/* Set the upperbound of a variable */ long __declspec(dllexport) WINAPI _set_upbo(lprec *lp, long column, double value) { long ret; if (lp != NULL) { freebuferror(); ret = set_upbo(lp, column, value); } else ret = 0; return(ret); }
int CLPLpsolve::changeBds(int varIndex, const char* lowOrUpper, double bound) { if (stricmp(lowOrUpper, "L") == 0) m_status = set_lowbo(m_env, varIndex + 1, bound); else if (stricmp(lowOrUpper, "U") == 0) m_status = set_upbo(m_env, varIndex + 1, bound); else assert(false); return getStatus(); }
/* Solve the LP subproblem by calling lp_solve API */ int LLW_solve_lp(double **gradient, const struct TrainingCache *cache, const struct Model *model) { long i,k,l,ind_pattern,y_i; const long Q = model->Q; const double Qd = (double)Q; const long chunk_size = cache->chunk_size; const double *C = model->C; const int nRows = Q-1; const int nCols = chunk_size * Q; double *obj = (double*)malloc(sizeof(double) * (1+nCols)); double *row = (double*)malloc(sizeof(double) * (1+nCols)); double *rhs = (double*)malloc(sizeof(double) * Q); long **lp_sol_table = matrix_l(nCols, 2); long **lp_sol_table_inv = matrix_l(chunk_size, Q); double *sol = (double*)malloc(sizeof(double) * (1+nRows+nCols)); double epsel; // Make LP lprec *lp = make_lp(0, nCols); set_add_rowmode(lp, TRUE); // Make objective function int col = 1; for(i=1; i<=chunk_size; i++) { ind_pattern = cache->table_chunk[i]; for(k=1; k<=Q; k++) { obj[col] = gradient[ind_pattern][k]; lp_sol_table[col][1] = i; // keep a table of correspondance between lp_sol_table[col][2] = k; // LPSOLVE vector of variables and lp_sol matrix lp_sol_table_inv[i][k] = col++; // lp_sol[i][k] = the 'lp_solve_table_inv[i][k]'-th variable for LPSOLVE } } set_obj_fn(lp, obj); /* // Make RHS of constraints // -- complete computation -- for(k=1; k<Q; k++) { rhs[k] = 0.0; for(i=1; i<=nb_data; i++) if(cache->in_chunk[i] == 0) { for(l=1; l<=Q; l++) rhs[k] += model->alpha[i][l]; rhs[k] -= Qd * model->alpha[i][k]; } } */ // Make RHS of constraints // -- updates to cache->rhs are made in compute_new_alpha() // to keep track of rhs // we only need to remove the contribution of the examples in the chunk for(k=1; k<Q; k++) { rhs[k] = cache->lp_rhs[k]; for(i=1; i<=chunk_size; i++) { ind_pattern = cache->table_chunk[i]; for(l=1; l<=Q; l++) rhs[k] -= model->alpha[ind_pattern][l]; rhs[k] += Qd * model->alpha[ind_pattern][k]; } } // Make constraints for(k=1; k<Q; k++) { for(col = 1;col <=nCols; col++) row[col] = 0.0; for(i=1; i<=chunk_size; i++) { ind_pattern = cache->table_chunk[i]; y_i = model->y[ind_pattern]; for(l=1; l<=Q; l++) if(l != y_i) { row[lp_sol_table_inv[i][l]] = -1.0; if(l == k) row[lp_sol_table_inv[i][l]] += Qd; } } add_constraint(lp, row, EQ, rhs[k]); } // Upper bound constraints: alpha <= Cy_i for(col=1;col<=nCols;col++) set_upbo(lp, col, C[model->y[cache->table_chunk[lp_sol_table[col][1]]]]); /* for(i=1; i<=chunk_size; i++) { for(k=1; k<=Q; k++) if(k != model->y[cache->table_chunk[i]]) { col = (int)lp_sol_table_inv[i][k]; set_upbo(lp, col, C); } } */ // End of LP making set_add_rowmode(lp, FALSE); //print_lp(lp); // Solve LP int jump = false; set_outputfile(lp,""); if(solve(lp)) { printf("Problem with the LP... \n"); jump = true; } else { // Recover solution in the matrix lp_sol get_primal_solution(lp, sol); // sol: template for lp_solve solution format // sol=[obj, constraints, variables] epsel = get_epsel(lp); // tolerance in lp_solve // Put solution into lp_sol for(col=1; col<= nCols; col++) { // Check feasibility of the col-th variable