/* Set the name of a variable column */ long __declspec(dllexport) WINAPI _set_col_name(lprec *lp, long column, char *new_name) { long ret; if (lp != NULL) { freebuferror(); ret = set_col_name(lp, column, new_name); } else ret = 0; return(ret); }
// TODO there's a seriouxx need for refactoring here ! Solution LpsolveAdaptator::getAdmissibleSolution(LinearProblem * lp) { lprec *lprec; int nbCol = lp->getVariables().size(); lprec = make_lp(0, nbCol); if (lprec == NULL) { // TODO raise an exception } /* set variables name to ease debugging */ for (int i = 0; i < (int)lp->getVariables().size(); ++i) { Variable * var = (lp->getVariables())[i]; set_col_name(lprec, i+1, var->getNameToChar()); if (var->isBinary()) { set_binary(lprec, i+1, TRUE); } } /* to build the model faster when adding constraints one at a time */ set_add_rowmode(lprec, TRUE); for (int i = 0; i < (int)(lp->getConstraints().size()); ++i) { // FIXME there's a bug here but I can't find it Constraint c = (Constraint)(lp->getConstraints()[i]); TermList terms = c.getTerms(); int col[terms.size()]; REAL row[terms.size()]; int j = 0; for (TermList::const_iterator it = terms.begin(); it != terms.end(); ++it, ++j) { // TODO check if this is fixed col[j] = ((Term)*it).getVariable().getPosition(); row[j] = ((Term)*it).getCoeff(); } // WARNING the Consraint uses the same operator values than in lp_lib.h if (!add_constraintex(lprec, j, row, col, c.getOperator(), c.getBound())) { // TODO raise an exception } } /* the objective function requires rowmode to be off */ set_add_rowmode(lprec, FALSE); return getSolution(lprec); }
int demoImplicit(void) { # if defined ERROR # undef ERROR # endif # define ERROR() { fprintf(stderr, "Error\n"); return(1); } lprec *lp; int majorversion, minorversion, release, build; char buf[1024]; if ((lp = make_lp(0,4)) == NULL) ERROR(); lp_solve_version(&majorversion, &minorversion, &release, &build); /* let's first demonstrate the logfunc callback feature */ put_logfunc(lp, Mylogfunc, 0); sprintf(buf, "lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); print_str(lp, buf); solve(lp); /* just to see that a message is send via the logfunc routine ... */ /* ok, that is enough, no more callback */ put_logfunc(lp, NULL, 0); /* Now redirect all output to a file */ /* set_outputfile(lp, "result.txt"); */ /* set an abort function. Again optional */ put_abortfunc(lp, Myctrlcfunc, 0); /* set a message function. Again optional */ put_msgfunc(lp, Mymsgfunc, 0, MSG_PRESOLVE | MSG_LPFEASIBLE | MSG_LPOPTIMAL | MSG_MILPEQUAL | MSG_MILPFEASIBLE | MSG_MILPBETTER); printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp=make_lp(0,4);\n"); press_ret(); printf("We can show the current problem with print_lp(lp)\n"); print_lp(lp); press_ret(); printf("Now we add some constraints\n"); printf("str_add_constraint(lp, \"3 2 2 1\" ,LE,4)\n"); printf("This is the string version of add_constraint. For the normal version\n"); printf("of add_constraint see the help file.\n"); if (!str_add_constraint(lp, "3 2 2 1", LE, 4)) ERROR(); print_lp(lp); press_ret(); printf("str_add_constraint(lp, \"0 4 3 1\" ,GE,3)\n"); if (!str_add_constraint(lp, "0 4 3 1", GE, 3)) ERROR(); print_lp(lp); press_ret(); printf("Set the objective function\n"); printf("str_set_obj_fn(lp, \"2 3 -2 3\")\n"); if (!str_set_obj_fn(lp, "2 3 -2 3")) ERROR(); print_lp(lp); press_ret(); printf("Now solve the problem with printf(solve(lp));\n"); printf("%d",solve(lp)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_objective(lp) and print_solution(lp)\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp);\n"); print_duals(lp); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp,2,1,0.5)\n"); if (!set_mat(lp,2,1,0.5)) ERROR(); print_lp(lp); press_ret(); printf("If we want to maximize the objective function use set_maxim(lp);\n"); set_maxim(lp); print_lp(lp); press_ret(); printf("after solving this gives us:\n"); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); print_duals(lp); press_ret(); printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n"); set_rh(lp,1,7.45); print_lp(lp); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We change %s to the integer type with\n", get_col_name(lp, 4)); printf("set_int(lp, 4, TRUE)\n"); set_int(lp, 4, TRUE); print_lp(lp); printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n"); set_debug(lp, TRUE); printf("and solve...