Esempio n. 1
0
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
    if (sizeof(secp256k1_scalar) == 32) {
        memcpy(&sig->data[0], r, 32);
        memcpy(&sig->data[32], s, 32);
    } else {
        secp256k1_scalar_get_b32(&sig->data[0], r);
        secp256k1_scalar_get_b32(&sig->data[32], s);
    }
}
Esempio n. 2
0
int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
    secp256k1_scalar r, s;

    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(output64 != NULL);
    ARG_CHECK(sig != NULL);

    secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
    secp256k1_scalar_get_b32(&output64[0], &r);
    secp256k1_scalar_get_b32(&output64[32], &s);
    return 1;
}
Esempio n. 3
0
int secp256k1_ecdsa_sign_compact(const secp256k1_context_t* ctx, const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, secp256k1_nonce_function_t noncefp, const void* noncedata, int *recid) {
    secp256k1_ecdsa_sig_t sig;
    secp256k1_scalar_t sec, non, msg;
    int ret = 0;
    int overflow = 0;
    unsigned int count = 0;
    DEBUG_CHECK(ctx != NULL);
    DEBUG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
    DEBUG_CHECK(msg32 != NULL);
    DEBUG_CHECK(sig64 != NULL);
    DEBUG_CHECK(seckey != NULL);
    if (noncefp == NULL) {
        noncefp = secp256k1_nonce_function_default;
    }

    secp256k1_scalar_set_b32(&sec, seckey, &overflow);
    /* Fail if the secret key is invalid. */
    if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
        secp256k1_scalar_set_b32(&msg, msg32, NULL);
        while (1) {
            unsigned char nonce32[32];
            ret = noncefp(nonce32, msg32, seckey, count, noncedata);
            if (!ret) {
                break;
            }
            secp256k1_scalar_set_b32(&non, nonce32, &overflow);
            memset(nonce32, 0, 32);
            if (!secp256k1_scalar_is_zero(&non) && !overflow) {
                if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &sig, &sec, &msg, &non, recid)) {
                    break;
                }
            }
            count++;
        }
        if (ret) {
            secp256k1_scalar_get_b32(sig64, &sig.r);
            secp256k1_scalar_get_b32(sig64 + 32, &sig.s);
        }
        secp256k1_scalar_clear(&msg);
        secp256k1_scalar_clear(&non);
        secp256k1_scalar_clear(&sec);
    }
    if (!ret) {
        memset(sig64, 0, 64);
    }
    return ret;
}
Esempio n. 4
0
void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
    /* This is essentially a copy of test_exhaustive_verify, with recovery added */
    int s, r, msg, key;
    for (s = 1; s < order; s++) {
        for (r = 1; r < order; r++) {
            for (msg = 1; msg < order; msg++) {
                for (key = 1; key < order; key++) {
                    secp256k1_ge nonconst_ge;
                    secp256k1_ecdsa_recoverable_signature rsig;
                    secp256k1_ecdsa_signature sig;
                    secp256k1_pubkey pk;
                    secp256k1_scalar sk_s, msg_s, r_s, s_s;
                    secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
                    int recid = 0;
                    int k, should_verify;
                    unsigned char msg32[32];

                    secp256k1_scalar_set_int(&s_s, s);
                    secp256k1_scalar_set_int(&r_s, r);
                    secp256k1_scalar_set_int(&msg_s, msg);
                    secp256k1_scalar_set_int(&sk_s, key);
                    secp256k1_scalar_get_b32(msg32, &msg_s);

                    /* Verify by hand */
                    /* Run through every k value that gives us this r and check that *one* works.
                     * Note there could be none, there could be multiple, ECDSA is weird. */
                    should_verify = 0;
                    for (k = 0; k < order; k++) {
                        secp256k1_scalar check_x_s;
                        r_from_k(&check_x_s, group, k);
                        if (r_s == check_x_s) {
                            secp256k1_scalar_set_int(&s_times_k_s, k);
                            secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
                            secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
                            secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
                            should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
                        }
                    }
                    /* nb we have a "high s" rule */
                    should_verify &= !secp256k1_scalar_is_high(&s_s);