if((sol[nRows+col] < -epsel) || (sol[nRows+col] > C[model->y[cache->table_chunk[lp_sol_table[col][1]]]] + epsel)) { jump = true; break; } // Round off tolerance if(fabs(sol[nRows+col]) < epsel) sol[nRows+col] = 0.0; else if(fabs(sol[nRows+col] - C[model->y[cache->table_chunk[lp_sol_table[col][1]]]]) < epsel) sol[nRows+col] = C[model->y[cache->table_chunk[lp_sol_table[col][1]]]]; // Set the value in lp_sol matrix cache->lp_sol[lp_sol_table[col][1]][lp_sol_table[col][2]] = sol[nRows+col]; } } delete_lp(lp); free(obj); free(row); free(rhs); free(lp_sol_table[1]);free(lp_sol_table); free(lp_sol_table_inv[1]);free(lp_sol_table_inv); free(sol); return jump; }
int demoImplicit(void) { # if defined ERROR # undef ERROR # endif # define ERROR() { fprintf(stderr, "Error\n"); return(1); } lprec *lp; int majorversion, minorversion, release, build; char buf[1024]; if ((lp = make_lp(0,4)) == NULL) ERROR(); lp_solve_version(&majorversion, &minorversion, &release, &build); /* let's first demonstrate the logfunc callback feature */ put_logfunc(lp, Mylogfunc, 0); sprintf(buf, "lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); print_str(lp, buf); solve(lp); /* just to see that a message is send via the logfunc routine ... */ /* ok, that is enough, no more callback */ put_logfunc(lp, NULL, 0); /* Now redirect all output to a file */ /* set_outputfile(lp, "result.txt"); */ /* set an abort function. Again optional */ put_abortfunc(lp, Myctrlcfunc, 0); /* set a message function. Again optional */ put_msgfunc(lp, Mymsgfunc, 0, MSG_PRESOLVE | MSG_LPFEASIBLE | MSG_LPOPTIMAL | MSG_MILPEQUAL | MSG_MILPFEASIBLE | MSG_MILPBETTER); printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp=make_lp(0,4);\n"); press_ret(); printf("We can show the current problem with print_lp(lp)\n"); print_lp(lp); press_ret(); printf("Now we add some constraints\n"); printf("str_add_constraint(lp, \"3 2 2 1\" ,LE,4)\n"); printf("This is the string version of add_constraint. For the normal version\n"); printf("of add_constraint see the help file.\n"); if (!str_add_constraint(lp, "3 2 2 1", LE, 4)) ERROR(); print_lp(lp); press_ret(); printf("str_add_constraint(lp, \"0 4 3 1\" ,GE,3)\n"); if (!str_add_constraint(lp, "0 4 3 1", GE, 3)) ERROR(); print_lp(lp); press_ret(); printf("Set the objective function\n"); printf("str_set_obj_fn(lp, \"2 3 -2 3\")\n"); if (!str_set_obj_fn(lp, "2 3 -2 3")) ERROR(); print_lp(lp); press_ret(); printf("Now solve the problem with printf(solve(lp));\n"); printf("%d",solve(lp)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_objective(lp) and print_solution(lp)\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp);\n"); print_duals(lp); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp,2,1,0.5)\n"); if (!set_mat(lp,2,1,0.5)) ERROR(); print_lp(lp); press_ret(); printf("If we want to maximize the objective function use set_maxim(lp);\n"); set_maxim(lp); print_lp(lp); press_ret(); printf("after solving this gives us:\n"); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); print_duals(lp); press_ret(); printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n"); set_rh(lp,1,7.45); print_lp(lp); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We change %s to the integer type with\n", get_col_name(lp, 4)); printf("set_int(lp, 4, TRUE)\n"); set_int(lp, 4, TRUE); print_lp(lp); printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n"); set_debug(lp, TRUE); printf("and solve...