Esempio n. 1
0
// construct Jacobi matrix or residual vector
void DiscreteProblem::assemble(scalar *coeff_vec, SparseMatrix *mat, Vector *rhs, bool rhsonly) {
  // number of equations in the system
  int n_eq = space->get_n_eq();

  // total number of unknowns
  int ndof = Space::get_num_dofs(space);

  // Copy coefficients from vector coeff_vec to elements.
  if (coeff_vec != NULL) set_coeff_vector(coeff_vec, space);

  // Reallocate the matrix and residual vector.
  if (rhs != NULL) rhs->alloc(ndof);
  // Zero the vector, which should be done by the appropriate implementation anyway.
  if (rhs != NULL) rhs->zero();
  if (mat != NULL)
  {
    mat->free();
    mat->prealloc(ndof);
    for(int i = 0; i < ndof; i++)
      for(int j = 0; j< ndof; j++)
        mat->pre_add_ij(i, j);
    mat->alloc();
    // Zero the matrix, which should be done by the appropriate implementation anyway.
    mat->zero();
  }

  // process volumetric weak forms via an element loop
  process_vol_forms(mat, rhs, rhsonly);

  // process surface weak forms for the left boundary
  process_surf_forms(mat, rhs, BOUNDARY_LEFT, rhsonly);

  // process surface weak forms for the right boundary
  process_surf_forms(mat, rhs, BOUNDARY_RIGHT, rhsonly);

  // DEBUG: print Jacobi matrix
  if(DEBUG_MATRIX) {
    info("Jacobi matrix:");
    for(int i=0; i<ndof; i++) {
      for(int j=0; j<ndof; j++) {
        info("%g ", mat->get(i, j));
      }
    }
  }

  // DEBUG: print residual vector
  if(DEBUG_MATRIX && rhs != NULL) {
    info("Residual:");
    for(int i=0; i<ndof; i++) {
      info("%g ", rhs->get(i));
    }
  }
} 
Esempio n. 2
0
// using coefficient array (no pss)
void Solution::set_coeff_vector(Space* space, scalar* coeffs, bool add_dir_lift)
{
    // sanity check
    if (space == NULL) error("Space == NULL in Solutin::set_coeff_vector().");
    int ndof = Space::get_num_dofs(space);

    // initialize precalc shapeset using the space's shapeset
    Shapeset *shapeset = space->get_shapeset();
    if (space->get_shapeset() == NULL) error("Space->shapeset == NULL in Solution::set_coeff_vector().");
    PrecalcShapeset *pss = new PrecalcShapeset(shapeset);
    if (pss == NULL) error("PrecalcShapeset could not be allocated in Solution::set_coeff_vector().");

    set_coeff_vector(space, pss, coeffs, add_dir_lift);

    delete pss;
}
Esempio n. 3
0
void J_dot_vec_jfnk(DiscreteProblem *dp, Space *space, Vector* vec,
                    scalar* y_orig, Vector* f_orig, 
                    Vector* J_dot_vec,
                    double jfnk_epsilon, int ndof, MatrixSolverType matrix_solver) 
{
  scalar* y_perturbed = new scalar[ndof];
  Vector* f_perturbed = create_vector(matrix_solver);
  for (int i = 0; i < ndof; i++)
    y_perturbed[i] = y_orig[i] + jfnk_epsilon*vec->get(i);
  // NULL stands for that we are not interested in the matrix, just the vector.
  dp->assemble(y_perturbed, NULL, f_perturbed, true); 
  set_coeff_vector(y_orig, space);
  for (int i = 0; i < ndof; i++) {
    J_dot_vec->set(i,(f_perturbed->get(i) - f_orig->get(i))/jfnk_epsilon);
  }
  delete [] y_perturbed;
  delete [] f_perturbed;
}
Esempio n. 4
0
int main() {
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);

  // Newton's loop on coarse mesh.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec_coarse);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
  Vector* rhs_coarse = create_vector(matrix_solver);
  Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

  int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof_coarse = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs_coarse);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));

    // Solve the linear system.
    if(!solver_coarse->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec_coarse, space);

    it++;
  }
  
  // Cleanup.
  delete matrix_coarse;
  delete rhs_coarse;
  delete solver_coarse;
  delete [] coeff_vec_coarse;
  delete dp_coarse;

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(space);

    // Initialize the FE problem. 
    bool is_linear = false;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Newton's loop on the fine mesh.
    info("Solving on fine mesh:");

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec = new double[Space::get_num_dofs(ref_space)];
    get_coeff_vector(ref_space, coeff_vec);

    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof = Space::get_num_dofs(ref_space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(coeff_vec, matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL_REF && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i));

      // Solve the linear system.
      if(!solver->solve())
        error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec, ref_space);

      it++;
    }

    // Starting with second adaptivity step, obtain new coarse 
    // mesh solution via projecting the fine mesh solution.
    if(as > 1)
    {
      info("Projecting the fine mesh solution onto the coarse mesh.");
      // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space).
      OGProjection::project_global(space, ref_space, matrix_solver);
    }