\n"); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n"); set_lowbo(lp,2,2); set_upbo(lp,4,5.3); print_lp(lp); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Now remove a constraint with del_constraint(lp, 1)\n"); del_constraint(lp,1); print_lp(lp); printf("Add an equality constraint\n"); if (!str_add_constraint(lp, "1 2 1 4", EQ, 8)) ERROR(); print_lp(lp); press_ret(); printf("A column can be added with:\n"); printf("str_add_column(lp,\"3 2 2\");\n"); if (!str_add_column(lp,"3 2 2")) ERROR(); print_lp(lp); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp,3);\n"); del_column(lp,3); print_lp(lp); press_ret(); printf("We can use automatic scaling with:\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); print_lp(lp); press_ret(); printf("The function get_mat(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1)); printf("Notice that get_mat returns the value of the original unscaled problem\n"); press_ret(); printf("If there are any integer type variables, then only the rows are scaled\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); printf("set_int(lp,3,FALSE);\n"); set_int(lp,3,FALSE); print_lp(lp); press_ret(); solve(lp); printf("print_objective, print_solution gives the solution to the original problem\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Scaling is turned off with unscale(lp);\n"); unscale(lp); print_lp(lp); press_ret(); printf("Now turn B&B debugging off and simplex tracing on with\n"); printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n"); set_debug(lp, FALSE); set_trace(lp, TRUE); press_ret(); solve(lp); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("default_basis(lp). Now solve it again...\n"); press_ret(); default_basis(lp); solve(lp); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n"); if (!set_row_name(lp,1,"speed")) ERROR(); if (!set_col_name(lp,2,"money")) ERROR(); print_lp(lp); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp,1);\n"); del_column(lp,1); print_lp(lp); press_ret(); delete_lp(lp); /* printf("A lp structure can be created and read from a .lp file\n"); printf("lp = read_LP(\"lp_examples/demo_lag.lp\", TRUE);\n"); printf("The verbose option is used\n"); if ((lp = read_LP("lp_examples/demo_lag.lp", TRUE, "test")) == NULL) ERROR(); press_ret(); printf("lp is now:\n"); print_lp(lp); press_ret(); printf("solution:\n"); set_debug(lp, TRUE); solve(lp); set_debug(lp, FALSE); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("You can see that branch & bound was used in this problem\n"); printf("Now remove the last constraint and use lagrangian relaxation\n"); printf("del_constraint(lp,6);\n"); printf("str_add_lag_con(lp, \"1 1 1 0 0 0\", LE, 2);\n"); del_constraint(lp,6); if (!str_add_lag_con(lp, "1 1 1 0 0 0", LE, 2)) ERROR(); print_lp(lp); */ /* printf("Lagrangian relaxation is used in some heuristics. It is now possible\n"); printf("to get a feasible integer solution without usage of branch & bound.\n"); printf("Use lag_solve(lp, 0, 30); 0 is the initial bound, 30 the maximum\n"); printf("number of iterations, the last variable turns the verbose mode on.\n"); press_ret(); set_lag_trace(lp, TRUE); printf("%d\n",lag_solve(lp, 0, 30)); printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n"); printf("solution has been found. For a list of other possible return values\n"); printf("see the help file. Print this solution with print_objective, print_solution\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); delete_lp(lp); */ press_ret(); return(0); }
int MtxLP::addCol(string name, double lb, double ub){ int i = add_cols(1); set_col_name(i, name.data()); setColBnds(name, lb, ub); return i; }
int main(void) { lprec *lp1,*lp2; FILE *input_file; printf("lp_solve 2.0 demo by Jeroen J. Dirks ([email protected])\n\n"); printf("This demo will show most of the features of lp_solve 2.0\n"); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp1=make_lp(0,4);\n"); lp1=make_lp(0,4); press_ret(); printf("We can show the current problem with print_lp(lp1)\n"); print_lp(lp1); press_ret(); printf("Now we add some constraints\n"); printf("str_add_constraint(lp1, \"3 2 2 1\" ,LE,4)\n"); printf("This is the string version of add_constraint. For the normal version\n"); printf("of add_constraint see the file lpkit.h\n"); str_add_constraint(lp1, "3 2 2 1", LE, 4); print_lp(lp1); press_ret(); printf("str_add_constraint(lp1, \"0 4 3 1\" ,GE,3)\n"); str_add_constraint(lp1, "0 4 3 1", GE, 3); print_lp(lp1); press_ret(); printf("Set the objective function\n"); printf("str_set_obj_fn(lp1, \"2 3 -2 3\")\n"); str_set_obj_fn(lp1, "2 3 -2 3"); print_lp(lp1); press_ret(); printf("Now solve the problem with printf(solve(lp1));\n"); printf("%d",solve(lp1)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_solution(lp1)\n"); print_solution(lp1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp1);\n"); print_duals(lp1); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp1,2,1,0.5)\n"); set_mat(lp1,2,1,0.5); print_lp(lp1); press_ret(); printf("It we want to maximise the objective function use set_maxim(lp1);\n"); set_maxim(lp1); print_lp(lp1); press_ret(); printf("after solving this gives us:\n"); solve(lp1); print_solution(lp1); print_duals(lp1); press_ret(); printf("Change the value of a rhs element with set_rh(lp1,1,7.45)\n"); set_rh(lp1,1,7.45); print_lp(lp1); solve(lp1); print_solution(lp1); press_ret(); printf("We change Var[4] to the integer type with\n"); printf("set_int(lp1, 4, TRUE)\n"); set_int(lp1, 4, TRUE); print_lp(lp1); printf("We set branch & bound debugging on with lp1->debug=TRUE\n"); lp1->debug=TRUE; printf("and solve...