// construct Jacobi matrix or residual vector void DiscreteProblem::assemble(scalar *coeff_vec, SparseMatrix *mat, Vector *rhs, bool rhsonly) { // number of equations in the system int n_eq = space->get_n_eq(); // total number of unknowns int ndof = Space::get_num_dofs(space); // Copy coefficients from vector coeff_vec to elements. if (coeff_vec != NULL) set_coeff_vector(coeff_vec, space); // Reallocate the matrix and residual vector. if (rhs != NULL) rhs->alloc(ndof); // Zero the vector, which should be done by the appropriate implementation anyway. if (rhs != NULL) rhs->zero(); if (mat != NULL) { mat->free(); mat->prealloc(ndof); for(int i = 0; i < ndof; i++) for(int j = 0; j< ndof; j++) mat->pre_add_ij(i, j); mat->alloc(); // Zero the matrix, which should be done by the appropriate implementation anyway. mat->zero(); } // process volumetric weak forms via an element loop process_vol_forms(mat, rhs, rhsonly); // process surface weak forms for the left boundary process_surf_forms(mat, rhs, BOUNDARY_LEFT, rhsonly); // process surface weak forms for the right boundary process_surf_forms(mat, rhs, BOUNDARY_RIGHT, rhsonly); // DEBUG: print Jacobi matrix if(DEBUG_MATRIX) { info("Jacobi matrix:"); for(int i=0; i<ndof; i++) { for(int j=0; j<ndof; j++) { info("%g ", mat->get(i, j)); } } } // DEBUG: print residual vector if(DEBUG_MATRIX && rhs != NULL) { info("Residual:"); for(int i=0; i<ndof; i++) { info("%g ", rhs->get(i)); } } }
// using coefficient array (no pss) void Solution::set_coeff_vector(Space* space, scalar* coeffs, bool add_dir_lift) { // sanity check if (space == NULL) error("Space == NULL in Solutin::set_coeff_vector()."); int ndof = Space::get_num_dofs(space); // initialize precalc shapeset using the space's shapeset Shapeset *shapeset = space->get_shapeset(); if (space->get_shapeset() == NULL) error("Space->shapeset == NULL in Solution::set_coeff_vector()."); PrecalcShapeset *pss = new PrecalcShapeset(shapeset); if (pss == NULL) error("PrecalcShapeset could not be allocated in Solution::set_coeff_vector()."); set_coeff_vector(space, pss, coeffs, add_dir_lift); delete pss; }
void J_dot_vec_jfnk(DiscreteProblem *dp, Space *space, Vector* vec, scalar* y_orig, Vector* f_orig, Vector* J_dot_vec, double jfnk_epsilon, int ndof, MatrixSolverType matrix_solver) { scalar* y_perturbed = new scalar[ndof]; Vector* f_perturbed = create_vector(matrix_solver); for (int i = 0; i < ndof; i++) y_perturbed[i] = y_orig[i] + jfnk_epsilon*vec->get(i); // NULL stands for that we are not interested in the matrix, just the vector. dp->assemble(y_perturbed, NULL, f_perturbed, true); set_coeff_vector(y_orig, space); for (int i = 0; i < ndof; i++) { J_dot_vec->set(i,(f_perturbed->get(i) - f_orig->get(i))/jfnk_epsilon); } delete [] y_perturbed; delete [] f_perturbed; }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; delete dp_coarse; // DOF and CPU convergence graphs. SimpleGraph graph_dof_est, graph_cpu_est; SimpleGraph graph_dof_exact, graph_cpu_exact; // Adaptivity loop: int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(space); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the fine mesh. info("Solving on fine mesh:"); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(ref_space)]; get_coeff_vector(ref_space, coeff_vec); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(ref_space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, ref_space); it++; } // Starting with second adaptivity step, obtain new coarse // mesh solution via projecting the fine mesh solution. if(as > 1) { info("Projecting the fine mesh solution onto the coarse mesh."); // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space). OGProjection::project_global(space, ref_space, matrix_solver); } // Calculate element errors and total error estimate. info("Calculating error estimate."); double err_est_array[MAX_ELEM_NUM]; double err_est_rel = calc_err_est(NORM, space, ref_space, err_est_array) * 100; // Report results. info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", Space::get_num_dofs(space), Space::get_num_dofs(ref_space), err_est_rel); // Time