    // Calculate element errors and total error estimate.
    info("Calculating error estimate.");
    double err_est_array[MAX_ELEM_NUM]; 
    double err_est_rel = calc_err_est(NORM, space, ref_space, err_est_array) * 100;

    // Report results.
    info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", 
      Space::get_num_dofs(space), Space::get_num_dofs(ref_space), err_est_rel);

    // Time measurement.
    cpu_time.tick();

    // If exact solution available, also calculate exact error.
    if (EXACT_SOL_PROVIDED) 
    {
      // Calculate element errors wrt. exact solution.
      double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100;
     
      // Info for user.
      info("Relative error (exact) = %g %%", err_exact_rel);
     
      // Add entry to DOF and CPU convergence graphs.
      graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel);
      graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    }

    // Add entry to DOF and CPU convergence graphs.
    graph_dof_est.add_values(Space::get_num_dofs(space), err_est_rel);
    graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < NEWTON_TOL_REF) done = true;
    else 
    {
      info("Adapting the coarse mesh.");
      adapt(NORM, ADAPT_TYPE, THRESHOLD, err_est_array, space, ref_space);
    }

    as++;

    // Plot meshes, results, and errors.
    adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol);

    // Cleanup.
    delete solver;
    delete matrix;
    delete rhs;
    delete ref_space;
    delete dp;
    delete [] coeff_vec;
  }
  while (done == false);

  info("Total running time: %g s", cpu_time.accumulated());

  // Save convergence graphs.
  graph_dof_est.save("conv_dof_est.dat");
  graph_cpu_est.save("conv_cpu_est.dat");
  graph_dof_exact.save("conv_dof_exact.dat");
  graph_cpu_exact.save("conv_cpu_exact.dat");

  return 0;
}
Esempio n. 5
0
int main() 
{
  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian_vol);
  wf.add_vector_form(residual_vol);
  wf.add_vector_form_surf(0, residual_surf_right, BOUNDARY_RIGHT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);

  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");

  // Plot the resulting space.
  space->plot("space.gp");

  info("Done.");
  return 0;
}
Esempio n. 6
0
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  double elem_errors[MAX_ELEM_NUM];      // This array decides what 
                                         // elements will be refined.
  ElemPtr2 ref_elem_pairs[MAX_ELEM_NUM]; // To store element pairs from the 
                                         // FTR solution. Decides how 
                                         // elements will be hp-refined. 
  for (int i=0; i < MAX_ELEM_NUM; i++) 
  {
    ref_elem_pairs[i][0] = new Element();
    ref_elem_pairs[i][1] = new Element();
  }

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  /// Adaptivity loop:
  int as = 1;
  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Initialize the FE problem.
    bool is_linear = false;
    DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);
    
    // Newton's loop on coarse mesh.
    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec_coarse);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
    Vector* rhs_coarse = create_vector(matrix_solver);
    Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof_coarse = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs_coarse);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));
 
      // Solve the linear system.
      if(!solver_coarse->solve())
      error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec_coarse, space);
      
      it++;
    }
    
    // Cleanup.
    delete matrix_coarse;
    delete rhs_coarse;
    delete solver_coarse;
    delete [] coeff_vec_coarse;
    delete dp_coarse;

    // For every element perform its fast trial refinement (FTR),
    // calculate the norm of the difference between the FTR
    // solution and the coarse space solution, and store the
    // error in the elem_errors[] array.
    int n_elem = space->get_n_active_elem();
    for (int i=0; i < n_elem; i++) 
    {

      info("=== Starting FTR of Elem [%d].", i);

      // Replicate coarse space including solution.
      Space *space_ref_local = space->replicate();

      // Perform FTR of element 'i'
      space_ref_local->reference_refinement(i, 1);
      info("Elem [%d]: fine space created (%d DOF).", 
             i, space_ref_local->assign_dofs());

      // Initialize the FE problem. 
      bool is_linear = false;
      DiscreteProblem* dp = new DiscreteProblem(&wf, space_ref_local, is_linear);

      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

      // Newton's loop on the FTR space.
      // Fill vector coeff_vec using dof and coeffs arrays in elements.
      double *coeff_vec = new double[Space::get_num_dofs(space_ref_local)];
      get_coeff_vector(space_ref_local, coeff_vec);
      memset(coeff_vec, 0, Space::get_num_dofs(space_ref_local)*sizeof(double));

      int it = 1;
      while (1) 
      {
        // Obtain the number of degrees of freedom.
        int ndof = Space::get_num_dofs(space_ref_local);

        // Assemble the Jacobian matrix and residual vector.
        dp->assemble(coeff_vec, matrix, rhs);

        // Calculate the l2-norm of residual vector.
        double res_l2_norm = get_l2_norm(rhs);

        // Info for user.
        info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space_ref_local), res_l2_norm);

        // If l2 norm of the residual vector is within tolerance, then quit.
        // NOTE: at least one full iteration forced
        //       here because sometimes the initial
        //       residual on fine mesh is too small.
        if(res_l2_norm < NEWTON_TOL_REF && it > 1) break;

        // Multiply the residual vector with -1 since the matrix 
        // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
        for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

        // Solve the linear system.
        if(!solver->solve())
        error ("Matrix solver failed.\n");

