Esempio n. 1
0
File: add.c Progetto: jpflori/pari
GEN
addsi_sign(long x, GEN y, long sy)
{
  long sx,ly;
  GEN z;

  if (!x) return icopy_sign(y, sy);
  if (!sy) return stoi(x);
  if (x<0) { sx=-1; x=-x; } else sx=1;
  if (sx==sy)
  {
    z = adduispec(x,y+2, lgefint(y)-2);
    setsigne(z,sy); return z;
  }
  ly=lgefint(y);
  if (ly==3)
  {
    const long d = (long)(uel(y,2) - (ulong)x);
    if (!d) return gen_0;
    z=cgeti(3);
    if (y[2] < 0 || d > 0) {
      z[1] = evalsigne(sy) | evallgefint(3);
      z[2] = d;
    }
    else {
      z[1] = evalsigne(-sy) | evallgefint(3);
      z[2] =-d;
    }
    return z;
  }
  z = subiuspec(y+2,x, ly-2);
  setsigne(z,sy); return z;
}
Esempio n. 2
0
File: add.c Progetto: jpflori/pari
/* return gen_0 when the sign is 0 */
GEN
addii_sign(GEN x, long sx, GEN y, long sy)
{
  long lx,ly;
  GEN z;

  if (!sx) return sy? icopy_sign(y, sy): gen_0;
  if (!sy) return icopy_sign(x, sx);
  lx = lgefint(x);
  ly = lgefint(y);
  if (sx==sy)
    z = addiispec(x+2,y+2,lx-2,ly-2);
  else
  { /* sx != sy */
    long i = cmpiispec(x+2,y+2,lx-2,ly-2);
    if (!i) return gen_0;
    /* we must ensure |x| > |y| for subiispec */
    if (i < 0) {
      sx = sy;
      z = subiispec(y+2,x+2,ly-2,lx-2);
    }
    else
      z = subiispec(x+2,y+2,lx-2,ly-2);
  }
  setsigne(z,sx); return z;
}
Esempio n. 3
0
File: add.c Progetto: jpflori/pari
GEN
addui_sign(ulong x, GEN y, long sy)
{
  long ly;
  GEN z;

  if (!x) return icopy_sign(y, sy);
  if (!sy) return utoipos(x);
  if (sy == 1) return adduispec(x,y+2, lgefint(y)-2);
  ly=lgefint(y);
  if (ly==3)
  {
    const ulong t = y[2];
    if (x == t) return gen_0;
    z=cgeti(3);
    if (x < t) {
      z[1] = evalsigne(-1) | evallgefint(3);
      z[2] = t - x;
    }
    else {
      z[1] = evalsigne(1) | evallgefint(3);
      z[2] = x - t;
    }
    return z;
  }
  z = subiuspec(y+2,x, ly-2);
  setsigne(z,-1); return z;
}
Esempio n. 4
0
File: add.c Progetto: jpflori/pari
INLINE GEN
icopy_sign(GEN x, long sx)
{
  GEN y=icopy(x);
  setsigne(y,sx);
  return y;
}
Esempio n. 5
0
File: add.c Progetto: jpflori/pari
GEN
addir_sign(GEN x, long sx, GEN y, long sy)
{
  long e, l, ly;
  GEN z;

  if (!sx) return rcopy_sign(y, sy);
  e = expo(y) - expi(x);
  if (!sy)
  {
    if (e >= 0) return rcopy_sign(y, sy);
    z = itor(x, nbits2prec(-e));
    setsigne(z, sx); return z;
  }

  ly = lg(y);
  if (e > 0)
  {
    l = ly - divsBIL(e);
    if (l < 3) return rcopy_sign(y, sy);
  }
  else l = ly + nbits2extraprec(-e);
  z = (GEN)avma;
  y = addrr_sign(itor(x,l), sx, y, sy);
  ly = lg(y); while (ly--) *--z = y[ly];
  avma = (pari_sp)z; return z;
}
Esempio n. 6
0
MP_Status_t IMP_GetPariBigInt(MP_Link_pt link, MP_ApInt_t *mp_number)
{
  long length, sign = 1;
  GEN number, ptr;

  /* first, we get the effective length and the sign */
  ERR_CHK(IMP_GetLong(link, &length));

  if (length < 0)
  {
    sign = -1;
    length = -length;
  }
  else if (length == 0)
  {
    sign = 0;
  }

  /* Initialize the number */
  number = IMP_AllocCgeti(length+2);
  setlgef(number, length+2);
  setsigne(number, sign);