                    /* We would like to try recovering the pubkey and checking that it matches,
                     * but pubkey recovery is impossible in the exhaustive tests (the reason
                     * being that there are 12 nonzero r values, 12 nonzero points, and no
                     * overlap between the sets, so there are no valid signatures). */

                    /* Verify by converting to a standard signature and calling verify */
                    secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
                    secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
                    memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
                    secp256k1_pubkey_save(&pk, &nonconst_ge);
                    CHECK(should_verify ==
                          secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
                }
            }
        }
    }
}
Esempio n. 5
0
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
    int i, j, k;

    /* Loop */
    for (i = 1; i < order; i++) {  /* message */
        for (j = 1; j < order; j++) {  /* key */
            for (k = 1; k < order; k++) {  /* nonce */
                const int starting_k = k;
                secp256k1_ecdsa_signature sig;
                secp256k1_scalar sk, msg, r, s, expected_r;
                unsigned char sk32[32], msg32[32];
                secp256k1_scalar_set_int(&msg, i);
                secp256k1_scalar_set_int(&sk, j);
                secp256k1_scalar_get_b32(sk32, &sk);
                secp256k1_scalar_get_b32(msg32, &msg);

                secp256k1_ecdsa_sign(ctx, &sig, msg32, sk32, secp256k1_nonce_function_smallint, &k);

                secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
                /* Note that we compute expected_r *after* signing -- this is important
                 * because our nonce-computing function function might change k during
                 * signing. */
                r_from_k(&expected_r, group, k);
                CHECK(r == expected_r);
                CHECK((k * s) % order == (i + r * j) % order ||
                      (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);

                /* Overflow means we've tried every possible nonce */
                if (k < starting_k) {
                    break;
                }
            }
        }
    }

    /* We would like to verify zero-knowledge here by counting how often every
     * possible (s, r) tuple appears, but because the group order is larger
     * than the field order, when coercing the x-values to scalar values, some
     * appear more often than others, so we are actually not zero-knowledge.
     * (This effect also appears in the real code, but the difference is on the
     * order of 1/2^128th the field order, so the deviation is not useful to a
     * computationally bounded attacker.)
     */
}
Esempio n. 6
0
int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) {
    secp256k1_scalar sec;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);

    secp256k1_scalar_set_b32(&sec, seckey, NULL);
    secp256k1_scalar_negate(&sec, &sec);
    secp256k1_scalar_get_b32(seckey, &sec);

    return 1;
}
Esempio n. 7
0
int secp256k1_ec_privkey_import(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *privkey, int privkeylen) {
    secp256k1_scalar_t key;
    int ret = 0;
    DEBUG_CHECK(seckey != NULL);
    DEBUG_CHECK(privkey != NULL);
    (void)ctx;

    ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &key);
    }
    secp256k1_scalar_clear(&key);
    return ret;
}
Esempio n. 8
0
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
    int s, r, msg, key;
    for (s = 1; s < order; s++) {
        for (r = 1; r < order; r++) {
            for (msg = 1; msg < order; msg++) {
                for (key = 1; key < order; key++) {
                    secp256k1_ge nonconst_ge;
                    secp256k1_ecdsa_signature sig;
                    secp256k1_pubkey pk;
                    secp256k1_scalar sk_s, msg_s, r_s, s_s;
                    secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
                    int k, should_verify;
                    unsigned char msg32[32];

                    secp256k1_scalar_set_int(&s_s, s);
                    secp256k1_scalar_set_int(&r_s, r);
                    secp256k1_scalar_set_int(&msg_s, msg);
                    secp256k1_scalar_set_int(&sk_s, key);

                    /* Verify by hand */
                    /* Run through every k value that gives us this r and check that *one* works.
                     * Note there could be none, there could be multiple, ECDSA is weird. */
                    should_verify = 0;
                    for (k = 0; k < order; k++) {
                        secp256k1_scalar check_x_s;
                        r_from_k(&check_x_s, group, k);
                        if (r_s == check_x_s) {
                            secp256k1_scalar_set_int(&s_times_k_s, k);
                            secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
                            secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
                            secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
                            should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
                        }
                    }
                    /* nb we have a "high s" rule */
                    should_verify &= !secp256k1_scalar_is_high(&s_s);