        // Add \deltaY^{n+1} to Y^n.
        for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

        // If the maximum number of iteration has been reached, then quit.
        if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
        
        // Copy coefficients from vector y to elements.
        set_coeff_vector(coeff_vec, space_ref_local);

        it++;
      }
      
      // Cleanup.
      delete matrix;
      delete rhs;
      delete solver;
      delete dp;
      delete [] coeff_vec;

      // Print FTR solution (enumerated). 
      //Linearizer *lxx = new Linearizer(space_ref_local);
      //char out_filename[255];
      //sprintf(out_filename, "solution_ref_%d.gp", i);
      //lxx->plot_solution(out_filename);
      //delete lxx;

      // Calculate norm of the difference between the coarse space 
      // and FTR solutions.
      // NOTE: later we want to look at the difference in some quantity 
      // of interest rather than error in global norm.
      double err_est_array[MAX_ELEM_NUM];
      elem_errors[i] = calc_err_est(NORM, space, space_ref_local, err_est_array) * 100;
      info("Elem [%d]: absolute error (est) = %g%%", i, elem_errors[i]);

      // Copy the reference element pair for element 'i'.
      // into the ref_elem_pairs[i][] array
      Iterator *I = new Iterator(space);
      Iterator *I_ref = new Iterator(space_ref_local);
      Element *e, *e_ref;
      while (1) 
      {
        e = I->next_active_element();
        e_ref = I_ref->next_active_element();
        if (e->id == i) 
        {
  	  e_ref->copy_into(ref_elem_pairs[e->id][0]);
          // coarse element 'e' was split in space.
          if (e->level != e_ref->level) 
          {
            e_ref = I_ref->next_active_element();
            e_ref->copy_into(ref_elem_pairs[e->id][1]);
          }
          break;
        }
      }

      delete I;
      delete I_ref;
      delete space_ref_local;
    }  

    // Time measurement.
    cpu_time.tick();

    // If exact solution available, also calculate exact error.
    if (EXACT_SOL_PROVIDED) 
    {
      // Calculate element errors wrt. exact solution.
      double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100;
     
      // Info for user.
      info("Relative error (exact) = %g %%", err_exact_rel);
     
      // Add entry to DOF and CPU convergence graphs.
      graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel);
      graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel);
    }

    // Calculate max FTR error.
    double max_ftr_error = 0;
    for (int i=0; i < space->get_n_active_elem(); i++) 
    {
      if (elem_errors[i] > max_ftr_error) max_ftr_error = elem_errors[i];
    }
    info("Max FTR error = %g%%.", max_ftr_error);

    // Decide whether the max. FTR error is sufficiently small.
    if(max_ftr_error < TOL_ERR_FTR) break;

    // debug
    //if (as >= 1) break;

    // Returns updated coarse space with the last solution on it. 
    adapt(NORM, ADAPT_TYPE, THRESHOLD, elem_errors, space, ref_elem_pairs);

    // Plot spaces, results, and errors.
    //adapt_plotting(space, ref_elem_pairs, NORM, EXACT_SOL_PROVIDED, exact_sol);

    as++;
  }
  while (done == false);

  info("Total running time: %g s", cpu_time.accumulated());

  // Save convergence graphs.
  graph_dof_exact.save("conv_dof_exact.dat");
  graph_cpu_exact.save("conv_cpu_exact.dat");

  // Test variable.
  bool success = true;
  info("ndof = %d.", Space::get_num_dofs(space));
  if (Space::get_num_dofs(space) > 35) success = false;

  if (success)
  {
    info("Success!");
    return ERROR_SUCCESS;
  }
  else
  {
    info("Failure!");
    return ERROR_FAILURE;
  }
}
Esempio n. 7
0
void compute_trajectory(Space *space, DiscreteProblem *dp) 
{
  info("alpha = (%g, %g, %g, %g), zeta = (%g, %g, %g, %g)", 
         alpha_ctrl[0], alpha_ctrl[1], 
         alpha_ctrl[2], alpha_ctrl[3], zeta_ctrl[0], 
         zeta_ctrl[1], zeta_ctrl[2], zeta_ctrl[3]); 

  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Cleanup.
  delete matrix;
  delete rhs;
  delete solver;
  delete [] coeff_vec;
}
Esempio n. 8
0
int main() 
{		
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData(verbose);		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  space->plot("space.gp");
  
  // Initial approximation of the dominant eigenvalue.
  double K_EFF = 1.0;
  // Initial approximation of the dominant eigenvector.
  double init_val = 1.0;

  for (int g = 0; g < N_GRP; g++)  
  {
    set_vertex_dofs_constant(space, init_val, g);
    space->set_bc_right_dirichlet(g, flux_right_surf[g]);
  }
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_fuel_0_0, NULL, fuel);
  wf.add_matrix_form(0, 0, jacobian_water_0_0, NULL, water);

  wf.add_matrix_form(0, 1, jacobian_fuel_0_1, NULL, fuel);
  wf.add_matrix_form(0, 1, jacobian_water_0_1, NULL, water);  

  wf.add_matrix_form(1, 0, jacobian_fuel_1_0, NULL, fuel);
  wf.add_matrix_form(1, 0, jacobian_water_1_0, NULL, water);