  /* Get the actual data */
  if (length > 0)
  {
    if (link->link_bigint_format == MP_PARI)
    {
      ptr = &(number[2]);
      ERR_CHK(IMP_GetUint32Vector(link, (MP_Uint32_t **) &ptr, length));
    }
    else
    {
      number++;
      ptr = number + length;
      for (; ptr > number; ptr--)
        ERR_CHK(IMP_GetLong(link, ptr));
      number--;
    }
  }

  *mp_number = (MP_ApInt_t) number;
  return MP_ClearError(link);
}
Esempio n. 7
0
GEN _gmp_to_pari(mpz_ptr gnum)
{
  long length = gnum->_mp_size;
  long sign = (length < 0 ? -1 : (length == 0 ? 0 : 1));
  GEN pnum, pptr;
  mp_limb_t *gptr;

  if (length < 0 ) length = -length;

  pnum = IMP_AllocCgeti(length + 2);
  setlgef(pnum, length + 2);
  setsigne(pnum, sign);

  pnum++;
  pptr = pnum + length;
  gptr = gnum->_mp_d;

  for (; pptr > pnum; gptr++, pptr--)
    *pptr = *gptr;

  pnum--;

  return pnum;
}
Esempio n. 8
0
int
ratlift(GEN x, GEN m, GEN *a, GEN *b, GEN amax, GEN bmax)
{
  GEN d,d1,v,v1,q,r;
  pari_sp av = avma, av1, lim;
  long lb,lr,lbb,lbr,s,s0;
  ulong vmax;
  ulong xu,xu1,xv,xv1;		/* Lehmer stage recurrence matrix */
  int lhmres;			/* Lehmer stage return value */

  if ((typ(x) | typ(m) | typ(amax) | typ(bmax)) != t_INT) pari_err(arither1);
  if (signe(bmax) <= 0)
    pari_err(talker, "ratlift: bmax must be > 0, found\n\tbmax=%Z\n", bmax);
  if (signe(amax) < 0)
    pari_err(talker, "ratilft: amax must be >= 0, found\n\tamax=%Z\n", amax);
  /* check 2*amax*bmax < m */
  if (cmpii(shifti(mulii(amax, bmax), 1), m) >= 0)
    pari_err(talker, "ratlift: must have 2*amax*bmax < m, found\n\tamax=%Z\n\tbmax=%Z\n\tm=%Z\n", amax,bmax,m);
  /* we _could_ silently replace x with modii(x,m) instead of the following,
   * but let's leave this up to the caller
   */
  avma = av; s = signe(x);
  if (s < 0 || cmpii(x,m) >= 0)
    pari_err(talker, "ratlift: must have 0 <= x < m, found\n\tx=%Z\n\tm=%Z\n", x,m);

  /* special cases x=0 and/or amax=0 */
  if (s == 0)
  {
    if (a != NULL) *a = gen_0;
    if (b != NULL) *b = gen_1;
    return 1;
  }
  else if (signe(amax)==0)
    return 0;
  /* assert: m > x > 0, amax > 0 */

  /* check here whether a=x, b=1 is a solution */
  if (cmpii(x,amax) <= 0)
  {
    if (a != NULL) *a = icopy(x);
    if (b != NULL) *b = gen_1;
    return 1;
  }

  /* There is no special case for single-word numbers since this is
   * mainly meant to be used with large moduli.
   */
  (void)new_chunk(lgefint(bmax) + lgefint(amax)); /* room for a,b */
  d = m; d1 = x;
  v = gen_0; v1 = gen_1;
  /* assert d1 > amax, v1 <= bmax here */
  lb = lgefint(bmax);
  lbb = bfffo(*int_MSW(bmax));
  s = 1;
  av1 = avma; lim = stack_lim(av, 1);