\n"); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n"); set_lowbo(lp,2,2); set_upbo(lp,4,5.3); print_lp(lp); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Now remove a constraint with del_constraint(lp, 1)\n"); del_constraint(lp,1); print_lp(lp); printf("Add an equality constraint\n"); if (!str_add_constraint(lp, "1 2 1 4", EQ, 8)) ERROR(); print_lp(lp); press_ret(); printf("A column can be added with:\n"); printf("str_add_column(lp,\"3 2 2\");\n"); if (!str_add_column(lp,"3 2 2")) ERROR(); print_lp(lp); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp,3);\n"); del_column(lp,3); print_lp(lp); press_ret(); printf("We can use automatic scaling with:\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); print_lp(lp); press_ret(); printf("The function get_mat(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1)); printf("Notice that get_mat returns the value of the original unscaled problem\n"); press_ret(); printf("If there are any integer type variables, then only the rows are scaled\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); printf("set_int(lp,3,FALSE);\n"); set_int(lp,3,FALSE); print_lp(lp); press_ret(); solve(lp); printf("print_objective, print_solution gives the solution to the original problem\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Scaling is turned off with unscale(lp);\n"); unscale(lp); print_lp(lp); press_ret(); printf("Now turn B&B debugging off and simplex tracing on with\n"); printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n"); set_debug(lp, FALSE); set_trace(lp, TRUE); press_ret(); solve(lp); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("default_basis(lp). Now solve it again...\n"); press_ret(); default_basis(lp); solve(lp); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n"); if (!set_row_name(lp,1,"speed")) ERROR(); if (!set_col_name(lp,2,"money")) ERROR(); print_lp(lp); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp,1);\n"); del_column(lp,1); print_lp(lp); press_ret(); delete_lp(lp); /* printf("A lp structure can be created and read from a .lp file\n"); printf("lp = read_LP(\"lp_examples/demo_lag.lp\", TRUE);\n"); printf("The verbose option is used\n"); if ((lp = read_LP("lp_examples/demo_lag.lp", TRUE, "test")) == NULL) ERROR(); press_ret(); printf("lp is now:\n"); print_lp(lp); press_ret(); printf("solution:\n"); set_debug(lp, TRUE); solve(lp); set_debug(lp, FALSE); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("You can see that branch & bound was used in this problem\n"); printf("Now remove the last constraint and use lagrangian relaxation\n"); printf("del_constraint(lp,6);\n"); printf("str_add_lag_con(lp, \"1 1 1 0 0 0\", LE, 2);\n"); del_constraint(lp,6); if (!str_add_lag_con(lp, "1 1 1 0 0 0", LE, 2)) ERROR(); print_lp(lp); */ /* printf("Lagrangian relaxation is used in some heuristics. It is now possible\n"); printf("to get a feasible integer solution without usage of branch & bound.\n"); printf("Use lag_solve(lp, 0, 30); 0 is the initial bound, 30 the maximum\n"); printf("number of iterations, the last variable turns the verbose mode on.\n"); press_ret(); set_lag_trace(lp, TRUE); printf("%d\n",lag_solve(lp, 0, 30)); printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n"); printf("solution has been found. For a list of other possible return values\n"); printf("see the help file. Print this solution with print_objective, print_solution\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); delete_lp(lp); */ press_ret(); return(0); }