  wf.add_matrix_form(1, 1, jacobian_fuel_1_1, NULL, fuel);
  wf.add_matrix_form(1, 1, jacobian_water_1_1, NULL, water);
    
  wf.add_vector_form(0, residual_fuel_0, NULL, fuel);
  wf.add_vector_form(0, residual_water_0, NULL, water);  
  
  wf.add_vector_form(1, residual_fuel_1, NULL, fuel);
  wf.add_vector_form(1, residual_water_1, NULL, water); 

  wf.add_vector_form_surf(0, residual_surf_left_0, BOUNDARY_LEFT);
  wf.add_vector_form_surf(1, residual_surf_left_1, BOUNDARY_LEFT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  Linearizer l(space);
  char solution_file[32];

  // Source iteration
  int i;
  int current_solution = 0, previous_solution = 1;
  double K_EFF_old;
  for (i = 0; i < Max_SI; i++)
  {	
    // Plot the critical (i.e. steady-state) flux in the actual iteration.
    sprintf(solution_file, "solution_%d.gp", i);
    l.plot_solution(solution_file); 		
	  
    // Store the previous solution (used at the right-hand side).
    for (int g = 0; g < N_GRP; g++)
      copy_dofs(current_solution, previous_solution, space, g);

    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec);
  
    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
  
    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(coeff_vec, matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

      // Solve the linear system.
      if(!solver->solve())
        error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec, space);

      it++;
    }
    
    // Cleanup.
    delete matrix;
    delete rhs;
    delete solver;
    delete [] coeff_vec;
			
    // Update the eigenvalue.
    K_EFF_old = K_EFF;
    K_EFF = calc_total_reaction_rate(space, nSf, 0., 40.); 
    
    // Convergence test.
    if (fabs(K_EFF - K_EFF_old)/K_EFF < TOL_SI) break;
    
    // Normalize total neutron flux to one fission neutron.
    multiply_dofs_with_constant(space, 1./K_EFF, current_solution);
    
    if (verbose) info("K_EFF_%d = %.8f", i+1, K_EFF);
  }
  
  // Print the converged eigenvalue.
  info("K_EFF = %.8f, err= %.8f%%", K_EFF, 100*(K_EFF-1));

  // Plot the converged critical  neutron flux.
  sprintf(solution_file, "solution.gp");
  l.plot_solution(solution_file);

  // Comparison with analytical results (see the reference above).
  double flux[N_GRP], J[N_GRP], R;

  get_solution_at_point(space, 0.0, flux, J);
  R = flux[0]/flux[1];
  info("phi_fast/phi_therm at x=0 : %.4f, err = %.2f%%", R, 100*(R-2.5332)/2.5332);
	
  get_solution_at_point(space, 40.0, flux, J);
  R = flux[0]/flux[1];
  info("phi_fast/phi_therm at x=40 : %.4f, err = %.2f%%", R, 100*(R-1.5162)/1.5162);
	
  info("Done.");
  return 0;
}
Esempio n. 9
0
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create space, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_0_0);
  wf.add_matrix_form(0, 1, jacobian_0_1);
  wf.add_matrix_form(1, 0, jacobian_1_0);
  wf.add_matrix_form(1, 1, jacobian_1_1);
  wf.add_vector_form(0, residual_0);
  wf.add_vector_form(1, residual_1);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  bool success = false;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!(success = solver->solve()))
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  info("Total running time: %g s", cpu_time.accumulated());

  // Test variable.
  info("ndof = %d.", Space::get_num_dofs(space));
  if (success)
  {
    info("Success!");
    return ERROR_SUCCESS;
  }
  else
  {
    info("Failure!");
    return ERROR_FAILURE;
  }
}
Esempio n. 10
0
// CG method adjusted for JFNK
// NOTE: 
void jfnk_cg(DiscreteProblem *dp, Space *space, 
             double matrix_solver_tol, int matrix_solver_maxiter, 
	     double jfnk_epsilon, double tol_jfnk, int jfnk_maxiter, 
             MatrixSolverType matrix_solver, bool verbose)
{
  int ndof = Space::get_num_dofs(space);
  // vectors for JFNK
  Vector* f_orig = create_vector(matrix_solver);
  scalar* y_orig = new scalar[ndof];
  Vector* vec = create_vector(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);

  // vectors for the CG method
  Vector* r = create_vector(matrix_solver);
  Vector* p = create_vector(matrix_solver);
  Vector* J_dot_vec = create_vector(matrix_solver);

  // fill vector y_orig using dof and coeffs arrays in elements
  get_coeff_vector(space, y_orig);

  // JFNK loop
  int jfnk_iter_num = 1;
  while (1) {
    // construct residual vector f_orig corresponding to y_orig
    // (f_orig stays unchanged through the entire CG loop)
    // NULL stands for that we are not interested in the matrix, just the vector.
    dp->assemble(y_orig, NULL, f_orig, true); 

    // calculate L2 norm of f_orig
    double res_norm_squared = 0;
    for(int i = 0; i < ndof; i++) res_norm_squared += f_orig->get(i)*f_orig->get(i);