  /* general case: Euclidean division chain starting with m div x, and
   * with bounds on the sequence of convergents' denoms v_j.
   * Just to be different from what invmod and bezout are doing, we work
   * here with the all-nonnegative matrices [u,u1;v,v1]=prod_j([0,1;1,q_j]).
   * Loop invariants:
   * (a) (sign)*[-v,v1]*x = [d,d1] (mod m)  (componentwise)
   * (sign initially +1, changes with each Euclidean step)
   * so [a,b] will be obtained in the form [-+d,v] or [+-d1,v1];
   * this congruence is a consequence of
   * (b) [x,m]~ = [u,u1;v,v1]*[d1,d]~,
   * where u,u1 is the usual numerator sequence starting with 1,0
   * instead of 0,1  (just multiply the eqn on the left by the inverse
   * matrix, which is det*[v1,-u1;-v,u], where "det" is the same as the
   * "(sign)" in (a)).  From m = v*d1 + v1*d and
   * (c) d > d1 >= 0, 0 <= v < v1,
   * we have d >= m/(2*v1), so while v1 remains smaller than m/(2*amax),
   * the pair [-(sign)*d,v] satisfies (1) but violates (2) (d > amax).
   * Conversely, v1 > bmax indicates that no further solutions will be
   * forthcoming;  [-(sign)*d,v] will be the last, and first, candidate.
   * Thus there's at most one point in the chain division where a solution
   * can live:  v < bmax, v1 >= m/(2*amax) > bmax,  and this is acceptable
   * iff in fact d <= amax  (e.g. m=221, x=34 or 35, amax=bmax=10 fail on
   * this count while x=32,33,36,37 succeed).  However, a division may leave
   * a zero residue before we ever reach this point  (consider m=210, x=35,
   * amax=bmax=10),  and our caller may find that gcd(d,v) > 1  (numerous
   * examples -- keep m=210 and consider any of x=29,31,32,33,34,36,37,38,
   * 39,40,41).
   * Furthermore, at the start of the loop body we have in fact
   * (c') 0 <= v < v1 <= bmax, d > d1 > amax >= 0,
   * (and are never done already).
   *
   * Main loop is similar to those of invmod() and bezout(), except for
   * having to determine appropriate vmax bounds, and checking termination
   * conditions.  The signe(d1) condition is only for paranoia
   */
  while (lgefint(d) > 3 && signe(d1))
  {
    /* determine vmax for lgcdii so as to ensure v won't overshoot.
     * If v+v1 > bmax, the next step would take v1 beyond the limit, so
     * since [+-d1,v1] is not a solution, we give up.  Otherwise if v+v1
     * is way shorter than bmax, use vmax=MAXULUNG.  Otherwise, set vmax
     * to a crude lower approximation of bmax/(v+v1), or to 1, which will
     * allow the inner loop to do one step
     */
    r = addii(v,v1);
    lr = lb - lgefint(r);
    lbr = bfffo(*int_MSW(r));
    if (cmpii(r,bmax) > 0)	/* done, not found */
    {
      avma = av;
      return 0;
    }
    else if (lr > 1)		/* still more than a word's worth to go */
    {
      vmax = MAXULONG;
    }
    else			/* take difference of bit lengths */
    {
      lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr;
      if ((ulong)lr > BITS_IN_LONG)
	vmax = MAXULONG;
      else if (lr == 0)
	vmax = 1UL;
      else
	vmax = 1UL << (lr-1);
      /* the latter is pessimistic but faster than a division */
    }
    /* do a Lehmer-Jebelean round */
    lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, vmax);
    if (lhmres != 0)		/* check progress */
    {				/* apply matrix */
      if ((lhmres == 1) || (lhmres == -1))
      {
	s = -s;
	if (xv1 == 1)
	{
	  /* re-use v+v1 computed above */
	  v=v1; v1=r;
	  r = subii(d,d1); d=d1; d1=r;
	}
	else
	{
	  r = subii(d, mului(xv1,d1)); d=d1; d1=r;
	  r = addii(v, mului(xv1,v1)); v=v1; v1=r;
	}
      }
      else
      {
	r  = subii(muliu(d,xu),  muliu(d1,xv));
	d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
	r  = addii(muliu(v,xu),  muliu(v1,xv));
	v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r;
        if (lhmres&1)
	{
          setsigne(d,-signe(d));
	  s = -s;
        }
        else if (signe(d1))
	{
          setsigne(d1,-signe(d1));
        }
      }
      /* check whether we're done.  Assert v <= bmax here.  Examine v1:
       * if v1 > bmax, check d and return 0 or 1 depending on the outcome;
       * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise
       * proceed.
       */
      if (cmpii(v1,bmax) > 0) /* certainly done */
      {
	avma = av;
	if (cmpii(d,amax) <= 0) /* done, found */
	{
	  if (a != NULL)
	  {
	    *a = icopy(d);
	    setsigne(*a,-s);	/* sign opposite to s */
	  }
	  if (b != NULL) *b = icopy(v);
	  return 1;
	}
	else			/* done, not found */
	  return 0;
      }
      else if (cmpii(d1,amax) <= 0) /* also done, found */
      {
	avma = av;
	if (a != NULL)
	{
	  if (signe(d1))
	  {
	    *a = icopy(d1);
	    setsigne(*a,s);	/* same sign as s */
	  }
	  else
	    *a = gen_0;
	}
	if (b != NULL) *b = icopy(v1);
	return 1;
      }
    } /* lhmres != 0 */