                    /* Verify by calling verify */
                    secp256k1_ecdsa_signature_save(&sig, &r_s, &s_s);
                    memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
                    secp256k1_pubkey_save(&pk, &nonconst_ge);
                    secp256k1_scalar_get_b32(msg32, &msg_s);
                    CHECK(should_verify ==
                          secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
                }
            }
        }
    }
}
Esempio n. 9
0
int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
                                      const unsigned char *key32, const unsigned char *algo16,
                                      void *data, unsigned int attempt) {
    secp256k1_scalar s;
    int *idata = data;
    (void)msg32;
    (void)key32;
    (void)algo16;
    /* Some nonces cannot be used because they'd cause s and/or r to be zero.
     * The signing function has retry logic here that just re-calls the nonce
     * function with an increased `attempt`. So if attempt > 0 this means we
     * need to change the nonce to avoid an infinite loop. */
    if (attempt > 0) {
        *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER;
    }
    secp256k1_scalar_set_int(&s, *idata);
    secp256k1_scalar_get_b32(nonce32, &s);
    return 1;
}
Esempio n. 10
0
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context_t* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar_t factor;
    secp256k1_scalar_t sec;
    int ret = 0;
    int overflow = 0;
    DEBUG_CHECK(ctx != NULL);
    DEBUG_CHECK(seckey != NULL);
    DEBUG_CHECK(tweak != NULL);
    (void)ctx;

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);
    ret = secp256k1_eckey_privkey_tweak_mul(&sec, &factor) && !overflow;
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&factor);
    return ret;
}
Esempio n. 11
0
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar factor;
    secp256k1_scalar sec;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);

    secp256k1_scalar_set_b32(&factor, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);
    ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
    memset(seckey, 0, 32);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&factor);
    return ret;
}
Esempio n. 12
0
int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
    secp256k1_scalar term;
    secp256k1_scalar sec;
    int ret = 0;
    int overflow = 0;
    VERIFY_CHECK(ctx != NULL);
    ARG_CHECK(seckey != NULL);
    ARG_CHECK(tweak != NULL);
    (void)ctx;

    secp256k1_scalar_set_b32(&term, tweak, &overflow);
    secp256k1_scalar_set_b32(&sec, seckey, NULL);

    ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
    if (ret) {
        secp256k1_scalar_get_b32(seckey, &sec);
    }

    secp256k1_scalar_clear(&sec);
    secp256k1_scalar_clear(&term);
    return ret;
}
Esempio n. 13
0
array<uint8_t, 64> Sec256Signature::ToCompact() const {
	array<uint8_t, 64> r;
	secp256k1_scalar_get_b32(r.data(), &m_r);
	secp256k1_scalar_get_b32(r.data()+32, &m_s);
	return r;
}
Esempio n. 14
0
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
    int i, j, k;

    /* Loop */
    for (i = 1; i < order; i++) {  /* message */
        for (j = 1; j < order; j++) {  /* key */
            for (k = 1; k < order; k++) {  /* nonce */
                const int starting_k = k;
                secp256k1_fe r_dot_y_normalized;
                secp256k1_ecdsa_recoverable_signature rsig;
                secp256k1_ecdsa_signature sig;
                secp256k1_scalar sk, msg, r, s, expected_r;
                unsigned char sk32[32], msg32[32];
                int expected_recid;
                int recid;
                secp256k1_scalar_set_int(&msg, i);
                secp256k1_scalar_set_int(&sk, j);
                secp256k1_scalar_get_b32(sk32, &sk);
                secp256k1_scalar_get_b32(msg32, &msg);

                secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);

                /* Check directly */
                secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
                r_from_k(&expected_r, group, k);
                CHECK(r == expected_r);
                CHECK((k * s) % order == (i + r * j) % order ||
                      (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
                /* In computing the recid, there is an overflow condition that is disabled in
                 * scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
                 * will exceed the group order, and our signing code always holds out for r
                 * values that don't overflow, so with a proper overflow check the tests would
                 * loop indefinitely. */
                r_dot_y_normalized = group[k].y;
                secp256k1_fe_normalize(&r_dot_y_normalized);
                /* Also the recovery id is flipped depending if we hit the low-s branch */
                if ((k * s) % order == (i + r * j) % order) {
                    expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
                } else {
                    expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
                }
                CHECK(recid == expected_recid);