    // If residual norm less than 'tol_jfnk', break
    if (verbose) {
        info("Residual norm: %.15f", sqrt(res_norm_squared));
    }
    if(res_norm_squared < tol_jfnk*tol_jfnk) break;

    if (verbose) {
        info("JFNK iteration: %d", jfnk_iter_num);
    }

    // right-hand side is negative residual
    // (rhs stays unchanged through the CG loop)
    for(int i = 0; i < ndof; i++) rhs->set(i, -f_orig->get(i));

    // beginning CG method
    // r = rhs - A*vec0 (where the initial vector vec0 = 0)
    for (int i=0; i < ndof; i++) r->set(i, rhs->get(i));
    // p = r
    for (int i=0; i < ndof; i++) p->set(i, r->get(i));

    // CG loop
    int iter_current = 0;
    double tol_current_squared;
    // initializing the solution vector with zero
    for(int i = 0; i < ndof; i++) vec->set(i, 0);
    while (1) {
      J_dot_vec_jfnk(dp, space, p, y_orig, f_orig,
                     J_dot_vec, jfnk_epsilon, ndof, matrix_solver);
      double r_times_r = vec_dot(r, r, ndof);
      double alpha = r_times_r / vec_dot(p, J_dot_vec, ndof); 
      for (int i=0; i < ndof; i++) {
        vec->set(i, vec->get(i) + alpha*p->get(i));
        r->set(i, r->get(i) - alpha*J_dot_vec->get(i));
      }
      /*
      // debug - output of solution vector
      printf("   vec = ");
      for (int i=0; i < ndof; i++) {
        printf("%g ", vec[i]);
      }
      printf("\n");
      */

      double r_times_r_new = vec_dot(r, r, ndof);
      iter_current++;
      tol_current_squared = r_times_r_new;
      if (tol_current_squared < matrix_solver_tol*matrix_solver_tol 
          || iter_current >= matrix_solver_maxiter) break;
      double beta = r_times_r_new/r_times_r;
      for (int i=0; i < ndof; i++) p->set(i, r->get(i) + beta*p->get(i));
    }
    // check whether CG converged
    if (verbose) {
        info("CG (JFNK) made %d iteration(s) (tol = %g)",
           iter_current, sqrt(tol_current_squared));
    }
    if(tol_current_squared > matrix_solver_tol*matrix_solver_tol) {
      error("CG (JFNK) did not converge.");
    }

    // updating vector y_orig by new solution which is in x
    for(int i=0; i<ndof; i++) y_orig[i] = y_orig[i] + vec->get(i);

    jfnk_iter_num++;
    if (jfnk_iter_num >= jfnk_maxiter) {
      error("JFNK did not converge.");
    }
  }

  delete f_orig;
  // copy updated vector y_orig to space
  set_coeff_vector(y_orig, space);
}
Esempio n. 11
0
int main() 
{
  // Time measurement.
  TimePeriod cpu_time;
  cpu_time.tick();

  // Create coarse mesh, set Dirichlet BC, enumerate basis functions.
  Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);

  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian);
  wf.add_vector_form(residual);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear);
  if(JFNK == 0)
  {
    // Newton's loop on coarse mesh.
    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec_coarse = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec_coarse);

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix_coarse = create_matrix(matrix_solver);
    Vector* rhs_coarse = create_vector(matrix_solver);
    Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse);

    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof_coarse = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs_coarse);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i = 0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i));

      // Solve the linear system.
      if(!solver_coarse->solve())
        error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec_coarse, space);
      
      it++;
    }
    
    // Cleanup.
    delete matrix_coarse;
    delete rhs_coarse;
    delete solver_coarse;
    delete [] coeff_vec_coarse;
  }
  else
    jfnk_cg(dp_coarse, space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER,
            JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver);

  // Cleanup.
  delete dp_coarse;

  // DOF and CPU convergence graphs.
  SimpleGraph graph_dof_est, graph_cpu_est;
  SimpleGraph graph_dof_exact, graph_cpu_exact;

  // Adaptivity loop:
  int as = 1;
  double ftr_errors[MAX_ELEM_NUM];        // This array decides what 
                                          // elements will be refined.

  bool done = false;
  do
  {
    info("---- Adaptivity step %d:", as); 

    // Construct globally refined reference mesh and setup reference space.
    Space* ref_space = construct_refined_space(space);
 
    // Initialize the FE problem. 
    bool is_linear = false;
    DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear);
      
    if(JFNK == 0)
    {
      // Set up the solver, matrix, and rhs according to the solver selection.
      SparseMatrix* matrix = create_matrix(matrix_solver);
      Vector* rhs = create_vector(matrix_solver);
      Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
      
      // Newton's loop on the fine mesh.
      info("Solving on fine mesh:");
      // Fill vector coeff_vec using dof and coeffs arrays in elements.
      double *coeff_vec = new double[Space::get_num_dofs(ref_space)];
      get_coeff_vector(ref_space, coeff_vec);

        int it = 1;
        while (1) 
        {
          // Obtain the number of degrees of freedom.
          int ndof = Space::get_num_dofs(ref_space);