\n"); press_ret(); solve(lp1); print_solution(lp1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp1,2,2); & set_upbo(lp1,4,5.3)\n"); set_lowbo(lp1,2,2); set_upbo(lp1,4,5.3); print_lp(lp1); press_ret(); solve(lp1); print_solution(lp1); press_ret(); printf("Now remove a constraint with del_constraint(lp1, 1)\n"); del_constraint(lp1,1); print_lp(lp1); printf("Add an equality constraint\n"); str_add_constraint(lp1, "1 2 1 4", EQ, 8); print_lp(lp1); press_ret(); printf("A column can be added with:\n"); printf("str_add_column(lp1,\"3 2 2\");\n"); str_add_column(lp1,"3 2 2"); print_lp(lp1); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp1,3);\n"); del_column(lp1,3); print_lp(lp1); press_ret(); printf("We can use automatic scaling with:\n"); printf("auto_scale(lp1);\n"); auto_scale(lp1); print_lp(lp1); press_ret(); printf("The function mat_elm(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s mat_elm(lp1,2,3), mat_elm(lp1,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n",mat_elm(lp1,2,3), mat_elm(lp1,1,1)); printf("Notice that mat_elm returns the value of the original unscaled problem\n"); press_ret(); printf("It there are any integer type variables, then only the rows are scaled\n"); printf("set_int(lp1,3,FALSE);\n"); printf("auto_scale(lp1);\n"); set_int(lp1,3,FALSE); auto_scale(lp1); print_lp(lp1); press_ret(); solve(lp1); printf("print_solution gives the solution to the original problem\n"); print_solution(lp1); press_ret(); printf("Scaling is turned off with unscale(lp1);\n"); unscale(lp1); print_lp(lp1); press_ret(); printf("Now turn B&B debugging of and simplex tracing on with\n"); printf("lp1->debug=FALSE, lp1->trace=TRUE and solve(lp1)\n"); lp1->debug=FALSE; lp1->trace=TRUE; press_ret(); solve(lp1); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("reset_basis(lp1). Now solve it again...\n"); press_ret(); reset_basis(lp1); solve(lp1); press_ret(); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp1,1,\"speed\"); & set_col_name(lp1,2,\"money\")\n"); set_row_name(lp1,1,"speed"); set_col_name(lp1,2,"money"); print_lp(lp1); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp1,1);\n"); del_column(lp1,1); print_lp(lp1); press_ret(); printf("A lp structure can be created and read from a .lp file\n"); printf("input_file=fopen(\"lp_examples/demo_lag.lp\",\"r\");\n"); printf("lp2 = read_lp_file(input_file, TRUE);\n"); printf("The verbose option is used\n"); input_file = fopen("lp_examples/demo_lag.lp", "r"); if (input_file == NULL) { printf("Can't find demo_lag.lp, stopping\n"); exit(EXIT_FAILURE); } lp2 = read_lp_file(input_file, TRUE, "test"); press_ret(); printf("lp2 is now:\n"); print_lp(lp2); press_ret(); printf("solution:\n"); lp2->debug=TRUE; solve(lp2); lp2->debug=FALSE; print_solution(lp2); press_ret(); printf("You can see that branch & bound was used in this problem\n"); printf("Now remove the last constraint and use lagrangian relaxation\n"); printf("del_constraint(lp2,6);\n"); printf("str_add_lag_con(lp2, \"1 1 1 0 0 0\", LE, 2);\n"); del_constraint(lp2,6); str_add_lag_con(lp2, "1 1 1 0 0 0", LE, 2); print_lp(lp2); printf("Lagrangian relaxation is used in some heuristics. It is now possible\n"); printf("to get a feasible integer soltution without usage of branch & bound.\n"); printf("Use lag_solve(lp2, 0, 40, TRUE); 0 is the initial bound, 30 the maximum\n"); printf("number of iterations, the last variable turns the verbose mode on.\n"); press_ret(); printf("%d\n",lag_solve(lp2, 0, 30, TRUE)); printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n"); printf("solution has been found. For a list of other possible return values\n"); printf("see \"lpkit.h\". Print this solution with print_solution\n"); print_solution(lp2); press_ret(); return(0); }
