest pool */
    if (size_bits >= sizeof(seL4_Word) * 8 - 2) {
        /* bugger, no untypeds bigger than us */
        ZF_LOGV("Failed to refill pool of size %zu, no larger pools", size_bits);
        return 1;
    }
    /* get something from the highest pool */
    if (_refill_pool(alloc, split, heads, size_bits + 1, paddr)) {
        /* could not fill higher pool */
        ZF_LOGV("Failed to refill pool of size %zu", size_bits);
        return 1;
    }
    if (paddr == ALLOCMAN_NO_PADDR) {
        /* use the first node for lack of a better one */
        node = heads[size_bits + 1];
    } else {
        for (node = heads[size_bits + 1]; node && !(node->paddr <= paddr && paddr < node->paddr + BIT(size_bits + 1)); node = node->next);
        /* _refill_pool should not have returned if this wasn't possible */
        assert(node);
    }
    /* allocate two new nodes */
    left = _new_node(alloc);
    if (!left) {
        ZF_LOGV("Failed to allocate left node");
        return 1;
    }
    right = _new_node(alloc);
    if (!right) {
        ZF_LOGV("Failed to allocate right node");
        _delete_node(alloc, left);
        return 1;
    }
    /* perform the first retype */
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, seL4_UntypedObject, size_bits, left->ut.root, left->ut.dest, left->ut.destDepth, left->ut.offset, 1);
    if (sel4_error != seL4_NoError) {
        _delete_node(alloc, left);
        _delete_node(alloc, right);
        /* Well this shouldn't happen */
        ZF_LOGE("Failed to retype untyped, error %d\n", sel4_error);
        return 1;
    }
    /* perform the second retype */
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, seL4_UntypedObject, size_bits, right->ut.root, right->ut.dest, right->ut.destDepth, right->ut.offset, 1);
    if (sel4_error != seL4_NoError) {
        vka_cnode_delete(&left->ut);
        _delete_node(alloc, left);
        _delete_node(alloc, right);
        /* Well this shouldn't happen */
        ZF_LOGE("Failed to retype untyped, error %d\n", sel4_error);
        return 1;
    }
    /* all is done. remove the parent and insert the children */
    _remove_node(&heads[size_bits + 1], node);
    left->parent = right->parent = node;
    left->sibling = right;
    left->origin_head = &heads[size_bits];
    right->origin_head = &heads[size_bits];
    right->sibling = left;
    if (node->paddr != ALLOCMAN_NO_PADDR) {
        left->paddr = node->paddr;
        right->paddr = node->paddr + BIT(size_bits);
    } else {
        left->paddr = right->paddr = ALLOCMAN_NO_PADDR;
    }
    /* insert in this order so that we end up pulling the untypeds off in order of contiugous
     * physical address. This makes various allocation problems slightly less likely to happen */
    _insert_node(&heads[size_bits], right);
    _insert_node(&heads[size_bits], left);
    return 0;
}
Esempio n. 6
0
static int _refill_pool(allocman_t *alloc, utspace_split_t *split, uint32_t size_bits) {
    struct utspace_split_node *node;
    struct utspace_split_node *left, *right;
    int sel4_error;
    /* see if pool is actually empty */
    if (split->heads[size_bits]) {
        return 0;
    }
    /* ensure we are not the highest pool */
    if (size_bits >= 30) {
        /* bugger, no untypeds bigger than us */
        return 1;
    }
    /* get something from the highest pool */
    if (_refill_pool(alloc, split, size_bits + 1)) {
        /* could not fill higher pool */
        return 1;
    }
    /* use the first node for lack of a better one */
    node = split->heads[size_bits + 1];
    /* allocate two new nodes */
    left = _new_node(alloc);
    if (!left) {
        return 1;
    }
    right = _new_node(alloc);
    if (!right) {
        _delete_node(alloc, left);
        return 1;
    }
    /* perform the first retype */
#if defined(CONFIG_KERNEL_STABLE)
    sel4_error = seL4_Untyped_RetypeAtOffset(node->ut.capPtr, seL4_UntypedObject, 0, size_bits, left->ut.root, left->ut.dest, left->ut.destDepth, left->ut.offset, 1);
#else
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, seL4_UntypedObject, size_bits, left->ut.root, left->ut.dest, left->ut.destDepth, left->ut.offset, 1);
#endif
    if (sel4_error != seL4_NoError) {
        _delete_node(alloc, left);
        _delete_node(alloc, right);
        /* Well this shouldn't happen */
        return 1;
    }
    /* perform the second retype */
#if defined(CONFIG_KERNEL_STABLE)
    sel4_error = seL4_Untyped_RetypeAtOffset(node->ut.capPtr, seL4_UntypedObject, BIT(size_bits), size_bits, right->ut.root, right->ut.dest, right->ut.destDepth, right->ut.offset, 1);
#else
    sel4_error = seL4_Untyped_Retype(node->ut.capPtr, seL4_UntypedObject, size_bits, right->ut.root, right->ut.dest, right->ut.destDepth, right->ut.offset, 1);
#endif
    if (sel4_error != seL4_NoError) {
        vka_cnode_delete(&left->ut);
        _delete_node(alloc, left);
        _delete_node(alloc, right);
        /* Well this shouldn't happen */
        return 1;
    }
    /* all is done. remove the parent and insert the children */
    _remove_node(&split->heads[size_bits + 1], node);
    left->parent = right->parent = node;
    left->sibling = right;
    right->sibling = left;
    if (node->paddr) {
        left->paddr = node->paddr;
        right->paddr = node->paddr + BIT(size_bits);
    } else {
        left->paddr = right->paddr = 0;
    }
    /* insert in this order so that we end up pulling the untypeds off in order of contiugous
     * physical address. This makes various allocation problems slightly less likely to happen */
    _insert_node(&split->heads[size_bits], right);
    _insert_node(&split->heads[size_bits], left);
    return 0;
}