    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
#ifdef DEBUG_LEHMER
      fprintferr("Full division:\n");
      printf("  q = "); output(q); sleep (1);
#endif
      d=d1; d1=r;
      r = addii(v,mulii(q,v1));
      v=v1; v1=r;
      s = -s;
      /* check whether we are done now.  Since we weren't before the div, it
       * suffices to examine v1 and d1 -- the new d (former d1) cannot cut it
       */
      if (cmpii(v1,bmax) > 0) /* done, not found */
      {
	avma = av;
	return 0;
      }
      else if (cmpii(d1,amax) <= 0) /* done, found */
      {
	avma = av;
	if (a != NULL)
	{
	  if (signe(d1))
	  {
	    *a = icopy(d1);
	    setsigne(*a,s);	/* same sign as s */
	  }
	  else
	    *a = gen_0;
	}
	if (b != NULL) *b = icopy(v1);
	return 1;
      }
    }

    if (low_stack(lim, stack_lim(av,1)))
    {
      GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1;
      if(DEBUGMEM>1) pari_warn(warnmem,"ratlift");
      gerepilemany(av1,gptr,4);
    }
  } /* end while */

  /* Postprocessing - final sprint.  Since we usually underestimate vmax,
   * this function needs a loop here instead of a simple conditional.
   * Note we can only get here when amax fits into one word  (which will
   * typically not be the case!).  The condition is bogus -- d1 is never
   * zero at the start of the loop.  There will be at most a few iterations,
   * so we don't bother collecting garbage
   */
  while (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3.
     * Moreover, we aren't done already, or we would have returned by now.
     * Recompute vmax...
     */
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: d,d1=%Z,%Z\n", d, d1);
    fprintferr("rl-fs: v,v1=%Z,%Z\n", v, v1);
#endif
    r = addii(v,v1);
    lr = lb - lgefint(r);
    lbr = bfffo(*int_MSW(r));
    if (cmpii(r,bmax) > 0)	/* done, not found */
    {
      avma = av;
      return 0;
    }
    else if (lr > 1)		/* still more than a word's worth to go */
    {
      vmax = MAXULONG;		/* (cannot in fact happen) */
    }
    else			/* take difference of bit lengths */
    {
      lr = (lr << TWOPOTBITS_IN_LONG) - lbb + lbr;
      if ((ulong)lr > BITS_IN_LONG)
	vmax = MAXULONG;
      else if (lr == 0)
	vmax = 1UL;
      else
	vmax = 1UL << (lr-1);	/* as above */
    }
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: vmax=%lu\n", vmax);
#endif
    /* single-word "Lehmer", discarding the gcd or whatever it returns */
    (void)rgcduu((ulong)*int_MSW(d), (ulong)*int_MSW(d1), vmax, &xu, &xu1, &xv, &xv1, &s0);
#ifdef DEBUG_RATLIFT
    fprintferr("rl-fs: [%lu,%lu; %lu,%lu] %s\n",
	       xu, xu1, xv, xv1,
	       s0 < 0 ? "-" : "+");
#endif
    if (xv1 == 1)		/* avoid multiplications */
    {
      /* re-use v+v1 computed above */
      v=v1; v1=r;
      r = subii(d,d1); d=d1; d1=r;
      s = -s;
    }
    else if (xu == 0)		/* and xv==1, xu1==1, xv1 > 1 */
    {
      r = subii(d, mului(xv1,d1)); d=d1; d1=r;
      r = addii(v, mului(xv1,v1)); v=v1; v1=r;
      s = -s;
    }
    else
    {
      r  = subii(muliu(d,xu),  muliu(d1,xv));
      d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
      r  = addii(muliu(v,xu),  muliu(v1,xv));
      v1 = addii(muliu(v,xu1), muliu(v1,xv1)); v = r;
      if (s0 < 0)
      {
	setsigne(d,-signe(d));
	s = -s;
      }
      else if (signe(d1))		/* sic: might vanish now */
      {
	setsigne(d1,-signe(d1));
      }
    }
    /* check whether we're done, as above.  Assert v <= bmax.  Examine v1:
     * if v1 > bmax, check d and return 0 or 1 depending on the outcome;
     * if v1 <= bmax, check d1 and return 1 if d1 <= amax, otherwise proceed.
     */
    if (cmpii(v1,bmax) > 0) /* certainly done */
    {
      avma = av;
      if (cmpii(d,amax) <= 0) /* done, found */
      {
	if (a != NULL)
	{
	  *a = icopy(d);
	  setsigne(*a,-s);	/* sign opposite to s */
	}
	if (b != NULL) *b = icopy(v);
	return 1;
      }
      else			/* done, not found */
	return 0;
    }
    else if (cmpii(d1,amax) <= 0) /* also done, found */
    {
      avma = av;
      if (a != NULL)
      {
	if (signe(d1))
	{
	  *a = icopy(d1);
	  setsigne(*a,s);	/* same sign as s */
	}
	else
	  *a = gen_0;
      }
      if (b != NULL) *b = icopy(v1);
      return 1;
    }
  } /* while */