          // Assemble the Jacobian matrix and residual vector.
          dp->assemble(coeff_vec, matrix, rhs);

          // Calculate the l2-norm of residual vector.
          double res_l2_norm = get_l2_norm(rhs);

          // Info for user.
          info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm);

          // If l2 norm of the residual vector is within tolerance, then quit.
          // NOTE: at least one full iteration forced
          //       here because sometimes the initial
          //       residual on fine mesh is too small.
          if(res_l2_norm < NEWTON_TOL_REF && it > 1) break;

          // Multiply the residual vector with -1 since the matrix 
          // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). 
          for(int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i));

          // Solve the linear system.
          if(!solver->solve())
            error ("Matrix solver failed.\n");

          // Add \deltaY^{n+1} to Y^n.
          for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

          // If the maximum number of iteration has been reached, then quit.
          if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
        
          // Copy coefficients from vector y to elements.
          set_coeff_vector(coeff_vec, ref_space);

          it++;
      }
      // Cleanup.
      delete matrix;
      delete rhs;
      delete solver;
      delete [] coeff_vec;
    }
    else
      jfnk_cg(dp, ref_space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER,
              JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver);
 
    // Cleanup.
    delete dp;
    
    // Starting with second adaptivity step, obtain new coarse 
    // mesh solution via projecting the fine mesh solution.
    if(as > 1)
    {
      info("Projecting the fine mesh solution onto the coarse mesh.");
      // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space).
      OGProjection::project_global(space, ref_space, matrix_solver);
    }

    double max_qoi_err_est = 0;
    for (int i=0; i < space->get_n_active_elem(); i++)
    {
      if (GOAL_ORIENTED == 1) 
      {
        // Use quantity of interest.
        double qoi_est = quantity_of_interest(space, X_QOI);
        double qoi_ref_est = quantity_of_interest(ref_space, X_QOI);
        ftr_errors[i] = fabs(qoi_ref_est - qoi_est);
      }
      else 
      {
        // Use global norm
        double err_est_array[MAX_ELEM_NUM];
        ftr_errors[i] = calc_err_est(NORM, space, ref_space, err_est_array);
      }
      // Info for user.
      info("Elem [%d]: absolute error (est) = %g%%", i, ftr_errors[i]);

      // Time measurement.
      cpu_time.tick();

      // Calculating maximum of QOI FTR error for plotting purposes
      if (GOAL_ORIENTED == 1) 
      {
        if (ftr_errors[i] > max_qoi_err_est)
          max_qoi_err_est = ftr_errors[i];
      }
      else 
      {
        double qoi_est = quantity_of_interest(space, X_QOI);
        double qoi_ref_est = quantity_of_interest(ref_space, X_QOI);
        double err_est = fabs(qoi_ref_est - qoi_est);
        if (err_est > max_qoi_err_est)
          max_qoi_err_est = err_est;
      }
    }

    // Add entries to convergence graphs.
    if (EXACT_SOL_PROVIDED) 
    {
      double qoi_est = quantity_of_interest(space, X_QOI);
      double u[MAX_EQN_NUM], dudx[MAX_EQN_NUM];
      exact_sol(X_QOI, u, dudx);
      double err_qoi_exact = fabs(u[0] - qoi_est);
      // Info for user.
      info("Relative error (exact) = %g %%", err_qoi_exact);
      // Add entry to DOF and CPU convergence graphs.
      graph_dof_exact.add_values(Space::get_num_dofs(space), err_qoi_exact);
      graph_cpu_exact.add_values(cpu_time.accumulated(), err_qoi_exact);
    }
    
    // Add entry to DOF and CPU convergence graphs.
    graph_dof_est.add_values(Space::get_num_dofs(space), max_qoi_err_est);
    graph_cpu_est.add_values(cpu_time.accumulated(), max_qoi_err_est);

    // Decide whether the max. FTR error in the quantity of interest 
    // is sufficiently small.
    if(max_qoi_err_est < TOL_ERR_QOI) break;

    // Returns updated coarse and fine meshes, with the last 
    // coarse and fine mesh solutions on them, respectively. 
    // The coefficient vectors and numbers of degrees of freedom 
    // on both meshes are also updated. 
    adapt(NORM, ADAPT_TYPE, THRESHOLD, ftr_errors, space, ref_space);

    as++;

    // Plot meshes, results, and errors.
    adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol);

    // Cleanup.
    delete ref_space;
  }
  while (done == false);

  info("Total running time: %g s", cpu_time.accumulated());

  // Save convergence graphs.
  graph_dof_est.save("conv_dof_est.dat");
  graph_cpu_est.save("conv_cpu_est.dat");
  graph_dof_exact.save("conv_dof_exact.dat");
  graph_cpu_exact.save("conv_cpu_exact.dat");

  // Test variable.
  bool success = true;
  info("ndof = %d.", Space::get_num_dofs(space));
  if (Space::get_num_dofs(space) > 150) success = false;

  if (success)
  {
    info("Success!");
    return ERROR_SUCCESS;
  }
  else
  {
    info("Failure!");
    return ERROR_FAILURE;
  }
}
Esempio n. 12
0
int main() 
{
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData();
  
