Esempio n. 1
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{

	uint8_t init = 0;
	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE);

	// Keep flash CS pin high while talking accel
	PIOS_FLASH_DISABLE;		
	PIOS_ADXL345_Init();
			
	// Main task loop
	while (1) {
		
		if(xTaskGetTickCount() < 10000) {
			// For first 5 seconds use accels to get gyro bias
			accelKp = 1;
			// Decrease the rate of gyro learning during init
			accelKi = .5 / (1 + xTaskGetTickCount() / 5000);
		} else if (init == 0) {
			settingsUpdatedCb(AttitudeSettingsHandle());
			init = 1;
		}						
			
		PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
		
		AttitudeRawData attitudeRaw;
		AttitudeRawGet(&attitudeRaw);		
		updateSensors(&attitudeRaw);		
		updateAttitude(&attitudeRaw);
		AttitudeRawSet(&attitudeRaw); 	

	}
}
Esempio n. 2
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{
	uint8_t init = 0;
	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	PIOS_ADC_Config((PIOS_ADC_RATE / 1000.0f) * UPDATE_RATE);

	// Keep flash CS pin high while talking accel
	PIOS_FLASH_DISABLE;
	PIOS_ADXL345_Init();


	// Force settings update to make sure rotation loaded
	settingsUpdatedCb(AttitudeSettingsHandle());

	// Main task loop
	while (1) {

		FlightStatusData flightStatus;
		FlightStatusGet(&flightStatus);

		if((xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) {
			// For first 7 seconds use accels to get gyro bias
			accelKp = 1;
			accelKi = 0.9;
			yawBiasRate = 0.23;
			init = 0;
		}
		else if (zero_during_arming && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {
			accelKp = 1;
			accelKi = 0.9;
			yawBiasRate = 0.23;
			init = 0;
		} else if (init == 0) {
			// Reload settings (all the rates)
			AttitudeSettingsAccelKiGet(&accelKi);
			AttitudeSettingsAccelKpGet(&accelKp);
			AttitudeSettingsYawBiasRateGet(&yawBiasRate);
			init = 1;
		}

		PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);

		AttitudeRawData attitudeRaw;
		AttitudeRawGet(&attitudeRaw);
		updateSensors(&attitudeRaw);
		updateAttitude(&attitudeRaw);
		AttitudeRawSet(&attitudeRaw);

	}
}
Esempio n. 3
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{
	bool first_run = true;
	uint32_t last_algorithm;
	AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

	// Force settings update to make sure rotation loaded
	settingsUpdatedCb(NULL);

	// Wait for all the sensors be to read
	vTaskDelay(100);

	// Invalidate previous algorithm to trigger a first run
	last_algorithm = 0xfffffff;

	// Main task loop
	while (1) {

		int32_t ret_val = -1;

		if (last_algorithm != revoSettings.FusionAlgorithm) {
			last_algorithm = revoSettings.FusionAlgorithm;
			first_run = true;
		}

		// This  function blocks on data queue
		switch (revoSettings.FusionAlgorithm ) {
			case REVOSETTINGS_FUSIONALGORITHM_COMPLEMENTARY:
				ret_val = updateAttitudeComplementary(first_run);
				break;
			case REVOSETTINGS_FUSIONALGORITHM_INSOUTDOOR:
				ret_val = updateAttitudeINSGPS(first_run, true);
				break;
			case REVOSETTINGS_FUSIONALGORITHM_INSINDOOR:
				ret_val = updateAttitudeINSGPS(first_run, false);
				break;
			default:
				AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_CRITICAL);
				break;
		}

		if(ret_val == 0)
			first_run = false;

		PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);
	}
}
Esempio n. 4
0
static void SensorsTask(void *parameters)
{
	portTickType lastSysTime;
	uint32_t accel_samples = 0;
	uint32_t gyro_samples = 0;
	int32_t accel_accum[3] = {0, 0, 0};
	int32_t gyro_accum[3] = {0,0,0};
	float gyro_scaling = 0;
	float accel_scaling = 0;
	static int32_t timeval;

	AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);

	UAVObjEvent ev;
	settingsUpdatedCb(&ev);

	const struct pios_board_info * bdinfo = &pios_board_info_blob;	

	switch(bdinfo->board_rev) {
		case 0x01:
#if defined(PIOS_INCLUDE_L3GD20)
			gyro_test = PIOS_L3GD20_Test();
#endif
#if defined(PIOS_INCLUDE_BMA180)
			accel_test = PIOS_BMA180_Test();
#endif
			break;
		case 0x02:
#if defined(PIOS_INCLUDE_MPU6000)
			gyro_test = PIOS_MPU6000_Test();
			accel_test = gyro_test;
#endif
			break;
		default:
			PIOS_DEBUG_Assert(0);
	}