  /* get here when we have run into d1 == 0 before returning... in fact,
   * this cannot happen.
   */
  pari_err(talker, "ratlift failed to catch d1 == 0\n");
  /* NOTREACHED */
  return 0;
}
Esempio n. 9
0
int
invmod(GEN a, GEN b, GEN *res)
#endif
{
  GEN v,v1,d,d1,q,r;
  pari_sp av, av1, lim;
  long s;
  ulong g;
  ulong xu,xu1,xv,xv1;		/* Lehmer stage recurrence matrix */
  int lhmres;			/* Lehmer stage return value */

  if (typ(a) != t_INT || typ(b) != t_INT) pari_err(arither1);
  if (!signe(b)) { *res=absi(a); return 0; }
  av = avma;
  if (lgefint(b) == 3) /* single-word affair */
  {
    ulong d1 = umodiu(a, (ulong)(b[2]));
    if (d1 == 0)
    {
      if (b[2] == 1L)
        { *res = gen_0; return 1; }
      else
        { *res = absi(b); return 0; }
    }
    g = xgcduu((ulong)(b[2]), d1, 1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    fprintferr(" <- %lu,%lu\n", (ulong)(b[2]), (ulong)(d1[2]));
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    avma = av;
    if (g != 1UL) { *res = utoipos(g); return 0; }
    xv = xv1 % (ulong)(b[2]); if (s < 0) xv = ((ulong)(b[2])) - xv;
    *res = utoipos(xv); return 1;
  }

  (void)new_chunk(lgefint(b));
  d = absi(b); d1 = modii(a,d);

  v=gen_0; v1=gen_1;	/* general case */
#ifdef DEBUG_LEHMER
  fprintferr("INVERT: -------------------------\n");
  output(d1);
#endif
  av1 = avma; lim = stack_lim(av,1);

  while (lgefint(d) > 3 && signe(d1))
  {
#ifdef DEBUG_LEHMER
    fprintferr("Calling Lehmer:\n");
#endif
    lhmres = lgcdii((ulong*)d, (ulong*)d1, &xu, &xu1, &xv, &xv1, MAXULONG);
    if (lhmres != 0)		/* check progress */
    {				/* apply matrix */
#ifdef DEBUG_LEHMER
      fprintferr("Lehmer returned %d [%lu,%lu;%lu,%lu].\n",
	      lhmres, xu, xu1, xv, xv1);
#endif
      if ((lhmres == 1) || (lhmres == -1))
      {
	if (xv1 == 1)
	{
	  r = subii(d,d1); d=d1; d1=r;
	  a = subii(v,v1); v=v1; v1=a;
	}
	else
	{
	  r = subii(d, mului(xv1,d1)); d=d1; d1=r;
	  a = subii(v, mului(xv1,v1)); v=v1; v1=a;
	}
      }
      else
      {
	r  = subii(muliu(d,xu),  muliu(d1,xv));
	a  = subii(muliu(v,xu),  muliu(v1,xv));
	d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
	v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
        if (lhmres&1)
	{
          setsigne(d,-signe(d));
          setsigne(v,-signe(v));
        }
        else
	{
          if (signe(d1)) { setsigne(d1,-signe(d1)); }
          setsigne(v1,-signe(v1));
        }
      }
    }
#ifdef DEBUG_LEHMER
    else
      fprintferr("Lehmer returned 0.\n");
    output(d); output(d1); output(v); output(v1);
    sleep(1);
#endif

    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
#ifdef DEBUG_LEHMER
      fprintferr("Full division:\n");
      printf("  q = "); output(q); sleep (1);
#endif
      a = subii(v,mulii(q,v1));
      v=v1; v1=a;
      d=d1; d1=r;
    }
    if (low_stack(lim, stack_lim(av,1)))
    {
      GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1;
      if(DEBUGMEM>1) pari_warn(warnmem,"invmod");
      gerepilemany(av1,gptr,4);
    }
  } /* end while */