int StateConstraints::fireVectorSize(const PetriNet& net, const MarkVal* m0, const VarVal*) const{ assert(nPlaces == net.numberOfPlaces()); assert(nVars == net.numberOfVariables()); // Create linary problem lprec* lp; lp = make_lp(0, net.numberOfTransitions()); // One variable for each entry in the firing vector assert(lp); if(!lp) return false; // Set verbosity set_verbose(lp, IMPORTANT); // Set transition names (not strictly needed) for(size_t i = 0; i < net.numberOfTransitions(); i++) set_col_name(lp, i+1, const_cast<char*>(net.transitionNames()[i].c_str())); // Start adding rows set_add_rowmode(lp, TRUE); REAL row[net.numberOfTransitions() + 1]; for(size_t p = 0; p < nPlaces; p++){ // Set row zero memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1); for(size_t t = 0; t < net.numberOfTransitions(); t++){ int d = net.outArc(t, p) - net.inArc(p, t); row[1+t] = d; } if(pcs[p].min == pcs[p].max && pcs[p].max != CONSTRAINT_INFTY){ double target = pcs[p].min - m0[p]; add_constraint(lp, row, EQ, target); }else{ // There's always a min, even zero is interesting double target = pcs[p].min - m0[p]; add_constraint(lp, row, GE, target); if(pcs[p].max != CONSTRAINT_INFTY){ double target = pcs[p].max - m0[p]; add_constraint(lp, row, LE, target); } } } // Finished adding rows set_add_rowmode(lp, FALSE); // Create objective memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1); for(size_t t = 0; t < net.numberOfTransitions(); t++) row[1+t] = 1; // The sum the components in the firing vector // Set objective set_obj_fn(lp, row); // Minimize the objective set_minim(lp); // Set variables as integer variables for(size_t i = 0; i < net.numberOfTransitions(); i++) set_int(lp, 1+i, TRUE); // Attempt to solve the problem int result = solve(lp); // Limit on traps to test size_t traplimit = nPlaces * OVER_APPROX_TRAP_FACTOR; // Try to add a minimal trap constraint while((result == OPTIMAL) && traplimit-- < 0){ memset(row, 0, sizeof(REAL) * net.numberOfTransitions() + 1); // Get the firing vector get_variables(lp, row); // Compute the resulting marking MarkVal rMark[net.numberOfPlaces()]; for(size_t p = 0; p < nPlaces; p++){ rMark[p] = m0[p]; for(size_t t = 0; t < net.numberOfTransitions(); t++) rMark[p] += (net.outArc(t, p) - net.inArc(p, t)) * (int)row[t]; } // Find an M-trap BitField trap(minimalTrap(net, m0, rMark)); //Break if there's no trap if(trap.none()) break; // Compute the new equation for(size_t t = 0; t < net.numberOfTransitions(); t++){ row[1+t] = 0; for(size_t p = 0; p < nPlaces; p++) if(trap.test(p)) row[1+t] += net.outArc(t, p) - net.inArc(p, t); } // Add a new row with target as greater than equal to 1 set_add_rowmode(lp, TRUE); add_constraint(lp, row, GE, 1); set_add_rowmode(lp, FALSE); // Attempt to solve the again result = solve(lp); } int retval = 0; if(result != INFEASIBLE){ get_variables(lp, row); for(size_t t = 0; t < net.numberOfTransitions(); t++) retval += (int)row[t]; } // Delete the linear problem delete_lp(lp); lp = NULL; // Return true, if it was infeasible return retval; }
int main ( int argv, char * argc[] ) { # if defined ERROR # undef ERROR # endif # define ERROR() { fprintf(stderr, "Error\n"); exit(1); } lprec *lp; int majorversion, minorversion, release, build; #if defined FORTIFY Fortify_EnterScope(); #endif lp_solve_version(&majorversion, &minorversion, &release, &build); printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp=make_lp(0,4);\n"); if ((lp = make_lp(0,4)) == NULL) ERROR(); press_ret(); printf("We can show the current problem with print_lp(lp)\n"); print_lp(lp); press_ret(); printf("Now we add some constraints\n"); printf("add_constraint(lp, {0, 3, 2, 2, 1}, LE, 4)\n"); { double row[] = {0, 3, 2, 2, 1}; if (!add_constraint(lp, row, LE, 4)) ERROR(); } print_lp(lp); press_ret(); printf("add_constraintex is now used to add a row. Only the npn-zero values must be specfied with this call.\n"); printf("add_constraintex(lp, 3, {4, 3, 1}, {2, 3, 4}, GE, 3)\n"); { int colno[] = {2, 3, 4}; double row[] = {4, 3, 1}; if (!add_constraintex(lp, sizeof(colno) / sizeof(*colno), row, colno, GE, 3)) ERROR(); } print_lp(lp); press_ret(); printf("Set the objective function\n"); printf("set_obj_fn(lp, {0, 2, 3, -2, 3})\n"); { double row[] = {0, 2, 3, -2, 3}; if (!set_obj_fn(lp, row)) ERROR(); } print_lp(lp); press_ret(); printf("Now solve the problem with printf(solve(lp));\n"); printf("%d",solve(lp)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_objective(lp) and print_solution(lp)\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp);\n"); print_duals(lp); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp,2,1,0.5)\n"); if (!set_mat(lp,2,1,0.5)) ERROR(); print_lp(lp); press_ret(); printf("If we want to maximize the objective function use set_maxim(lp);\n"); set_maxim(lp); print_lp(lp); press_ret(); printf("after solving this gives us:\n"); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); print_duals(lp); press_ret(); printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n"); set_rh(lp,1,7.45); print_lp(lp); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We change %s to the integer type with\n", get_col_name(lp, 4)); printf("set_int(lp, 4, TRUE)\n"); set_int(lp, 4, TRUE); print_lp(lp); printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n"); set_debug(lp, TRUE); printf("and solve...