#if defined(PIOS_INCLUDE_HMC5883)
	mag_test = PIOS_HMC5883_Test();
#else
	mag_test = 0;
#endif

	if(accel_test < 0 || gyro_test < 0 || mag_test < 0) {
		AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
		while(1) {
			PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
			vTaskDelay(10);
		}
	}
	
	// Main task loop
	lastSysTime = xTaskGetTickCount();
	bool error = false;
	uint32_t mag_update_time = PIOS_DELAY_GetRaw();
	while (1) {
		// TODO: add timeouts to the sensor reads and set an error if the fail
		sensor_dt_us = PIOS_DELAY_DiffuS(timeval);
		timeval = PIOS_DELAY_GetRaw();

		if (error) {
			PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);
			lastSysTime = xTaskGetTickCount();
			vTaskDelayUntil(&lastSysTime, SENSOR_PERIOD / portTICK_RATE_MS);
			AlarmsSet(SYSTEMALARMS_ALARM_SENSORS, SYSTEMALARMS_ALARM_CRITICAL);
			error = false;
		} else {
			AlarmsClear(SYSTEMALARMS_ALARM_SENSORS);
		}


		for (int i = 0; i < 3; i++) {
			accel_accum[i] = 0;
			gyro_accum[i] = 0;
		}
		accel_samples = 0;
		gyro_samples = 0;

		AccelsData accelsData;
		GyrosData gyrosData;

		switch(bdinfo->board_rev) {
			case 0x01:  // L3GD20 + BMA180 board
#if defined(PIOS_INCLUDE_BMA180)
			{
				struct pios_bma180_data accel;
				
				int32_t read_good;
				int32_t count;
				
				count = 0;
				while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0 && !error)
					error = ((xTaskGetTickCount() - lastSysTime) > SENSOR_PERIOD) ? true : error;
				if (error) {
					// Unfortunately if the BMA180 ever misses getting read, then it will not
					// trigger more interrupts.  In this case we must force a read to kickstarts
					// it.
					struct pios_bma180_data data;
					PIOS_BMA180_ReadAccels(&data);
					continue;
				}
				while(read_good == 0) {	
					count++;
					
					accel_accum[1] += accel.x;
					accel_accum[0] += accel.y;
					accel_accum[2] -= accel.z;
					
					read_good = PIOS_BMA180_ReadFifo(&accel);
				}
				accel_samples = count;
				accel_scaling = PIOS_BMA180_GetScale();
				
				// Get temp from last reading
				accelsData.temperature = 25.0f + ((float) accel.temperature - 2.0f) / 2.0f;
			}
#endif
#if defined(PIOS_INCLUDE_L3GD20)
			{
				struct pios_l3gd20_data gyro;
				gyro_samples = 0;
				xQueueHandle gyro_queue = PIOS_L3GD20_GetQueue();
				
				if(xQueueReceive(gyro_queue, (void *) &gyro, 4) == errQUEUE_EMPTY) {
					error = true;
					continue;
				}
				
				gyro_samples = 1;
				gyro_accum[1] += gyro.gyro_x;
				gyro_accum[0] += gyro.gyro_y;
				gyro_accum[2] -= gyro.gyro_z;
				
				gyro_scaling = PIOS_L3GD20_GetScale();

				// Get temp from last reading
				gyrosData.temperature = gyro.temperature;
			}
#endif
				break;
			case 0x02:  // MPU6000 board
			case 0x03:  // MPU6000 board
#if defined(PIOS_INCLUDE_MPU6000)
			{
				struct pios_mpu6000_data mpu6000_data;
				xQueueHandle queue = PIOS_MPU6000_GetQueue();
				
				while(xQueueReceive(queue, (void *) &mpu6000_data, gyro_samples == 0 ? 10 : 0) != errQUEUE_EMPTY)
				{
					gyro_accum[0] += mpu6000_data.gyro_x;
					gyro_accum[1] += mpu6000_data.gyro_y;
					gyro_accum[2] += mpu6000_data.gyro_z;

					accel_accum[0] += mpu6000_data.accel_x;
					accel_accum[1] += mpu6000_data.accel_y;
					accel_accum[2] += mpu6000_data.accel_z;

					gyro_samples ++;
					accel_samples ++;
				}
				
				if (gyro_samples == 0) {
					PIOS_MPU6000_ReadGyros(&mpu6000_data);
					error = true;
					continue;
				}

				gyro_scaling = PIOS_MPU6000_GetScale();
				accel_scaling = PIOS_MPU6000_GetAccelScale();

				gyrosData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
				accelsData.temperature = 35.0f + ((float) mpu6000_data.temperature + 512.0f) / 340.0f;
			}
#endif /* PIOS_INCLUDE_MPU6000 */
				break;
			default:
				PIOS_DEBUG_Assert(0);
		}