  /* Postprocessing - final sprint */
  if (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3, and
     * gcd(d,d1) is nonzero and fits into one word
     */
    g = xxgcduu((ulong)d[2], (ulong)d1[2], 1, &xu, &xu1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    output(d);output(d1);output(v);output(v1);
    fprintferr(" <- %lu,%lu\n", (ulong)d[2], (ulong)d1[2]);
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    if (g != 1UL) { avma = av; *res = utoipos(g); return 0; }
    /* (From the xgcduu() blurb:)
     * For finishing the multiword modinv, we now have to multiply the
     * returned matrix  (with properly adjusted signs)  onto the values
     * v' and v1' previously obtained from the multiword division steps.
     * Actually, it is sufficient to take the scalar product of [v',v1']
     * with [u1,-v1], and change the sign if s==1.
     */
    v = subii(muliu(v,xu1),muliu(v1,xv1));
    if (s > 0) setsigne(v,-signe(v));
    avma = av; *res = modii(v,b);
#ifdef DEBUG_LEHMER
    output(*res); fprintfderr("============================Done.\n");
    sleep(1);
#endif
    return 1;
  }
  /* get here when the final sprint was skipped (d1 was zero already) */
  avma = av;
  if (!equalii(d,gen_1)) { *res = icopy(d); return 0; }
  *res = modii(v,b);
#ifdef DEBUG_LEHMER
  output(*res); fprintferr("============================Done.\n");
  sleep(1);
#endif
  return 1;
}
Esempio n. 10
0
File: add.c Progetto: jpflori/pari
GEN
addrr_sign(GEN x, long sx, GEN y, long sy)
{
  long lx, ex = expo(x);
  long ly, ey = expo(y), e = ey - ex;
  long i, j, lz, ez, m;
  int extend, f2;
  GEN z;
  LOCAL_OVERFLOW;

  if (!sy)
  {
    if (!sx)
    {
      if (e > 0) ex = ey;
      return real_0_bit(ex);
    }
    if (e >= 0) return real_0_bit(ey);
    lz = nbits2prec(-e);
    lx = lg(x); if (lz > lx) lz = lx;
    z = cgetr(lz); while(--lz) z[lz] = x[lz];
    setsigne(z,sx); return z;
  }
  if (!sx)
  {
    if (e <= 0) return real_0_bit(ex);
    lz = nbits2prec(e);
    ly = lg(y); if (lz > ly) lz = ly;
    z = cgetr(lz); while (--lz) z[lz] = y[lz];
    setsigne(z,sy); return z;
  }

  if (e < 0) { swap(x,y); lswap(sx,sy); ey=ex; e=-e; }
  /* now ey >= ex */
  lx = lg(x);
  ly = lg(y);
  /* If exponents differ, need to shift one argument, here x. If
   * extend = 1: extension of x,z by m < BIL bits (round to 1 word) */
  /* in this case, lz = lx + d + 1, otherwise lx + d */
  extend = 0;
  if (e)
  {
    long d = dvmdsBIL(e, &m), l = ly-d;
    if (l <= 2) return rcopy_sign(y, sy);
    if (l > lx) { lz = lx + d + 1; extend = 1; }
    else        { lz = ly; lx = l; }
    if (m)
    { /* shift x right m bits */
      const pari_sp av = avma;
      const ulong sh = BITS_IN_LONG-m;
      GEN p1 = x; x = new_chunk(lx + lz + 1);
      shift_right(x,p1,2,lx, 0,m);
      if (extend) uel(x,lx) = uel(p1,lx-1) << sh;
      avma = av; /* HACK: cgetr(lz) will not overwrite x */
    }
  }
  else
  { /* d = 0 */
    m = 0;
    if (lx > ly) lx = ly;
    lz = lx;
  }

  if (sx == sy)
  { /* addition */
    i = lz-1;
    j = lx-1;
    if (extend) {
      ulong garde = addll(x[lx], y[i]);
      if (m < 4) /* don't extend for few correct bits */
        z = cgetr(--lz);
      else
      {
        z = cgetr(lz);
        z[i] = garde;
      }
    }
    else
    {
      z = cgetr(lz);
      z[i] = addll(x[j], y[i]); j--;
    }
    i--;
    for (; j>=2; i--,j--) z[i] = addllx(x[j],y[i]);
    if (overflow)
    {
      z[1] = 1; /* stops since z[1] != 0 */
      for (;;) { z[i] = uel(y,i)+1; if (z[i--]) break; }
      if (i <= 0)
      {
        shift_right(z,z, 2,lz, 1,1);
        z[1] = evalsigne(sx) | evalexpo(ey+1); return z;
      }
    }
    for (; i>=2; i--) z[i] = y[i];
    z[1] = evalsigne(sx) | evalexpo(ey); return z;
  }