int main(void) { lprec *lp1,*lp2; FILE *input_file; printf("lp_solve 2.0 demo by Jeroen J. Dirks ([email protected])\n\n"); printf("This demo will show most of the features of lp_solve 2.0\n"); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp1=make_lp(0,4);\n"); lp1=make_lp(0,4); press_ret(); printf("We can show the current problem with print_lp(lp1)\n"); print_lp(lp1); press_ret(); printf("Now we add some constraints\n"); printf("str_add_constraint(lp1, \"3 2 2 1\" ,LE,4)\n"); printf("This is the string version of add_constraint. For the normal version\n"); printf("of add_constraint see the file lpkit.h\n"); str_add_constraint(lp1, "3 2 2 1", LE, 4); print_lp(lp1); press_ret(); printf("str_add_constraint(lp1, \"0 4 3 1\" ,GE,3)\n"); str_add_constraint(lp1, "0 4 3 1", GE, 3); print_lp(lp1); press_ret(); printf("Set the objective function\n"); printf("str_set_obj_fn(lp1, \"2 3 -2 3\")\n"); str_set_obj_fn(lp1, "2 3 -2 3"); print_lp(lp1); press_ret(); printf("Now solve the problem with printf(solve(lp1));\n"); printf("%d",solve(lp1)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_solution(lp1)\n"); print_solution(lp1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp1);\n"); print_duals(lp1); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp1,2,1,0.5)\n"); set_mat(lp1,2,1,0.5); print_lp(lp1); press_ret(); printf("It we want to maximise the objective function use set_maxim(lp1);\n"); set_maxim(lp1); print_lp(lp1); press_ret(); printf("after solving this gives us:\n"); solve(lp1); print_solution(lp1); print_duals(lp1); press_ret(); printf("Change the value of a rhs element with set_rh(lp1,1,7.45)\n"); set_rh(lp1,1,7.45); print_lp(lp1); solve(lp1); print_solution(lp1); press_ret(); printf("We change Var[4] to the integer type with\n"); printf("set_int(lp1, 4, TRUE)\n"); set_int(lp1, 4, TRUE); print_lp(lp1); printf("We set branch & bound debugging on with lp1->debug=TRUE\n"); lp1->debug=TRUE; printf("and solve...\n"); press_ret(); solve(lp1); print_solution(lp1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp1,2,2); & set_upbo(lp1,4,5.3)\n"); set_lowbo(lp1,2,2); set_upbo(lp1,4,5.3); print_lp(lp1); press_ret(); solve(lp1); print_solution(lp1); press_ret(); printf("Now remove a constraint with del_constraint(lp1, 1)\n"); del_constraint(lp1,1); print_lp(lp1); printf("Add an equality constraint\n"); str_add_constraint(lp1, "1 2 1 4", EQ, 8); print_lp(lp1); press_ret(); printf("A column can be added with:\n"); printf("str_add_column(lp1,\"3 2 2\");\n"); str_add_column(lp1,"3 2 2"); print_lp(lp1); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp1,3);\n"); del_column(lp1,3); print_lp(lp1); press_ret(); printf("We can use automatic scaling with:\n"); printf("auto_scale(lp1);\n"); auto_scale(lp1); print_lp(lp1); press_ret(); printf("The function mat_elm(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s mat_elm(lp1,2,3), mat_elm(lp1,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n",mat_elm(lp1,2,3), mat_elm(lp1,1,1)); printf("Notice that mat_elm returns the value of the original unscaled problem\n"); press_ret(); printf("It there are any integer type variables, then only the rows are scaled\n"); printf("set_int(lp1,3,FALSE);\n"); printf("auto_scale(lp1);\n"); set_int(lp1,3,FALSE); auto_scale(lp1); print_lp(lp1); press_ret(); solve(lp1); printf("print_solution gives the solution to the original problem\n"); print_solution(lp1); press_ret(); printf("Scaling is turned off with unscale(lp1);\n"); unscale(lp1); print_lp(lp1); press_ret(); printf("Now turn B&B debugging of and simplex tracing on with\n"); printf("lp1->debug=FALSE, lp1->trace=TRUE and solve(lp1)\n"); lp1->debug=FALSE; lp1->trace=TRUE; press_ret(); solve(lp1); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("reset_basis(lp1). Now solve it again...