measurement. cpu_time.tick(); // If exact solution available, also calculate exact error. if (EXACT_SOL_PROVIDED) { // Calculate element errors wrt. exact solution. double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100; // Info for user. info("Relative error (exact) = %g %%", err_exact_rel); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel); graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel); } // Add entry to DOF and CPU convergence graphs. graph_dof_est.add_values(Space::get_num_dofs(space), err_est_rel); graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel); // If err_est_rel too large, adapt the mesh. if (err_est_rel < NEWTON_TOL_REF) done = true; else { info("Adapting the coarse mesh."); adapt(NORM, ADAPT_TYPE, THRESHOLD, err_est_array, space, ref_space); } as++; // Plot meshes, results, and errors. adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol); // Cleanup. delete solver; delete matrix; delete rhs; delete ref_space; delete dp; delete [] coeff_vec; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_est.save("conv_dof_est.dat"); graph_cpu_est.save("conv_cpu_est.dat"); graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); return 0; }
int main() { // Create space, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian_vol); wf.add_vector_form(residual_vol); wf.add_vector_form_surf(0, residual_surf_right, BOUNDARY_RIGHT); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Plot the solution. Linearizer l(space); l.plot_solution("solution.gp"); // Plot the resulting space. space->plot("space.gp"); info("Done."); return 0; }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); double elem_errors[MAX_ELEM_NUM]; // This array decides what // elements will be refined. ElemPtr2 ref_elem_pairs[MAX_ELEM_NUM]; // To store element pairs from the // FTR solution. Decides how // elements will be hp-refined. for (int i=0; i < MAX_ELEM_NUM; i++) { ref_elem_pairs[i][0] = new Element(); ref_elem_pairs[i][1] = new Element(); } // DOF and CPU convergence graphs. SimpleGraph graph_dof_exact, graph_cpu_exact; /// Adaptivity loop: int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; delete dp_coarse; // For every element perform its fast trial refinement (FTR), // calculate the norm of the difference between the FTR // solution and the coarse space solution, and store the // error in the elem_errors[] array. int n_elem = space->get_n_active_elem(); for (int i=0; i < n_elem; i++) { info("=== Starting FTR of Elem [%d].", i); // Replicate coarse space including solution. Space *space_ref_local = space->replicate(); // Perform FTR of element 'i' space_ref_local->reference_refinement(i, 1); info("Elem [%d]: fine space created (%d DOF).", i, space_ref_local->assign_dofs()); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, space_ref_local, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the FTR space. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space_ref_local)]; get_coeff_vector(space_ref_local, coeff_vec); memset(coeff_vec, 0, Space::get_num_dofs(space_ref_local)*sizeof(double)); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space_ref_local); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space_ref_local), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space_ref_local); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete dp; delete [] coeff_vec; // Print FTR solution (enumerated). //Linearizer *lxx = new Linearizer(space_ref_local); //char out_filename[255]; //sprintf(out_filename, "solution_ref_%d.gp", i); //lxx->plot_solution(out_filename); //delete lxx; // Calculate norm of the difference between the coarse space // and FTR solutions. // NOTE: later we want to look at the difference in some quantity // of interest rather than error in global norm. double err_est_array[MAX_ELEM_NUM]; elem_errors[i] = calc_err_est(NORM, space, space_ref_local, err_est_array) * 100; info("Elem [%d]: absolute error (est) = %g%%", i, elem_errors[i]); // Copy the reference element pair for element 'i'. // into the ref_elem_pairs[i][] array Iterator *I = new Iterator(space); Iterator *I_ref = new