  /* subtraction */
  if (e) f2 = 1;
  else
  {
    i = 2; while (i < lx && x[i] == y[i]) i++;
    if (i==lx) return real_0_bit(ey+1 - prec2nbits(lx));
    f2 = (uel(y,i) > uel(x,i));
  }
  /* result is non-zero. f2 = (y > x) */
  i = lz-1; z = cgetr(lz);
  if (f2)
  {
    j = lx-1;
    if (extend) z[i] = subll(y[i], x[lx]);
    else        z[i] = subll(y[i], x[j--]);
    for (i--; j>=2; i--) z[i] = subllx(y[i], x[j--]);
    if (overflow) /* stops since y[1] != 0 */
      for (;;) { z[i] = uel(y,i)-1; if (y[i--]) break; }
    for (; i>=2; i--) z[i] = y[i];
    sx = sy;
  }
  else
  {
    if (extend) z[i] = subll(x[lx], y[i]);
    else        z[i] = subll(x[i],  y[i]);
    for (i--; i>=2; i--) z[i] = subllx(x[i], y[i]);
  }

  x = z+2; i = 0; while (!x[i]) i++;
  lz -= i; z += i;
  j = bfffo(z[2]); /* need to shift left by j bits to normalize mantissa */
  ez = ey - (j | (i * BITS_IN_LONG));
  if (extend)
  { /* z was extended by d+1 words [should be e bits = d words + m bits] */
    /* not worth keeping extra word if less than 5 significant bits in there */
    if (m - j < 5 && lz > 3)
    { /* shorten z */
      ulong last = (ulong)z[--lz]; /* cancelled word */

      /* if we need to shift anyway, shorten from left
       * If not, shorten from right, neutralizing last word of z */
      if (j == 0)
        /* stackdummy((pari_sp)(z + lz+1), (pari_sp)(z + lz)); */
        z[lz] = evaltyp(t_VECSMALL) | _evallg(1);
      else
      {
        GEN t = z;
        z++; shift_left(z,t,2,lz-1, last,j);
      }
      if ((last<<j) & HIGHBIT)
      { /* round up */
        i = lz-1;
        while (++((ulong*)z)[i] == 0 && i > 1) i--;
        if (i == 1) { ez++; z[2] = (long)HIGHBIT; }
      }
    }
    else if (j) shift_left(z,z,2,lz-1, 0,j);
  }
  else if (j) shift_left(z,z,2,lz-1, 0,j);
  z[1] = evalsigne(sx) | evalexpo(ez);
  z[0] = evaltyp(t_REAL) | evallg(lz);
  avma = (pari_sp)z; return z;
}
Esempio n. 11
0
engine_RawRingElementArrayOrNull rawRoots(const RingElement *p, long prec,
                                          int unique) {
  const Ring *R = p->get_ring();
  const PolynomialRing *P = R->cast_to_PolynomialRing();
  if (P == 0) {
    ERROR("expected a polynomial ring");
    return NULL;
  }
  const int n = P->n_vars();
  if (n != 1) {
    ERROR("expected a univariate polynomial ring");
    return NULL;
  }
  const Ring *K = P->getCoefficients();
  int degree = 0;
  for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
    degree = max(degree, abs(*(t->monom)));
  }
  if (prec == -1) {
    prec = (K->get_precision() == 0 ? 53 : K->get_precision());
  }

  engine_RawRingElementArrayOrNull result = nullptr;

  /* Start PARI computations. */
  pari_CATCH(e_STACK) {
#ifdef NDEBUG
    /*
     * Every time the stack is changed PARI writes a message to the file pari_errfile
     * which by default is /dev/stderr. To avoid showing this message to the user we
     * redirect to /dev/null before the PARI's stack is modified.
     */
    FILE *tmp, *dev_null = fopen("/dev/null", "w");
    if (dev_null != NULL) {
      tmp = pari_errfile;
      pari_errfile = dev_null;
    }
#endif
  allocatemem(0); // passing 0 will double the current stack size.
#ifdef NDEBUG
    /*
     * We set pari_errfile back to the default value just in case PARI crashes.
     */
    if (dev_null != NULL) {
      pari_errfile = tmp;
      fclose(dev_null);
    }
#endif
  } pari_RETRY {
    const pari_sp av = avma;