                /* Convert to a standard sig then check */
                secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
                secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
                /* Note that we compute expected_r *after* signing -- this is important
                 * because our nonce-computing function function might change k during
                 * signing. */
                r_from_k(&expected_r, group, k);
                CHECK(r == expected_r);
                CHECK((k * s) % order == (i + r * j) % order ||
                      (k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);

                /* Overflow means we've tried every possible nonce */
                if (k < starting_k) {
                    break;
                }
            }
        }
    }
}
Esempio n. 15
0
void scalar_test(void) {
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s;
    secp256k1_scalar_set_b32(&s, c, NULL);
    secp256k1_num_t snum;
    secp256k1_num_set_bin(&snum, c, 32);
    secp256k1_num_mod(&snum, &secp256k1_ge_consts->order);

    /* Set 's1' to a random scalar, with value 's1num'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s1;
    secp256k1_scalar_set_b32(&s1, c, NULL);
    secp256k1_num_t s1num;
    secp256k1_num_set_bin(&s1num, c, 32);
    secp256k1_num_mod(&s1num, &secp256k1_ge_consts->order);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    secp256k1_rand256_test(c);
    secp256k1_scalar_t s2;
    int overflow = 0;
    secp256k1_scalar_set_b32(&s2, c, &overflow);
    secp256k1_num_t s2num;
    secp256k1_num_set_bin(&s2num, c, 32);
    secp256k1_num_mod(&s2num, &secp256k1_ge_consts->order);

    {
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_num_t n, t, m;
        secp256k1_num_set_int(&n, 0);
        secp256k1_num_set_int(&m, 16);
        for (int i = 0; i < 256; i += 4) {
            secp256k1_num_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            secp256k1_num_mul(&n, &n, &m);
            secp256k1_num_add(&n, &n, &t);
        }
        CHECK(secp256k1_num_eq(&n, &snum));
    }

    {
        /* Test that get_b32 returns the same as get_bin on the number. */
        unsigned char r1[32];
        secp256k1_scalar_get_b32(r1, &s2);
        unsigned char r2[32];
        secp256k1_num_get_bin(r2, 32, &s2num);
        CHECK(memcmp(r1, r2, 32) == 0);
        /* If no overflow occurred when assigning, it should also be equal to the original byte array. */
        CHECK((memcmp(r1, c, 32) == 0) == (overflow == 0));
    }

    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
        secp256k1_scalar_t r;
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
        secp256k1_scalar_t r;
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &secp256k1_ge_consts->half_order) > 0));
        secp256k1_scalar_t neg;
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_t negnum;
        secp256k1_num_sub(&negnum, &secp256k1_ge_consts->order, &snum);
        secp256k1_num_mod(&negnum, &secp256k1_ge_consts->order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &secp256k1_ge_consts->half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_num_t negnum2;
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
            secp256k1_scalar_inverse(&inv, &s);
            secp256k1_num_t invnum;
            secp256k1_num_mod_inverse(&invnum, &snum, &secp256k1_ge_consts->order);
            secp256k1_num_t invnum2;
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }
}
Esempio n. 16
0
void test_ecdsa_end_to_end(void) {
    unsigned char privkey[32];
    unsigned char message[32];

    /* Generate a random key and message. */
    {
        secp256k1_scalar_t msg, key;
        random_scalar_order_test(&msg);
        random_scalar_order_test(&key);
        secp256k1_scalar_get_b32(privkey, &key);
        secp256k1_scalar_get_b32(message, &msg);
    }

    /* Construct and verify corresponding public key. */
    CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
    unsigned char pubkey[65]; int pubkeylen = 65;
    CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1);
    CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));

    /* Verify private key import and export. */
    unsigned char seckey[300]; int seckeylen = 300;
    CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
    unsigned char privkey2[32];
    CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
    CHECK(memcmp(privkey, privkey2, 32) == 0);