  // Boundary conditions.
  Hermes::vector<BCSpec *>DIR_BC_LEFT;
  Hermes::vector<BCSpec *>DIR_BC_RIGHT;
  
  for (int g = 0; g < N_GRP; g++) 
  {
    DIR_BC_LEFT.push_back(new BCSpec(g,flux_left_surf[g]));
    DIR_BC_RIGHT.push_back(new BCSpec(g,flux_right_surf[g]));
  }
  
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions,
                           DIR_BC_LEFT, DIR_BC_RIGHT, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1);
  wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2);
  wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3);
  
  wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1);
  wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2);
  wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3);
  
  wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1);    
  wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2);
  wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3);
    
  wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1);
  wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2);
  wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3);
  
  wf.add_vector_form(0, residual_mat1_0, NULL, mat1);  
  wf.add_vector_form(0, residual_mat2_0, NULL, mat2);  
  wf.add_vector_form(0, residual_mat3_0, NULL, mat3);
	    
  wf.add_vector_form(1, residual_mat1_1, NULL, mat1);
  wf.add_vector_form(1, residual_mat2_1, NULL, mat2); 
  wf.add_vector_form(1, residual_mat3_1, NULL, mat3);  

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);
  
  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);
    
    #include "../../../hermes_common/solver/umfpack_solver.h"
    CSCMatrix *mm = static_cast<CSCMatrix*>(matrix);
    UMFPackVector *mv = static_cast<UMFPackVector*>(rhs);
    FILE *fp = fopen("data.m", "wt");
    mm->dump(fp, "A");
    mv->dump(fp, "b");
    fclose(fp);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");
	
  // Cleanup.
  for(unsigned i = 0; i < DIR_BC_LEFT.size(); i++)
      delete DIR_BC_LEFT[i];
  DIR_BC_LEFT.clear();

  for(unsigned i = 0; i < DIR_BC_RIGHT.size(); i++)
      delete DIR_BC_RIGHT[i];
  DIR_BC_RIGHT.clear();

  delete matrix;
  delete rhs;
  delete solver;
  delete[] coeff_vec;
  delete dp;
  delete space;

  info("Done.");
  return 0;
}
Esempio n. 13
0
int main() {
  // Three macroelements are defined above via the interfaces[] array.
  // poly_orders[]... initial poly degrees of macroelements.
  // material_markers[]... material markers of macroelements.
  // subdivisions[]... equidistant subdivision of macroelements.
  int poly_orders[N_MAT] = {P_init_inner, P_init_outer, P_init_reflector };
  int material_markers[N_MAT] = {Marker_inner, Marker_outer, Marker_reflector };
  int subdivisions[N_MAT] = {N_subdiv_inner, N_subdiv_outer, N_subdiv_reflector };

  // Create space.
  Space* space = new Space(N_MAT, interfaces, poly_orders, material_markers, subdivisions, N_GRP, N_SLN);
  // Enumerate basis functions, info for user.
  info("N_dof = %d", Space::get_num_dofs(space));

  // Initial approximation: u = 1.
  double K_EFF_old;
  double init_val = 1.0;
  set_vertex_dofs_constant(space, init_val, 0);
  
  // Initialize the weak formulation.
  WeakForm wf;
  wf.add_matrix_form(jacobian_vol_inner, NULL, Marker_inner);
  wf.add_matrix_form(jacobian_vol_outer, NULL, Marker_outer);
  wf.add_matrix_form(jacobian_vol_reflector, NULL, Marker_reflector);
  wf.add_vector_form(residual_vol_inner, NULL, Marker_inner);
  wf.add_vector_form(residual_vol_outer, NULL, Marker_outer);
  wf.add_vector_form(residual_vol_reflector, NULL, Marker_reflector);
  wf.add_vector_form_surf(residual_surf_left, BOUNDARY_LEFT);
  wf.add_matrix_form_surf(jacobian_surf_right, BOUNDARY_RIGHT);
  wf.add_vector_form_surf(residual_surf_right, BOUNDARY_RIGHT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);

  // Source iteration (power method).
  for (int i = 0; i < Max_SI; i++)
  {	
    // Obtain fission source.
    int current_solution = 0, previous_solution = 1;
    copy_dofs(current_solution, previous_solution, space);
		
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec);
  
    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
  
    int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
      //       residual on fine mesh is too small.
      if(res_l2_norm < NEWTON_TOL && it > 1) break;

      // Multiply the residual vector with -1 since the matrix 
      // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
      for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

      // Solve the linear system.
      if(!solver->solve())
        error ("Matrix solver failed.\n");

      // Add \deltaY^{n+1} to Y^n.
      for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

      // If the maximum number of iteration has been reached, then quit.
      if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
      
      // Copy coefficients from vector y to elements.
      set_coeff_vector(coeff_vec, space);

      it++;
    }
    
    // Cleanup.
    delete matrix;
    delete rhs;
    delete solver;
	  delete [] coeff_vec;
    