\n"); press_ret(); reset_basis(lp1); solve(lp1); press_ret(); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp1,1,\"speed\"); & set_col_name(lp1,2,\"money\")\n"); set_row_name(lp1,1,"speed"); set_col_name(lp1,2,"money"); print_lp(lp1); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp1,1);\n"); del_column(lp1,1); print_lp(lp1); press_ret(); printf("A lp structure can be created and read from a .lp file\n"); printf("input_file=fopen(\"lp_examples/demo_lag.lp\",\"r\");\n"); printf("lp2 = read_lp_file(input_file, TRUE);\n"); printf("The verbose option is used\n"); input_file = fopen("lp_examples/demo_lag.lp", "r"); if (input_file == NULL) { printf("Can't find demo_lag.lp, stopping\n"); exit(EXIT_FAILURE); } lp2 = read_lp_file(input_file, TRUE, "test"); press_ret(); printf("lp2 is now:\n"); print_lp(lp2); press_ret(); printf("solution:\n"); lp2->debug=TRUE; solve(lp2); lp2->debug=FALSE; print_solution(lp2); press_ret(); printf("You can see that branch & bound was used in this problem\n"); printf("Now remove the last constraint and use lagrangian relaxation\n"); printf("del_constraint(lp2,6);\n"); printf("str_add_lag_con(lp2, \"1 1 1 0 0 0\", LE, 2);\n"); del_constraint(lp2,6); str_add_lag_con(lp2, "1 1 1 0 0 0", LE, 2); print_lp(lp2); printf("Lagrangian relaxation is used in some heuristics. It is now possible\n"); printf("to get a feasible integer soltution without usage of branch & bound.\n"); printf("Use lag_solve(lp2, 0, 40, TRUE); 0 is the initial bound, 30 the maximum\n"); printf("number of iterations, the last variable turns the verbose mode on.\n"); press_ret(); printf("%d\n",lag_solve(lp2, 0, 30, TRUE)); printf("The returncode of lag_solve is 6 or FEAS_FOUND. this means that a feasible\n"); printf("solution has been found. For a list of other possible return values\n"); printf("see \"lpkit.h\". Print this solution with print_solution\n"); print_solution(lp2); press_ret(); return(0); }
main(int argc, char **argv) #endif { char *stub; ASL *asl; FILE *nl; lprec *lp; ograd *og; int ct, i, intmin, *is, j, j0, j1, k, nalt, rc; short *basis, *lower; real *LU, *c, lb, objadj, *rshift, *shift, t, ub, *x, *x0, *x1; char buf[256]; typedef struct { char *msg; int code; } Sol_info; static Sol_info solinfo[] = { { "optimal", 0 }, { "integer programming failure", 502 }, { "infeasible", 200 }, { "unbounded", 300 }, { "failure", 501 }, { "bug", 500 } }; sprintf(lp_solve_version+9, "%.*s", (int)sizeof(lp_solve_version)-10, PATCHLEVEL); sprintf(lp_solve_vversion, "%s, driver(20001002)", lp_solve_version); asl = ASL_alloc(ASL_read_f); stub = getstub(&argv, &Oinfo); nl = jac0dim(stub, (fint)strlen(stub)); suf_declare(suftab, sizeof(suftab)/sizeof(SufDecl)); /* set A_vals to get the constraints column-wise */ A_vals = (real *)M1alloc(nzc*sizeof(real)); f_read(nl,0); lp = make_lp(n_con, 0); Oinfo.uinfo = (char *)lp; if (getopts(argv, &Oinfo)) return 1; i = n_var + n_con + 1; x = (real*)M1alloc(i*sizeof(real)); /* scratch vector */ memset(x, 0, i*sizeof(real)); x0 = x++; c = x + n_con; /* supply objective */ objadj = 0; if (--nobj >= 0 && nobj < n_obj) { for(og = Ograd[nobj]; og; og = og->next) c[og->varno] = og->coef; if (objtype[nobj]) set_maxim(lp); objadj = objconst(nobj); } /* supply columns and variable bounds */ LU = LUv; intmin = n_var - (nbv + niv); j1 = nalt = 0; rshift = shift = 0; for(i = 1; i <= n_var; i++, LU += 2) { lb = LU[0]; ub = LU[1]; j0 = j1; j1 = A_colstarts[i]; *x0 = *c++; /* cost coefficient */ if (lb <= negInfinity && ub < Infinity) { /* negate this variable */ nalt++; lb = -ub; ub = -LU[0]; for(j = j0; j < j1; j++) x[A_rownos[j]] = -A_vals[j]; *x0 = -*x0; add_column(lp, x0); if (lb) goto shift_check; } else { for(j = j0; j < j1; j++) x[A_rownos[j]] = A_vals[j]; add_column(lp, x0); if (lb <= negInfinity) { nalt++; if (i > intmin) set_int(lp, lp->columns, TRUE); /* split free variable */ *x0 = -*x0; for(j = j0; j < j1; j++) x[A_rownos[j]] *= -1.; add_column(lp,x0); } else if (lb) { shift_check: if (lb > 0) set_lowbo(lp, lp->columns, lb); else { if (!rshift) { rshift = (real*)M1zapalloc( (n_var+n_con)*sizeof(real)); shift = rshift + n_con - 1; } shift[i] = lb; for(j = j0; j < j1; j++) { k = A_rownos[j]; rshift[k] += lb*x[k]; } if (ub < Infinity) ub -= lb; objadj += lb**x0; } } if (ub < Infinity) set_upbo(lp, lp->columns, ub); } for(j = j0; j < j1; j++) x[A_rownos[j]] = 0; if (i > intmin) set_int(lp, lp->columns, TRUE); } if (objadj) { /* add a fixed variable to adjust the objective value */ *x0 = objadj; add_column(lp, x0); set_lowbo(lp, i, 1.); set_upbo(lp, i, 1.); } /* supply constraint rhs */ LU = LUrhs; for(i = 1; i <= n_con; i++, LU += 2) { t = LU[0]; if (t == LU[1]) ct = EQ; else if (t <= negInfinity) { t = LU[1]; if (t >= Infinity) { /* This is possible only with effort: */ /* one must turn presolve off and */ /* explicitly specify a constraint */ /* with infinite bounds. */ fprintf(Stderr, "Sorry, can't handle free rows.\n"); exit(1); } ct = LE; } else ct = GE; set_constr_type(lp, i, ct); set_rh(lp, i, rshift ? t - *rshift++ : t); if (ct == GE && LU[1] < Infinity) lp->orig_upbo[i] = LU[1] - t; } if (prlp) print_lp(lp); if (scaling) auto_scale(lp); /* Unfortunately, there seems to be no way to suggest */ /* a starting basis to lp_solve; thus we must ignore */ /* any incoming .sstatus values. */ rc = solve(lp); if (rc < 0 || rc > 5) rc = 5; solve_result_num = solinfo[rc].code; i = sprintf(buf, "%s: %s", Oinfo.bsname, solinfo[rc].msg); if (rc == OPTIMAL) i += sprintf(buf+i, ", objective %.*g", obj_prec(), lp->best_solution[0]); i += sprintf(buf+i,"\n%d simplex iterations", lp->total_iter); if (lp->max_level > 1 || lp->total_nodes > 1) sprintf(buf+i, "\n%d branch & bound nodes: depth %d", lp->total_nodes, lp->max_level); /* Prepare to report solution: deal with split free variables. */ x1 = lp->best_solution+lp->rows+1; if (nalt || shift) { x = x0; LU = LUv; for(i = 0; i < n_var; i++, LU += 2) { if (LU[0] > negInfinity) x[i] = *x1++; else if (LU[1] < Infinity) x[i] = -*x1++; else { x[i] = x1[0] - x1[1]; x1 += 2; } if (shift) x[i] += *++shift; } } else x = x1; if (solinfo[rc].code < 500 && !(nbv + niv)) { /* return .sstatus values */ basis = lp->basis; lower = lp->lower; is = M1alloc((n_var + n_con)*sizeof(int)); suf_iput("sstatus", ASL_Sufkind_con, is); for(i = 0; i < n_con; i++) { j = *++lower; *is++ = *++basis ? 1 : j ? 3 : 4; } suf_iput("sstatus", ASL_Sufkind_var, is); LU = LUv; for(i = 0; i < n_var; i++, LU += 2) { j0 = *++basis; j1 = *++lower; if (LU[0] > negInfinity) j = j0 ? 1 : j1 ? 3 : 4; else if (LU[1] < Infinity) j = j0 ? 1 : j1 ? 4 : 3; else { ++lower; j = *++basis || j0; } *is++ = j; } } write_sol(buf, x, lp->duals+1, &Oinfo); /* The following calls would only be needed */ /* if execution were to continue... */ delete_lp(lp); ASL_free(&asl); return 0; }