    /* Optionally tweak the keys using addition. */
    if (secp256k1_rand32() % 3 == 0) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
        int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        unsigned char pubkey2[65]; int pubkeylen2 = 65;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Optionally tweak the keys using multiplication. */
    if (secp256k1_rand32() % 3 == 0) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
        int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        unsigned char pubkey2[65]; int pubkeylen2 = 65;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Sign. */
    unsigned char signature[72]; int signaturelen = 72;
    while(1) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        if (secp256k1_ecdsa_sign(message, 32, signature, &signaturelen, privkey, rnd) == 1) {
            break;
        }
    }
    /* Verify. */
    CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1);
    /* Destroy signature and verify again. */
    signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1);

    /* Compact sign. */
    unsigned char csignature[64]; int recid = 0;
    while(1) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        if (secp256k1_ecdsa_sign_compact(message, 32, csignature, privkey, rnd, &recid) == 1) {
            break;
        }
    }
    /* Recover. */
    unsigned char recpubkey[65]; int recpubkeylen = 0;
    CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
    CHECK(recpubkeylen == pubkeylen);
    CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
    /* Destroy signature and verify again. */
    csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
          memcmp(pubkey, recpubkey, pubkeylen) != 0);
    CHECK(recpubkeylen == pubkeylen);

}
Esempio n. 17
0
void scalar_test(void) {
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    secp256k1_scalar_t s;
    random_scalar_order_test(&s);

    /* Set 's1' to a random scalar, with value 's1num'. */
    secp256k1_scalar_t s1;
    random_scalar_order_test(&s1);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    secp256k1_scalar_t s2;
    random_scalar_order_test(&s2);
    secp256k1_scalar_get_b32(c, &s2);

#ifndef USE_NUM_NONE
    secp256k1_num_t snum, s1num, s2num;
    secp256k1_scalar_get_num(&snum, &s);
    secp256k1_scalar_get_num(&s1num, &s1);
    secp256k1_scalar_get_num(&s2num, &s2);

    secp256k1_num_t order;
    secp256k1_scalar_order_get_num(&order);
    secp256k1_num_t half_order = order;
    secp256k1_num_shift(&half_order, 1);
#endif

    {
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        for (int i = 0; i < 256; i += 4) {
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            for (int j = 0; j < 4; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

    {
        /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        int i = 0;
        while (i < 256) {
            int now = (secp256k1_rand32() % 15) + 1;
            if (now + i > 256) {
                now = 256 - i;
            }
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
            for (int j = 0; j < now; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
            i += now;
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

#ifndef USE_NUM_NONE
    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
        secp256k1_scalar_t neg;
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_t negnum;
        secp256k1_num_sub(&negnum, &order, &snum);
        secp256k1_num_mod(&negnum, &order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_num_t negnum2;
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test secp256k1_scalar_mul_shift_var. */
        secp256k1_scalar_t r;
        unsigned int shift = 256 + (secp256k1_rand32() % 257);
        secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &s1num, &s2num);
        secp256k1_num_shift(&rnum, shift - 1);
        secp256k1_num_t one;
        unsigned char cone[1] = {0x01};
        secp256k1_num_set_bin(&one, cone, 1);
        secp256k1_num_add(&rnum, &rnum, &one);
        secp256k1_num_shift(&rnum, 1);
        secp256k1_num_t rnum2;
        secp256k1_scalar_get_num(&rnum2, &r);
        CHECK(secp256k1_num_eq(&rnum, &rnum2));
    }
#endif

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
            secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
            secp256k1_num_t invnum;
            secp256k1_num_mod_inverse(&invnum, &snum, &order);
            secp256k1_num_t invnum2;
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
#endif
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test add_bit. */
        int bit = secp256k1_rand32() % 256;
        secp256k1_scalar_t b;
        secp256k1_scalar_set_int(&b, 1);
        CHECK(secp256k1_scalar_is_one(&b));
        for (int i = 0; i < bit; i++) {
            secp256k1_scalar_add(&b, &b, &b);
        }
        secp256k1_scalar_t r1 = s1, r2 = s1;
        if (!secp256k1_scalar_add(&r1, &r1, &b)) {
            /* No overflow happened. */
            secp256k1_scalar_add_bit(&r2, bit);
            CHECK(secp256k1_scalar_eq(&r1, &r2));
        }
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

}