    GEN q = cgetg(2 + degree + 1, t_POL);
    setsigne(q, 1);
    setvarn(q, 0);
    for (int i = 0; i < degree + 1; ++i) {
      gel(q, 2 + i) = gen_0;
    }

    switch (K->ringID()) {
    case M2::ring_ZZ:
    ZZ_GMP:
      for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
        gel(q, 2 + abs(*(t->monom))) =
            mpz_get_GEN(reinterpret_cast<const mpz_ptr>(t->coeff.poly_val));
      }
      break;
    case M2::ring_QQ:
      for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
        gel(q, 2 + abs(*(t->monom))) =
            mpq_get_GEN(reinterpret_cast<const mpq_ptr>(t->coeff.poly_val));
      }
      break;
    case M2::ring_RR:
      pari_CATCH(e_OVERFLOW) {
        ERROR("coefficient is NaN or Infinity");
        avma = av;
        return NULL;
      }
      pari_TRY {
        for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
          gel(q, 2 + abs(*(t->monom))) =
              dbltor(*reinterpret_cast<double *>(t->coeff.poly_val));
        }
      }
      pari_ENDCATCH
      break;
    case M2::ring_CC:
      pari_CATCH(e_OVERFLOW) {
        ERROR("coefficient is NaN or Infinity");
        avma = av;
        return NULL;
      }
      pari_TRY {
        for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
          GEN z = cgetg(3, t_COMPLEX);
          gel(z, 1) = dbltor(reinterpret_cast<complex *>(t->coeff.poly_val)->re);
          gel(z, 2) = dbltor(reinterpret_cast<complex *>(t->coeff.poly_val)->im);
          gel(q, 2 + abs(*(t->monom))) = z;
        }
      }
      pari_ENDCATCH
      break;
    case M2::ring_RRR:
      for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
        gel(q, 2 + abs(*(t->monom))) =
            mpfr_get_GEN(reinterpret_cast<const mpfr_ptr>(t->coeff.poly_val));
      }
      break;
    case M2::ring_CCC:
      for (Nterm *t = p->get_value(); t != NULL; t = t->next) {
        gel(q, 2 + abs(*(t->monom))) =
            mpc_get_GEN(reinterpret_cast<const mpc_ptr>(t->coeff.poly_val));
      }
      break;
    case M2::ring_old:
      if (K->is_ZZ()) {
        goto ZZ_GMP;
      }
    default:
      ERROR("expected coefficient ring of the form ZZ, QQ, RR or CC");
      return NULL;
    }

    if (unique) {
      q = RgX_div(q, RgX_gcd_simple(q, RgX_deriv(q)));
    }

    GEN roots = cleanroots(q, nbits2prec(prec));

    const size_t num_roots = lg(roots) - 1;
    result = getmemarraytype(engine_RawRingElementArray, num_roots);
    result->len = static_cast<int>(num_roots);

    ring_elem m2_root;
    if (prec <= 53) {
      const RingCC *CC = dynamic_cast<const RingCC *>(IM2_Ring_CCC(prec));

      for (int i = 0; i < num_roots; ++i) {
        const pari_sp av2 = avma;

        GEN pari_root = gel(roots, 1 + i);
        const complex root = {rtodbl(greal(pari_root)),
                              rtodbl(gimag(pari_root))};
        CC->ring().to_ring_elem(m2_root, root);
        result->array[i] = RingElement::make_raw(CC, m2_root);

        avma = av2;
      }
    } else {
      const RingCCC *CCC = dynamic_cast<const RingCCC *>(IM2_Ring_CCC(prec));

      for (int i = 0; i < num_roots; ++i) {
        const pari_sp av2 = avma;

        mpc_t root;
        auto root1 = reinterpret_cast<mpfc_t*>(&root);
        pari_mpc_init_set_GEN(root, gel(roots, 1 + i), GMP_RNDN);
        //        CCC->ring().to_ring_elem(m2_root, **reinterpret_cast<mpfc_t*>(&root));
        CCC->ring().to_ring_elem(m2_root, **root1);
        result->array[i] = RingElement::make_raw(CCC, m2_root);

        avma = av2;
      }
    }

    /* End PARI computations. */
    avma = av;
  }
  pari_ENDCATCH

  return result;
}