\n"); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n"); set_lowbo(lp,2,2); set_upbo(lp,4,5.3); print_lp(lp); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Now remove a constraint with del_constraint(lp, 1)\n"); del_constraint(lp,1); print_lp(lp); printf("Add an equality constraint\n"); { double row[] = {0, 1, 2, 1, 4}; if (!add_constraint(lp, row, EQ, 8)) ERROR(); } print_lp(lp); press_ret(); printf("A column can be added with:\n"); printf("add_column(lp,{3, 2, 2});\n"); { double col[] = {3, 2, 2}; if (!add_column(lp, col)) ERROR(); } print_lp(lp); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp,3);\n"); del_column(lp,3); print_lp(lp); press_ret(); printf("We can use automatic scaling with:\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); print_lp(lp); press_ret(); printf("The function get_mat(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1)); printf("Notice that get_mat returns the value of the original unscaled problem\n"); press_ret(); printf("If there are any integer type variables, then only the rows are scaled\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); printf("set_int(lp,3,FALSE);\n"); set_int(lp,3,FALSE); print_lp(lp); press_ret(); solve(lp); printf("print_objective, print_solution gives the solution to the original problem\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Scaling is turned off with unscale(lp);\n"); unscale(lp); print_lp(lp); press_ret(); printf("Now turn B&B debugging off and simplex tracing on with\n"); printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n"); set_debug(lp, FALSE); set_trace(lp, TRUE); press_ret(); solve(lp); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("default_basis(lp). Now solve it again...\n"); press_ret(); default_basis(lp); solve(lp); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n"); if (!set_row_name(lp,1,"speed")) ERROR(); if (!set_col_name(lp,2,"money")) ERROR(); print_lp(lp); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp,1);\n"); del_column(lp,1); print_lp(lp); press_ret(); write_lp(lp, "lp.lp"); delete_lp(lp); printf("An lp structure can be created and read from a .lp file\n"); printf("lp = read_lp(\"lp.lp\", TRUE);\n"); printf("The verbose option is used\n"); if ((lp = read_LP("lp.lp", TRUE, "test")) == NULL) ERROR(); press_ret(); printf("lp is now:\n"); print_lp(lp); press_ret(); printf("solution:\n"); set_debug(lp, TRUE); solve(lp); set_debug(lp, FALSE); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); delete_lp(lp); #if defined FORTIFY Fortify_LeaveScope(); #endif return 0; }
//Execute function int LPSolveClass::Execute() { /* std::cout << "---------------------------------\n"; std::cout << "objective function\n"; for (unsigned int i = 0; i < coefficients.size(); i++) std::cout << coefficients[i] << "\t"; std::cout << "\nConstant Value = " << obj_const << std::endl; std::cout << "---------------------------------\n"; std::cout << "Equality Constraints\n"; for (unsigned int i = 0; i < A_equ.size(); i++){ //std::cout << "Row index = " << i << "\t\t"; for (unsigned int j = 0; j < A_equ[i].size(); j++) std::cout << A_equ[i][j] << "\t"; std::cout << "\n"; } std::cout << "b\n"; for (unsigned int i = 0; i < b_equ.size(); i++) std::cout << b_equ[i] << "\t"; std::cout << "\n"; std::cout << "---------------------------------\n"; std::cout << "InEquality Constraints\n"; for (unsigned int i = 0; i < A_inequ.size(); i++){ //std::cout << "Row index = " << i << "\t\t"; for (unsigned int j = 0; j < A_inequ[i].size(); j++) std::cout << A_inequ[i][j] << "\t"; std::cout << "\n"; } std::cout << "b\n"; for (unsigned int i = 0; i < b_inequ.size(); i++) std::cout << b_inequ[i] << "\t"; std::cout << "\n"; */ lprec *lp; int Ncol = coefficients.size(), *colno = NULL, j, ret = 0; REAL *row = NULL; /* We will build the model row by row So we start with creating a model with 0 rows and n columns */ lp = make_lp(0, Ncol); if (lp == NULL) ret = 1;/* couldn't construct a new model... */ if (ret == 0){ //let us name our variables std::string s = "x"; for (int i = 0; i < Ncol; i++){ std::stringstream out; out << i; s = s + out.str(); char *cpy = new char[s.size()+1] ; strcpy(cpy, s.c_str()); set_col_name(lp, i+1, cpy); } /* create space large enough for one row */ colno = (int *) malloc(Ncol * sizeof(*colno)); row = (REAL *) malloc(Ncol * sizeof(*row)); if ((colno == NULL) || (row == NULL)) ret = 2; } set_add_rowmode(lp, TRUE); //add the equation constraints if (ret == 0){ /* makes building the model faster if it is done rows by row */ if (A_equ.size() > 0){ for (unsigned int i = 0; i < A_equ.size(); i++){//loop over the rows of equality constraints for (unsigned int j = 0; j < A_equ[i].size(); j++){//loop over the columns of equality constraints colno[j] = j+1;//add the j-th column to lpsolve row[j] = A_equ[i][j]; } /* add the row to lpsolve */ if(!add_constraintex(lp, A_equ[i].size(), row, colno, EQ, b_equ[i])) ret = 2; } } } //add the inequality constraints if (ret == 0){ /* makes building the model faster if it is done rows by row */ if (A_inequ.size() > 0){ for (unsigned int i = 0; i < A_inequ.size(); i++){//loop over the rows of inequality constraints for (unsigned int j = 0; j < A_inequ[i].size(); j++){//loop over the columns of inequality constraints colno[j] = j+1;//add the j-th column to lpsolve row[j] = A_inequ[i][j]; } /* add the row to lpsolve */ if(!add_constraintex(lp, A_inequ[i].size(), row, colno, LE, b_inequ[i])) ret = 3; } } } //add the const constraint if (ret == 0){ if (b_const.size()>0){ for (unsigned int i = 0; i < b_const.size(); i++){ if (b_const[i] > 0){ for (unsigned int j = 0; j < b_const.size(); j++){ if (i == j){ colno[j] = j+1;//add the j-th column to lpsolve row[j] = 1.0; } else{ colno[j] = j+1;//add the j-th column to lpsolve row[j] = 0.0; } } if(!add_constraintex(lp, b_const.size(), row, colno, EQ, b_const[i])) ret = 4; } } } } //set the variables to be integer if (ret == 0){ for (int i = 0; i < Ncol; i++) set_int(lp, i+1, TRUE); } /* rowmode should be turned off again when done building the model */ set_add_rowmode(lp, FALSE); //add the objective function if (ret == 0){ //set the objective function for (unsigned int i = 0; i < coefficients.size(); i++){ colno[i] = i+1; row[i] = coefficients[i]; } //set the objective in lpsolve if(!set_obj_fnex(lp, coefficients.size(), row, colno)) ret = 4; } //set the objective to minimize if (ret == 0){ set_minim(lp); /* just out of curioucity, now show the model in lp format on screen */ /* this only works if this is a console application. If not, use write_lp and a filename */ write_LP(lp, stdout); /* I only want to see important messages on screen while solving */ set_verbose(lp, IMPORTANT); /* Now let lpsolve calculate a solution */ ret = solve(lp); if(ret == OPTIMAL) ret = 0; else ret = 5; } //get some results if (ret == 0){ /* a solution is calculated, now lets get some results */ /* objective value */ std::cout << "Objective value: " << get_objective(lp) << std::endl; /* variable values */ get_variables(lp, row); /* variable values */ variables.resize(Ncol); for(j = 0; j < Ncol; j++) variables[j] = row[j]; /* we are done now */ } else{ std::cout << "The optimal value can't be solved for linear programming, please check the constraints!!\n"; exit(1); } std::cout << "print the result\t # of line segments is \n"; for (int i = 0; i < Ncol; i++) std::cout << "index = " << i << "\t# = " << variables[i] << std::endl; /* free allocated memory */ if(row != NULL) free(row); if(colno != NULL) free(colno); /* clean up such that all used memory by lpsolve is freed */ if (lp != NULL) delete_lp(lp); return ret; }
void CLPLpsolve::setFunction(CLPFunction* function) { m_status = 0; m_lpFunction = function; const int nVars = function->getNumCoefficients(); // Creates an empty problem with getNumCoefficients variables m_env = make_lp(0, nVars); if(m_env == NULL) { m_status = 1; } //if(!set_add_rowmode(m_env, FALSE)) //{ // m_status = 1; //} //Allowing memory for rows //int * colno = new int[nVars]; REAL * row= new REAL[nVars + 1]; //set variables names for (int i = 0; i < nVars; ++i) { int lpIndex = i + 1; row[lpIndex] = function->getCoefficients().at(i); //colno[i] = lpIndex; //Determines the type switch(function->getIntegers().at(i)) { case 'C' : m_status = set_unbounded(m_env, lpIndex); break; case 'B' : m_status = set_binary(m_env, lpIndex, TRUE); break; case 'I' : m_status = set_int(m_env, lpIndex, TRUE); break; case 'S' : m_status = set_semicont(m_env, lpIndex, TRUE); break; default: assert(false); break; } //Sets upper bound and lower bound set_upbo(m_env, lpIndex, function->getUpperBounds().at(i)); set_lowbo(m_env, lpIndex, function->getLowerBounds().at(i)); set_col_name(m_env, lpIndex, const_cast<char*>(function->getVarNames().at(i).c_str())); } //set_obj_fnex(m_env, nVars, row, colno); set_obj_fn(m_env, row); // Set the type of the problem (Min or Max) switch (function->getType()) { case lpMinFunction: set_minim(m_env); break; case lpMaxFunction: set_maxim(m_env); break; } if(!set_add_rowmode(m_env, TRUE)) { m_status = 1; } delete [] row; }