Iterator(space_ref_local); Element *e, *e_ref; while (1) { e = I->next_active_element(); e_ref = I_ref->next_active_element(); if (e->id == i) { e_ref->copy_into(ref_elem_pairs[e->id][0]); // coarse element 'e' was split in space. if (e->level != e_ref->level) { e_ref = I_ref->next_active_element(); e_ref->copy_into(ref_elem_pairs[e->id][1]); } break; } } delete I; delete I_ref; delete space_ref_local; } // Time measurement. cpu_time.tick(); // If exact solution available, also calculate exact error. if (EXACT_SOL_PROVIDED) { // Calculate element errors wrt. exact solution. double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100; // Info for user. info("Relative error (exact) = %g %%", err_exact_rel); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel); graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel); } // Calculate max FTR error. double max_ftr_error = 0; for (int i=0; i < space->get_n_active_elem(); i++) { if (elem_errors[i] > max_ftr_error) max_ftr_error = elem_errors[i]; } info("Max FTR error = %g%%.", max_ftr_error); // Decide whether the max. FTR error is sufficiently small. if(max_ftr_error < TOL_ERR_FTR) break; // debug //if (as >= 1) break; // Returns updated coarse space with the last solution on it. adapt(NORM, ADAPT_TYPE, THRESHOLD, elem_errors, space, ref_elem_pairs); // Plot spaces, results, and errors. //adapt_plotting(space, ref_elem_pairs, NORM, EXACT_SOL_PROVIDED, exact_sol); as++; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); // Test variable. bool success = true; info("ndof = %d.", Space::get_num_dofs(space)); if (Space::get_num_dofs(space) > 35) success = false; if (success) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }
void compute_trajectory(Space *space, DiscreteProblem *dp) { info("alpha = (%g, %g, %g, %g), zeta = (%g, %g, %g, %g)", alpha_ctrl[0], alpha_ctrl[1], alpha_ctrl[2], alpha_ctrl[3], zeta_ctrl[0], zeta_ctrl[1], zeta_ctrl[2], zeta_ctrl[3]); // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete [] coeff_vec; }
int main() { // Create space. // Transform input data to the format used by the "Space" constructor. SpaceData *md = new SpaceData(verbose); Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN); delete md; // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Plot the space. space->plot("space.gp"); // Initial approximation of the dominant eigenvalue. double K_EFF = 1.0; // Initial approximation of the dominant eigenvector. double init_val = 1.0; for (int g = 0; g < N_GRP; g++) { set_vertex_dofs_constant(space, init_val, g); space->set_bc_right_dirichlet(g, flux_right_surf[g]); } // Initialize the weak formulation. WeakForm wf(2); wf.add_matrix_form(0, 0, jacobian_fuel_0_0, NULL, fuel); wf.add_matrix_form(0, 0, jacobian_water_0_0, NULL, water); wf.add_matrix_form(0, 1, jacobian_fuel_0_1, NULL, fuel); wf.add_matrix_form(0, 1, jacobian_water_0_1, NULL, water); wf.add_matrix_form(1, 0, jacobian_fuel_1_0, NULL, fuel); wf.add_matrix_form(1, 0, jacobian_water_1_0, NULL, water); wf.add_matrix_form(1, 1, jacobian_fuel_1_1, NULL, fuel); wf.add_matrix_form(1, 1, jacobian_water_1_1, NULL, water); wf.add_vector_form(0, residual_fuel_0, NULL, fuel); wf.add_vector_form(0, residual_water_0, NULL, water); wf.add_vector_form(1, residual_fuel_1, NULL, fuel); wf.add_vector_form(1, residual_water_1, NULL, water); wf.add_vector_form_surf(0, residual_surf_left_0, BOUNDARY_LEFT); wf.add_vector_form_surf(1, residual_surf_left_1, BOUNDARY_LEFT); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); Linearizer l(space); char solution_file[32]; // Source iteration int i; int current_solution = 0, previous_solution = 1; double K_EFF_old; for (i = 0; i < Max_SI; i++) { // Plot the critical (i.e. steady-state) flux in the actual iteration. sprintf(solution_file, "solution_%d.gp", i); l.plot_solution(solution_file); // Store the previous solution (used at the right-hand side). for (int g = 0; g < N_GRP; g++) copy_dofs(current_solution, previous_solution, space, g); // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete [] coeff_vec; // Update the eigenvalue. K_EFF_old = K_EFF; K_EFF = calc_total_reaction_rate(space, nSf, 0., 40.); // Convergence test. if (fabs(K_EFF - K_EFF_old)/K_EFF < TOL_SI) break; // Normalize total neutron flux to one fission neutron. multiply_dofs_with_constant(space, 1./K_EFF, current_solution); if (verbose) info("K_EFF_%d = %.8f", i+1, K_EFF); } // Print the converged eigenvalue. info("K_EFF = %.8f, err= %.8f%%", K_EFF, 100*(K_EFF-1)); // Plot the converged critical neutron flux. sprintf(solution_file, "solution.gp"); l.plot_solution(solution_file); // Comparison with analytical results (see the reference above). double flux[N_GRP], J[N_GRP], R; get_solution_at_point(space, 0.0, flux, J); R = flux[0]/flux[1]; info("phi_fast/phi_therm at x=0 : %.4f, err = %.2f%%", R, 100*(R-2.5332)/2.5332); get_solution_at_point(space, 40.0, flux, J); R = flux[0]/flux[1]; info("phi_fast/phi_therm at x=40 : %.4f, err = %.2f%%", R, 100*(R-1.5162)/1.5162); info("Done."); return 0; }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create space, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf(2); wf.add_matrix_form(0, 0, jacobian_0_0); wf.add_matrix_form(0, 1, jacobian_0_1); wf.add_matrix_form(1, 0, jacobian_1_0); wf.add_matrix_form(1, 1, jacobian_1_1); wf.add_vector_form(0, residual_0); wf.add_vector_form(1, residual_1); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; bool success = false; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!(success = solver->solve())) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } info("Total running time: %g s", cpu_time.accumulated()); // Test variable. info("ndof = %d.", Space::get_num_dofs(space)); if (success) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }
// CG method adjusted for JFNK // NOTE: void jfnk_cg(DiscreteProblem *dp, Space *space, double matrix_solver_tol, int matrix_solver_maxiter, double jfnk_epsilon, double tol_jfnk, int jfnk_maxiter, MatrixSolverType matrix_solver, bool verbose) { int ndof = Space::get_num_dofs(space); // vectors for JFNK Vector* f_orig = create_vector(matrix_solver); scalar* y_orig = new scalar[ndof]; Vector* vec = create_vector(matrix_solver); Vector* rhs = create_vector(matrix_solver); // vectors for the CG method Vector* r = create_vector(matrix_solver); Vector* p = create_vector(matrix_solver); Vector* J_dot_vec = create_vector(matrix_solver); // fill vector y_orig using dof and coeffs arrays in elements get_coeff_vector(space, y_orig); // JFNK loop int jfnk_iter_num = 1; while (1) { // construct residual vector f_orig corresponding to y_orig // (f_orig stays unchanged through the entire CG loop) // NULL stands for that we are not interested in the matrix, just the vector. dp->assemble(y_orig, NULL, f_orig, true); // calculate L2 norm of f_orig double res_norm_squared = 0; for(int i = 0; i < ndof; i++) res_norm_squared += f_orig->get(i)*f_orig->get(i); // If residual norm less than 'tol_jfnk', break if (verbose) { info("Residual norm: %.15f", sqrt(res_norm_squared)); } if(res_norm_squared < tol_jfnk*tol_jfnk) break; if (verbose) { info("JFNK iteration: %d", jfnk_iter_num); } // right-hand side is negative residual // (rhs stays unchanged through the CG loop) for(int i = 0; i < ndof; i++) rhs->set(i, -f_orig->get(i)); // beginning CG method // r = rhs - A*vec0 (where the initial vector vec0 = 0) for (int i=0; i < ndof; i++) r->set(i, rhs->get(i)); // p = r for (int i=0; i < ndof; i++) p->set(i, r->get(i)); // CG loop int iter_current = 0; double tol_current_squared; // initializing the solution vector with zero for(int i = 0; i < ndof; i++) vec->set(i, 0); while (1) { J_dot_vec_jfnk(dp, space, p, y_orig, f_orig, J_dot_vec, jfnk_epsilon, ndof, matrix_solver); double r_times_r = vec_dot(r, r, ndof); double alpha = r_times_r / vec_dot(p, J_dot_vec, ndof); for (int i=0; i < ndof; i++) { vec->set(i, vec->get(i) + alpha*p->get(i)); r->set(i, r->get(i) - alpha*J_dot_vec->get(i)); } /* // debug - output of solution vector printf(" vec = "); for (int i=0; i < ndof; i++) { printf("%g ", vec[i]); } printf("\n"); */ double r_times_r_new = vec_dot(r, r, ndof); iter_current++; tol_current_squared = r_times_r_new; if (tol_current_squared < matrix_solver_tol*matrix_solver_tol || iter_current >= matrix_solver_maxiter) break; double beta = r_times_r_new/r_times_r; for (int i=0; i < ndof; i++) p->set(i, r->get(i) + beta*p->get(i)); } // check whether CG converged if (verbose) { info("CG (JFNK) made %d iteration(s) (tol = %g)", iter_current, sqrt(tol_current_squared)); } if(tol_current_squared > matrix_solver_tol*matrix_solver_tol) { error("CG (JFNK) did not converge."); } // updating vector y_orig by new solution which is in x for(int i=0; i<ndof; i++) y_orig[i] = y_orig[i] + vec->get(i); jfnk_iter_num++; if (jfnk_iter_num >= jfnk_maxiter) { error("JFNK did not converge."); } } delete f_orig; // copy updated vector y_orig to space set_coeff_vector(y_orig, space); }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); if(JFNK == 0) { // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i = 0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; } else jfnk_cg(dp_coarse, space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER, JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver); // Cleanup. delete dp_coarse; // DOF and CPU convergence graphs. SimpleGraph graph_dof_est, graph_cpu_est; SimpleGraph graph_dof_exact, graph_cpu_exact; // Adaptivity loop: int as = 1; double ftr_errors[MAX_ELEM_NUM]; // This array decides what // elements will be refined. bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(space); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear); if(JFNK == 0) { // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the fine mesh. info("Solving on fine mesh:"); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(ref_space)]; get_coeff_vector(ref_space, coeff_vec); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(ref_space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, ref_space); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete [] coeff_vec; } else jfnk_cg(dp, ref_space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER, JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver); // Cleanup. delete dp; // Starting with second adaptivity step, obtain new coarse // mesh solution via projecting the fine mesh solution. if(as > 1) { info("Projecting the fine mesh solution onto the coarse mesh."); // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space). OGProjection::project_global(space, ref_space, matrix_solver); } double max_qoi_err_est = 0; for (int i=0; i < space->get_n_active_elem(); i++) { if (GOAL_ORIENTED == 1) { // Use quantity of interest. double qoi_est = quantity_of_interest(space, X_QOI); double qoi_ref_est = quantity_of_interest(ref_space, X_QOI); ftr_errors[i] = fabs(qoi_ref_est - qoi_est); } else { // Use global norm double err_est_array[MAX_ELEM_NUM]; ftr_errors[i] = calc_err_est(NORM, space, ref_space, err_est_array); } // Info for user. info("Elem [%d]: absolute error (est) = %g%%", i, ftr_errors[i]); // Time measurement. cpu_time.tick(); // Calculating maximum of QOI FTR error for plotting purposes if (GOAL_ORIENTED == 1) { if (ftr_errors[i] > max_qoi_err_est) max_qoi_err_est = ftr_errors[i]; } else { double qoi_est = quantity_of_interest(space, X_QOI); double qoi_ref_est = quantity_of_interest(ref_space, X_QOI); double err_est = fabs(qoi_ref_est - qoi_est); if (err_est > max_qoi_err_est) max_qoi_err_est = err_est; } } // Add entries to convergence graphs. if (EXACT_SOL_PROVIDED) { double qoi_est = quantity_of_interest(space, X_QOI); double u[MAX_EQN_NUM], dudx[MAX_EQN_NUM]; exact_sol(X_QOI, u, dudx); double err_qoi_exact = fabs(u[0] - qoi_est); // Info for user. info("Relative error (exact) = %g %%", err_qoi_exact); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_qoi_exact); graph_cpu_exact.add_values(cpu_time.accumulated(), err_qoi_exact); } // Add entry to DOF and CPU convergence graphs. graph_dof_est.add_values(Space::get_num_dofs(space), max_qoi_err_est); graph_cpu_est.add_values(cpu_time.accumulated(), max_qoi_err_est); // Decide whether the max. FTR error in the quantity of interest // is sufficiently small. if(max_qoi_err_est < TOL_ERR_QOI) break; // Returns updated coarse and fine meshes, with the