int main ( int argv, char * argc[] ) { # if defined ERROR # undef ERROR # endif # define ERROR() { fprintf(stderr, "Error\n"); exit(1); } lprec *lp; int majorversion, minorversion, release, build; #if defined FORTIFY Fortify_EnterScope(); #endif lp_solve_version(&majorversion, &minorversion, &release, &build); printf("lp_solve %d.%d.%d.%d demo\n\n", majorversion, minorversion, release, build); printf("This demo will show most of the features of lp_solve %d.%d.%d.%d\n", majorversion, minorversion, release, build); press_ret(); printf("\nWe start by creating a new problem with 4 variables and 0 constraints\n"); printf("We use: lp=make_lp(0,4);\n"); if ((lp = make_lp(0,4)) == NULL) ERROR(); press_ret(); printf("We can show the current problem with print_lp(lp)\n"); print_lp(lp); press_ret(); printf("Now we add some constraints\n"); printf("add_constraint(lp, {0, 3, 2, 2, 1}, LE, 4)\n"); { double row[] = {0, 3, 2, 2, 1}; if (!add_constraint(lp, row, LE, 4)) ERROR(); } print_lp(lp); press_ret(); printf("add_constraintex is now used to add a row. Only the npn-zero values must be specfied with this call.\n"); printf("add_constraintex(lp, 3, {4, 3, 1}, {2, 3, 4}, GE, 3)\n"); { int colno[] = {2, 3, 4}; double row[] = {4, 3, 1}; if (!add_constraintex(lp, sizeof(colno) / sizeof(*colno), row, colno, GE, 3)) ERROR(); } print_lp(lp); press_ret(); printf("Set the objective function\n"); printf("set_obj_fn(lp, {0, 2, 3, -2, 3})\n"); { double row[] = {0, 2, 3, -2, 3}; if (!set_obj_fn(lp, row)) ERROR(); } print_lp(lp); press_ret(); printf("Now solve the problem with printf(solve(lp));\n"); printf("%d",solve(lp)); press_ret(); printf("The value is 0, this means we found an optimal solution\n"); printf("We can display this solution with print_objective(lp) and print_solution(lp)\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("The dual variables of the solution are printed with\n"); printf("print_duals(lp);\n"); print_duals(lp); press_ret(); printf("We can change a single element in the matrix with\n"); printf("set_mat(lp,2,1,0.5)\n"); if (!set_mat(lp,2,1,0.5)) ERROR(); print_lp(lp); press_ret(); printf("If we want to maximize the objective function use set_maxim(lp);\n"); set_maxim(lp); print_lp(lp); press_ret(); printf("after solving this gives us:\n"); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); print_duals(lp); press_ret(); printf("Change the value of a rhs element with set_rh(lp,1,7.45)\n"); set_rh(lp,1,7.45); print_lp(lp); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We change %s to the integer type with\n", get_col_name(lp, 4)); printf("set_int(lp, 4, TRUE)\n"); set_int(lp, 4, TRUE); print_lp(lp); printf("We set branch & bound debugging on with set_debug(lp, TRUE)\n"); set_debug(lp, TRUE); printf("and solve...\n"); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("We can set bounds on the variables with\n"); printf("set_lowbo(lp,2,2); & set_upbo(lp,4,5.3)\n"); set_lowbo(lp,2,2); set_upbo(lp,4,5.3); print_lp(lp); press_ret(); solve(lp); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Now remove a constraint with del_constraint(lp, 1)\n"); del_constraint(lp,1); print_lp(lp); printf("Add an equality constraint\n"); { double row[] = {0, 1, 2, 1, 4}; if (!add_constraint(lp, row, EQ, 8)) ERROR(); } print_lp(lp); press_ret(); printf("A column can be added with:\n"); printf("add_column(lp,{3, 2, 2});\n"); { double col[] = {3, 2, 2}; if (!add_column(lp, col)) ERROR(); } print_lp(lp); press_ret(); printf("A column can be removed with:\n"); printf("del_column(lp,3);\n"); del_column(lp,3); print_lp(lp); press_ret(); printf("We can use automatic scaling with:\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); print_lp(lp); press_ret(); printf("The function get_mat(lprec *lp, int row, int column) returns a single\n"); printf("matrix element\n"); printf("%s get_mat(lp,2,3), get_mat(lp,1,1); gives\n","printf(\"%f %f\\n\","); printf("%f %f\n", (double)get_mat(lp,2,3), (double)get_mat(lp,1,1)); printf("Notice that get_mat returns the value of the original unscaled problem\n"); press_ret(); printf("If there are any integer type variables, then only the rows are scaled\n"); printf("set_scaling(lp, SCALE_MEAN);\n"); set_scaling(lp, SCALE_MEAN); printf("set_int(lp,3,FALSE);\n"); set_int(lp,3,FALSE); print_lp(lp); press_ret(); solve(lp); printf("print_objective, print_solution gives the solution to the original problem\n"); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); printf("Scaling is turned off with unscale(lp);\n"); unscale(lp); print_lp(lp); press_ret(); printf("Now turn B&B debugging off and simplex tracing on with\n"); printf("set_debug(lp, FALSE), set_trace(lp, TRUE) and solve(lp)\n"); set_debug(lp, FALSE); set_trace(lp, TRUE); press_ret(); solve(lp); printf("Where possible, lp_solve will start at the last found basis\n"); printf("We can reset the problem to the initial basis with\n"); printf("default_basis(lp). Now solve it again...\n"); press_ret(); default_basis(lp); solve(lp); printf("It is possible to give variables and constraints names\n"); printf("set_row_name(lp,1,\"speed\"); & set_col_name(lp,2,\"money\")\n"); if (!set_row_name(lp,1,"speed")) ERROR(); if (!set_col_name(lp,2,"money")) ERROR(); print_lp(lp); printf("As you can see, all column and rows are assigned default names\n"); printf("If a column or constraint is deleted, the names shift place also:\n"); press_ret(); printf("del_column(lp,1);\n"); del_column(lp,1); print_lp(lp); press_ret(); write_lp(lp, "lp.lp"); delete_lp(lp); printf("An lp structure can be created and read from a .lp file\n"); printf("lp = read_lp(\"lp.lp\", TRUE);\n"); printf("The verbose option is used\n"); if ((lp = read_LP("lp.lp", TRUE, "test")) == NULL) ERROR(); press_ret(); printf("lp is now:\n"); print_lp(lp); press_ret(); printf("solution:\n"); set_debug(lp, TRUE); solve(lp); set_debug(lp, FALSE); print_objective(lp); print_solution(lp, 1); print_constraints(lp, 1); press_ret(); delete_lp(lp); #if defined FORTIFY Fortify_LeaveScope(); #endif return 0; }
void CLPLpsolve::setFunction(CLPFunction* function) { m_status = 0; m_lpFunction = function; const int nVars = function->getNumCoefficients(); // Creates an empty problem with getNumCoefficients variables m_env = make_lp(0, nVars); if(m_env == NULL) { m_status = 1; } //if(!set_add_rowmode(m_env, FALSE)) //{ // m_status = 1; //} //Allowing memory for rows //int * colno = new int[nVars]; REAL * row= new REAL[nVars + 1]; //set variables names for (int i = 0; i < nVars; ++i) { int lpIndex = i + 1; row[lpIndex] = function->getCoefficients().at(i); //colno[i] = lpIndex; //Determines the type switch(function->getIntegers().at(i)) { case 'C' : m_status = set_unbounded(m_env, lpIndex); break; case 'B' : m_status = set_binary(m_env, lpIndex, TRUE); break; case 'I' : m_status = set_int(m_env, lpIndex, TRUE); break; case 'S' : m_status = set_semicont(m_env, lpIndex, TRUE); break; default: assert(false); break; } //Sets upper bound and lower bound set_upbo(m_env, lpIndex, function->getUpperBounds().at(i)); set_lowbo(m_env, lpIndex, function->getLowerBounds().at(i)); set_col_name(m_env, lpIndex, const_cast<char*>(function->getVarNames().at(i).c_str())); } //set_obj_fnex(m_env, nVars, row, colno); set_obj_fn(m_env, row); // Set the type of the problem (Min or Max) switch (function->getType()) { case lpMinFunction: set_minim(m_env); break; case lpMaxFunction: set_maxim(m_env); break; } if(!set_add_rowmode(m_env, TRUE)) { m_status = 1; } delete [] row; }