double solve_constraints(int this_task) { lprec *lp; int numVar = 0, *var = NULL, ret = 0, i, j, k, var_count; double *coeff = NULL, lhs,rhs, obj; char col_name[10]; /* Creating a model */ for(i = 1;i < this_task; i++) numVar+=i; lp = make_lp(0, numVar); if(lp == NULL) ret = 1; /* Couldn't construct a new model */ if(ret == 0) { var_count = 1; for(i = 1 ; i < this_task; i++){ for(j = i+1 ; j <= this_task; j++) { sprintf(col_name, "%dNNP%d_%d", this_task, i, j); set_col_name(lp, var_count, col_name); var_count++; } } /* create space large enough for one row(i.e. equation) */ var = (int *) malloc(numVar * sizeof(*var)); coeff = (double *) malloc(numVar * sizeof(*coeff)); if((var == NULL) || (coeff == NULL)) ret = 2; } /* add the equations to lpsolve */ if(ret == 0) { set_add_rowmode(lp, TRUE); /* --------------------adding EQN-D-------------------- */ for(j = 2;j <= this_task;j++){ var_count = 0; for(i = 1; i < j; i++){ sprintf(col_name,"%dNNP%d_%d",this_task, i, j); var[var_count] = get_nameindex(lp, col_name, FALSE); coeff[var_count] = 1; var_count++; } lhs= 0; for(i = 1; i < j; i++) lhs+= nnp_min[i][j]; lhs*= floor(R[this_task]/task[j].p); rhs = 0; for(i = 1; i < j; i++) rhs += nnp_max[i][j]; rhs *= ceil(R[this_task]/task[j].p); if(!add_constraintex(lp, var_count, coeff, var, GE, lhs)) ret = 3; if(!add_constraintex(lp, var_count, coeff, var, LE, rhs)) ret = 3; } } if(ret == 0) { /* --------------------adding EQN-E-------------------- */ for(k = 2;k <= this_task;k++) { var_count = 0; for(j = 2; j <= k; j++){ for(i = 1; i < j; i++){ sprintf(col_name,"%dNNP%d_%d",this_task, i, j); var[var_count] = get_nameindex(lp, col_name, FALSE); coeff[var_count] = 1; var_count++; } } rhs = 0; for(i = 1; i < k; i++) rhs += ceil(R[this_task]/task[i].p); if(!add_constraintex(lp, var_count, coeff, var, LE,rhs)) ret = 3; } } if(ret == 0) { /* ------------------adding EQN-G & H------------------ */ for(j = 2; j <= this_task ; j++){ for(i = 1; i < j; i++){ lhs= floor(R[this_task]/task[j].p) * nnp_min[i][j]; sprintf(col_name,"%dNNP%d_%d",this_task, i, j); var[0] = get_nameindex(lp, col_name, FALSE); coeff[0] = 1; if(!add_constraintex(lp, 1, coeff, var, GE, lhs)) ret = 3; rhs = min(ceil(R[this_task]/task[i].p), ceil(R[this_task]/task[j].p) * ceil(R[j]/task[i].p), ceil(R[this_task]/task[j].p) * nnp_max[i][j]); if(!add_constraintex(lp, 1, coeff, var, LE,rhs)) ret = 3; } } } if(ret == 0) { /* --------------------adding EQN-I-------------------- */ for(i = 1; i < this_task; i++){ var_count = 0; for(j = i+1; j <= this_task; j++){ sprintf(col_name,"%dNNP%d_%d",this_task, i, j); var[var_count] = get_nameindex(lp, col_name, FALSE); coeff[var_count] = 1; var_count++; } rhs = ceil(R[this_task]/task[i].p); if(!add_constraintex(lp, var_count, coeff, var, LE,rhs)) ret = 3; } } set_add_rowmode(lp, FALSE); if(ret == 0) { /* -----------------set the objective----------------- */ var_count = 0; for(i = 1 ; i < this_task; i++){ for(j = i+1 ; j<= this_task; j++){ sprintf(col_name,"%dNNP%d_%d",this_task, i, j); var[var_count] = get_nameindex(lp, col_name, FALSE); coeff[var_count] = get_f(this_task, i, j); var_count++; } } if(!set_obj_fnex(lp, var_count, coeff, var)) ret = 4; set_maxim(lp); write_LP(lp, stdout); set_verbose(lp, IMPORTANT); ret = solve(lp); if(ret == OPTIMAL) ret = 0; else ret = 5; } if(ret == 0) { obj = get_objective(lp); /* Displaying calculated values */ /* variable values */ printf("\nVariable values:\n"); get_variables(lp, coeff); printf("\n"); for(j = 0; j < numVar; j++) printf("%s: %f\n", get_col_name(lp, j + 1), coeff[j]); /* objective value */ printf("\nObjective value: %f\n\n", obj); } printf("LP ERROR = %d\n\n", ret); /* free allocated memory */ if(coeff != NULL) free(coeff); if(var != NULL) free(var); if(lp != NULL) delete_lp(lp); return ret == 0 ? obj : 0; }
int calculate (IN int nCols /* variables in the model */, IN int nRows, IN double** rows, IN double* rights, IN double* objectives, OUT int* answer, IN int verbose) { lprec *lp; int result = 0; char *str = NULL; int *colno = NULL; double *row = NULL; /* We will build the model row by row * So we start with creating a model * with 0 rows and 2 columns */ if ( !(lp = make_lp (0, nCols)) ) { /* couldn't construct a new model... */ result = 1; goto RESULT; } if ( !