last // coarse and fine mesh solutions on them, respectively. // The coefficient vectors and numbers of degrees of freedom // on both meshes are also updated. adapt(NORM, ADAPT_TYPE, THRESHOLD, ftr_errors, space, ref_space); as++; // Plot meshes, results, and errors. adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol); // Cleanup. delete ref_space; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_est.save("conv_dof_est.dat"); graph_cpu_est.save("conv_cpu_est.dat"); graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); // Test variable. bool success = true; info("ndof = %d.", Space::get_num_dofs(space)); if (Space::get_num_dofs(space) > 150) success = false; if (success) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }
int main() { // Create space. // Transform input data to the format used by the "Space" constructor. SpaceData *md = new SpaceData(); // Boundary conditions. Hermes::vector<BCSpec *>DIR_BC_LEFT; Hermes::vector<BCSpec *>DIR_BC_RIGHT; for (int g = 0; g < N_GRP; g++) { DIR_BC_LEFT.push_back(new BCSpec(g,flux_left_surf[g])); DIR_BC_RIGHT.push_back(new BCSpec(g,flux_right_surf[g])); } Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, DIR_BC_LEFT, DIR_BC_RIGHT, N_GRP, N_SLN); delete md; // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Plot the space. // Initialize the weak formulation. WeakForm wf(2); wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1); wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2); wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3); wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1); wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2); wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3); wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1); wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2); wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3); wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1); wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2); wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3); wf.add_vector_form(0, residual_mat1_0, NULL, mat1); wf.add_vector_form(0, residual_mat2_0, NULL, mat2); wf.add_vector_form(0, residual_mat3_0, NULL, mat3); wf.add_vector_form(1, residual_mat1_1, NULL, mat1); wf.add_vector_form(1, residual_mat2_1, NULL, mat2); wf.add_vector_form(1, residual_mat3_1, NULL, mat3); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); #include "../../../hermes_common/solver/umfpack_solver.h" CSCMatrix *mm = static_cast<CSCMatrix*>(matrix); UMFPackVector *mv = static_cast<UMFPackVector*>(rhs); FILE *fp = fopen("data.m", "wt"); mm->dump(fp, "A"); mv->dump(fp, "b"); fclose(fp); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Plot the solution. Linearizer l(space); l.plot_solution("solution.gp"); // Cleanup. for(unsigned i = 0; i < DIR_BC_LEFT.size(); i++) delete DIR_BC_LEFT[i]; DIR_BC_LEFT.clear(); for(unsigned i = 0; i < DIR_BC_RIGHT.size(); i++) delete DIR_BC_RIGHT[i]; DIR_BC_RIGHT.clear(); delete matrix; delete rhs; delete solver; delete[] coeff_vec; delete dp; delete space; info("Done."); return 0; }
int main() { // Three macroelements are defined above via the interfaces[] array. // poly_orders[]... initial poly degrees of macroelements. // material_markers[]... material markers of macroelements. // subdivisions[]... equidistant subdivision of macroelements. int poly_orders[N_MAT] = {P_init_inner, P_init_outer, P_init_reflector }; int material_markers[N_MAT] = {Marker_inner, Marker_outer, Marker_reflector }; int subdivisions[N_MAT] = {N_subdiv_inner, N_subdiv_outer, N_subdiv_reflector }; // Create space. Space* space = new Space(N_MAT, interfaces, poly_orders, material_markers, subdivisions, N_GRP, N_SLN); // Enumerate basis functions, info for user. info("N_dof = %d", Space::get_num_dofs(space)); // Initial approximation: u = 1. double K_EFF_old; double init_val = 1.0; set_vertex_dofs_constant(space, init_val, 0); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian_vol_inner, NULL, Marker_inner); wf.add_matrix_form(jacobian_vol_outer, NULL, Marker_outer); wf.add_matrix_form(jacobian_vol_reflector, NULL, Marker_reflector); wf.add_vector_form(residual_vol_inner, NULL, Marker_inner); wf.add_vector_form(residual_vol_outer, NULL, Marker_outer); wf.add_vector_form(residual_vol_reflector, NULL, Marker_reflector); wf.add_vector_form_surf(residual_surf_left, BOUNDARY_LEFT); wf.add_matrix_form_surf(jacobian_surf_right, BOUNDARY_RIGHT); wf.add_vector_form_surf(residual_surf_right, BOUNDARY_RIGHT); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); // Source iteration (power method). for (int i = 0; i < Max_SI; i++) { // Obtain fission source. int current_solution = 0, previous_solution = 1; copy_dofs(current_solution, previous_solution, space); // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete [] coeff_vec; // Update the eigenvalue. K_EFF_old = K_EFF; K_EFF = calc_fission_yield(space); info("K_EFF_%d = %f", i, K_EFF); if (fabs(K_EFF - K_EFF_old)/K_EFF < TOL_SI) break; } // Plot the critical (i.e. steady-state) neutron flux. Linearizer l(space); l.plot_solution("solution.gp"); // Normalize so that the absolute neutron flux generates 320 Watts of energy // (note that, using the symmetry condition at the origin, we've solved for // flux only in the right half of the reactor). normalize_to_power(space, 320/2.); // Plot the solution and space. l.plot_solution("solution_320W.gp"); space->plot("space.gp"); info("K_EFF = %f", K_EFF); info("Done."); return 0; }
int main() { // Create space. // Transform input data to the format used by the "Space" constructor. SpaceData *md = new SpaceData(); Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN); delete md; // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Plot the space. space->plot("space.gp"); for (int g = 0; g < N_GRP; g++) { space->set_bc_left_dirichlet(g, flux_left_surf[g]); space->set_bc_right_dirichlet(g, flux_right_surf[g]); } // Initialize the weak formulation. WeakForm wf(2); wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1); wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2); wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3); wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1); wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2); wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3); wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1); wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2); wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3); wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1); wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2); wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3); wf.add_vector_form(0, residual_mat1_0, NULL, mat1); wf.add_vector_form(0, residual_mat2_0, NULL, mat2); wf.add_vector_form(0, residual_mat3_0, NULL, mat3); wf.add_vector_form(1, residual_mat1_1, NULL, mat1); wf.add_vector_form(1, residual_mat2_1, NULL, mat2); wf.add_vector_form(1, residual_mat3_1, NULL, mat3); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear); // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Plot the solution. Linearizer l(space); l.plot_solution("solution.gp"); info("Done."); return 0; }
int main() { // Create space, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); // Initialize the FE problem. DiscreteProblem *dp = new DiscreteProblem(&wf, space); // Allocate coefficient vector. double *coeff_vec = new double[ndof]; memset(coeff_vec, 0, ndof*sizeof(double)); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Time stepping loop. double current_time = 0.0; while (current_time < T_FINAL) { // Newton's loop. // Fill vector coeff_vec using dof and coeffs arrays in elements. get_coeff_vector(space, coeff_vec); int it = 1; while (true) { // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space); it++; } // Plot the solution. Linearizer l(space); char filename[100]; sprintf(filename, "solution_%g.gp", current_time); l.plot_solution(filename); info("Solution %s written.", filename); current_time += TAU; } // Plot the resulting space. space->plot("space.gp"); // Cleaning delete dp; delete rhs; delete solver; delete[] coeff_vec; delete space; delete matrix; info("Done."); return 0; }