    // Update the eigenvalue.
    K_EFF_old = K_EFF;
    K_EFF = calc_fission_yield(space);		
    info("K_EFF_%d = %f", i, K_EFF);
		
    if (fabs(K_EFF - K_EFF_old)/K_EFF < TOL_SI) break;
  }
	
  // Plot the critical (i.e. steady-state) neutron flux.
  Linearizer l(space);
  l.plot_solution("solution.gp");
  
  // Normalize so that the absolute neutron flux generates 320 Watts of energy
  // (note that, using the symmetry condition at the origin, we've solved for  
  // flux only in the right half of the reactor).
  normalize_to_power(space, 320/2.);	

  // Plot the solution and space.
  l.plot_solution("solution_320W.gp");	
  space->plot("space.gp");

  info("K_EFF = %f", K_EFF);

  info("Done.");
  return 0;
}
Esempio n. 14
0
int main() 
{
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData();		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  space->plot("space.gp");

  for (int g = 0; g < N_GRP; g++)  
  {
    space->set_bc_left_dirichlet(g, flux_left_surf[g]);
    space->set_bc_right_dirichlet(g, flux_right_surf[g]);
  }
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_mat1_0_0, NULL, mat1);
  wf.add_matrix_form(0, 0, jacobian_mat2_0_0, NULL, mat2);
  wf.add_matrix_form(0, 0, jacobian_mat3_0_0, NULL, mat3);
  
  wf.add_matrix_form(0, 1, jacobian_mat1_0_1, NULL, mat1);
  wf.add_matrix_form(0, 1, jacobian_mat2_0_1, NULL, mat2);
  wf.add_matrix_form(0, 1, jacobian_mat3_0_1, NULL, mat3);
  
  wf.add_matrix_form(1, 0, jacobian_mat1_1_0, NULL, mat1);    
  wf.add_matrix_form(1, 0, jacobian_mat2_1_0, NULL, mat2);
  wf.add_matrix_form(1, 0, jacobian_mat3_1_0, NULL, mat3);
    
  wf.add_matrix_form(1, 1, jacobian_mat1_1_1, NULL, mat1);
  wf.add_matrix_form(1, 1, jacobian_mat2_1_1, NULL, mat2);
  wf.add_matrix_form(1, 1, jacobian_mat3_1_1, NULL, mat3);
  
  wf.add_vector_form(0, residual_mat1_0, NULL, mat1);  
  wf.add_vector_form(0, residual_mat2_0, NULL, mat2);  
  wf.add_vector_form(0, residual_mat3_0, NULL, mat3);
	    
  wf.add_vector_form(1, residual_mat1_1, NULL, mat1);
  wf.add_vector_form(1, residual_mat2_1, NULL, mat2); 
  wf.add_vector_form(1, residual_mat3_1, NULL, mat3);  

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  get_coeff_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) 
  {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(coeff_vec, matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_l2_norm = get_l2_norm(rhs);

    // Info for user.
    info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_l2_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    set_coeff_vector(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");
	
  info("Done.");
  return 0;
}
Esempio n. 15
0
int main()
{
    // Create space, set Dirichlet BC, enumerate basis functions.
    Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ);
    int ndof = Space::get_num_dofs(space);
    info("ndof: %d", ndof);

    // Initialize the weak formulation.
    WeakForm wf;
    wf.add_matrix_form(jacobian);
    wf.add_vector_form(residual);

    // Initialize the FE problem.
    DiscreteProblem *dp = new DiscreteProblem(&wf, space);

    // Allocate coefficient vector.
    double *coeff_vec = new double[ndof];
    memset(coeff_vec, 0, ndof*sizeof(double));

    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

    // Time stepping loop.
    double current_time = 0.0;
    while (current_time < T_FINAL)
    {
        // Newton's loop.
        // Fill vector coeff_vec using dof and coeffs arrays in elements.
        get_coeff_vector(space, coeff_vec);

        int it = 1;
        while (true)
        {
            // Assemble the Jacobian matrix and residual vector.
            dp->assemble(coeff_vec, matrix, rhs);

            // Calculate the l2-norm of residual vector.
            double res_l2_norm = get_l2_norm(rhs);

            // Info for user.
            info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

            // If l2 norm of the residual vector is within tolerance, then quit.
            // NOTE: at least one full iteration forced
            //       here because sometimes the initial
            //       residual on fine mesh is too small.
            if(res_l2_norm < NEWTON_TOL && it > 1) break;

            // Multiply the residual vector with -1 since the matrix
            // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
            for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

            // Solve the linear system.
            if(!solver->solve())
                error ("Matrix solver failed.\n");

            // Add \deltaY^{n+1} to Y^n.
            for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

            // If the maximum number of iteration has been reached, then quit.
            if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");

            // Copy coefficients from vector y to elements.
            set_coeff_vector(coeff_vec, space);

            it++;
        }

        // Plot the solution.
        Linearizer l(space);
        char filename[100];
        sprintf(filename, "solution_%g.gp", current_time);
        l.plot_solution(filename);
        info("Solution %s written.", filename);

        current_time += TAU;
    }

    // Plot the resulting space.
    space->plot("space.gp");

    // Cleaning
    delete dp;
    delete rhs;
    delete solver;
    delete[] coeff_vec;
    delete space;
    delete matrix;

    info("Done.");
    return 0;
}