(str = (char*) malloc ((log10 (nCols) + 10) * sizeof (*str))) ) { result = 2; goto RESULT; } /* let us name our variables. Not required, * but can be useful for debugging */ for ( int i = 1; i <= nCols; ++i ) { str[0] = 't'; _itoa (i, str + 1, 10); set_col_name (lp, i, str); // set_int (lp, i, TRUE); } /* create space large enough for one row */ colno = (int *) malloc (nCols * sizeof (*colno)); row = (double*) malloc (nCols * sizeof (*row)); if ( (colno == NULL) || (row == NULL) ) { result = 2; goto RESULT; } for ( int j = 0; j < nCols; ++j ) { colno[j] = j + 1; /* (j + 1) column */ } /* makes building the model faster if it is done rows by row */ set_add_rowmode (lp, TRUE); for ( int i = 0; i < nRows; ++i ) { // /* construct j row */ // for ( int j = 0; j < nCols; ++j ) // { row[j] = ??? ; } /* (210 * t2 + 156 * t3 == 0.0178) */ /* (230 * t2 + 160 * t3 == 0.0176) */ /* add the row to lp_solve */ if ( !add_constraintex (lp, nCols, rows[i], colno, EQ, rights[i]) ) { result = 3; goto RESULT; } } /* rowmode should be turned off again when done building the model */ set_add_rowmode (lp, FALSE); // /* set the objective function */ // for ( int j = 0; j < nCols; ++j ) // { row[j] = objectives[j]; } /* (t1 + t2 + t3 + t4) */ /* set the objective in lp_solve */ if ( !set_obj_fnex (lp, nCols, objectives, colno) ) { result = 4; goto RESULT; } /* set the object direction to maximize */ set_minim (lp); if ( verbose ) { /* just out of curioucity, now show the model in lp format on screen */ /* this only works if this is a console application. If not, use write_lp and a filename */ write_LP (lp, stdout); /* write_lp(lp, "model.lp"); */ } /* I only want to see important messages on screen while solving */ set_verbose (lp, IMPORTANT); /* Now let lpsolve calculate a solution */ result = solve (lp); if ( result == OPTIMAL ) { result = 0; } else { result = 5; goto RESULT; } /* a solution is calculated, * now lets get some results */ if ( verbose ) { /* objective value */ printf ("Objective value: %f\n", get_objective (lp)); } /* variable values */ get_variables (lp, row); for ( int j = 0; j < nCols; j++ ) { if ( verbose ) printf ("%s: %f\n", get_col_name (lp, j + 1), row[j]); answer[j] = row[j]; } /* we are done now */ RESULT:; /* free allocated memory */ if ( str != NULL )free (str); if ( row != NULL ) free (row); if ( colno != NULL ) free (colno); if ( lp != NULL ) { /* clean up such that all used memory by lpsolve is freed */ delete_lp (lp); } return result; }
int demo() { lprec *lp; int Ncol, *colno = NULL, j, ret = 0; REAL *row = NULL; /* We will build the model row by row So we start with creating a model with 0 rows and 2 columns */ Ncol = 2; /* there are two variables in the model */ lp = make_lp(0, Ncol); if(lp == NULL) ret = 1; /* couldn't construct a new model... */ if(ret == 0) { /* let us name our variables. Not required, but can be useful for debugging */ set_col_name(lp, 1, "x"); set_col_name(lp, 2, "y"); /* create space large enough for one row */ colno = (int *) malloc(Ncol * sizeof(*colno)); row = (REAL *) malloc(Ncol * sizeof(*row)); if((colno == NULL) || (row == NULL)) ret = 2; } if(ret == 0) { set_add_rowmode(lp, TRUE); /* makes building the model faster if it is done rows by row */ /* construct first row (120 x + 210 y <= 15000) */ j = 0; colno[j] = 1; /* first column */ row[j++] = 120; colno[j] = 2; /* second column */ row[j++] = 210; /* add the row to lpsolve */ if(!add_constraintex(lp, j, row, colno, LE, 15000)) ret = 3; } if(ret == 0) { /* construct second row (110 x + 30 y <= 4000) */ j = 0; colno[j] = 1; /* first column */ row[j++] = 110; colno[j] = 2; /* second column */ row[j++] = 30; /* add the row to lpsolve */ if(!add_constraintex(lp, j, row, colno, LE, 4000)) ret = 3; } if(ret == 0) { /* construct third row (x + y <= 75) */ j = 0; colno[j] = 1; /* first column */ row[j++] = 1; colno[j] = 2; /* second column */ row[j++] = 1; /* add the row to lpsolve */ if(!add_constraintex(lp, j, row, colno, LE, 75)) ret = 3; } if(ret == 0) { set_add_rowmode(lp, FALSE); /* rowmode should be turned off again when done building the model */ /* set the objective function (143 x + 60 y) */ j = 0; colno[j] = 1; /* first column */ row[j++] = 143; colno[j] = 2; /* second column */ row[j++] = 60; /* set the objective in lpsolve */ if(!set_obj_fnex(lp, j, row, colno)) ret = 4; } if(ret == 0) { /* set the object direction to maximize */ set_maxim(lp); /* just out of curioucity, now show the model in lp format on screen */ /* this only works if this is a console application. If not, use write_lp and a filename */ write_LP(lp, stdout); /* write_lp(lp, "model.lp"); */ /* I only want to see important messages on screen while solving */ set_verbose(lp, IMPORTANT); /* Now let lpsolve calculate a solution */ ret = solve(lp); if(ret == OPTIMAL) ret = 0; else ret = 5; } if(ret == 0) { /* a solution is calculated, now lets get some results */ /* objective value */ printf("Objective value: %f\n", get_objective(lp)); /* variable values */ get_variables(lp, row); for(j = 0; j < Ncol; j++) printf("%s: %f\n", get_col_name(lp, j + 1), row[j]); /* we are done now */ } /* free allocated memory */ if(row != NULL) free(row); if(colno != NULL) free(colno); if(lp != NULL) { /* clean up such that all used memory by lpsolve is freed */ delete_lp(lp); } return(ret); }