		// Scale the accels
		float accels[3] = {(float) accel_accum[0] / accel_samples, 
		                   (float) accel_accum[1] / accel_samples,
		                   (float) accel_accum[2] / accel_samples};
		float accels_out[3] = {accels[0] * accel_scaling * accel_scale[0] - accel_bias[0],
		                       accels[1] * accel_scaling * accel_scale[1] - accel_bias[1],
		                       accels[2] * accel_scaling * accel_scale[2] - accel_bias[2]};
		if (rotate) {
			rot_mult(R, accels_out, accels);
			accelsData.x = accels[0];
			accelsData.y = accels[1];
			accelsData.z = accels[2];
		} else {
			accelsData.x = accels_out[0];
			accelsData.y = accels_out[1];
			accelsData.z = accels_out[2];
		}
		AccelsSet(&accelsData);

		// Scale the gyros
		float gyros[3] = {(float) gyro_accum[0] / gyro_samples,
		                  (float) gyro_accum[1] / gyro_samples,
		                  (float) gyro_accum[2] / gyro_samples};
		float gyros_out[3] = {gyros[0] * gyro_scaling,
		                      gyros[1] * gyro_scaling,
		                      gyros[2] * gyro_scaling};
		if (rotate) {
			rot_mult(R, gyros_out, gyros);
			gyrosData.x = gyros[0];
			gyrosData.y = gyros[1];
			gyrosData.z = gyros[2];
		} else {
			gyrosData.x = gyros_out[0];
			gyrosData.y = gyros_out[1];
			gyrosData.z = gyros_out[2];
		}
		
		if (bias_correct_gyro) {
			// Apply bias correction to the gyros from the state estimator
			GyrosBiasData gyrosBias;
			GyrosBiasGet(&gyrosBias);
			gyrosData.x -= gyrosBias.x;
			gyrosData.y -= gyrosBias.y;
			gyrosData.z -= gyrosBias.z;
		}
		GyrosSet(&gyrosData);
		
		// Because most crafts wont get enough information from gravity to zero yaw gyro, we try
		// and make it average zero (weakly)

#if defined(PIOS_INCLUDE_HMC5883)
		MagnetometerData mag;
		if (PIOS_HMC5883_NewDataAvailable() || PIOS_DELAY_DiffuS(mag_update_time) > 150000) {
			int16_t values[3];
			PIOS_HMC5883_ReadMag(values);
			float mags[3] = {-(float) values[1] * mag_scale[0] - mag_bias[0],
			                 -(float) values[0] * mag_scale[1] - mag_bias[1],
			                 -(float) values[2] * mag_scale[2] - mag_bias[2]};
			if (rotate) {
				float mag_out[3];
				rot_mult(R, mags, mag_out);
				mag.x = mag_out[0];
				mag.y = mag_out[1];
				mag.z = mag_out[2];
			} else {
				mag.x = mags[0];
				mag.y = mags[1];
				mag.z = mags[2];
			}
			
			// Correct for mag bias and update if the rate is non zero
			if(cal.MagBiasNullingRate > 0)
				magOffsetEstimation(&mag);

			MagnetometerSet(&mag);
			mag_update_time = PIOS_DELAY_GetRaw();
		}
#endif

		PIOS_WDG_UpdateFlag(PIOS_WDG_SENSORS);

		lastSysTime = xTaskGetTickCount();
	}
}
Esempio n. 5
0
/**
 * Main task. It does not return.
 */
static void batteryTask(void * parameters)
{
	const float dT = SAMPLE_PERIOD_MS / 1000.0f;

	settingsUpdatedCb(NULL);

	// Main task loop
	portTickType lastSysTime;
	lastSysTime = xTaskGetTickCount();
	while (true) {
		vTaskDelayUntil(&lastSysTime, MS2TICKS(SAMPLE_PERIOD_MS));

		FlightBatteryStateData flightBatteryData;
		FlightBatterySettingsData batterySettings;
		float energyRemaining;

		if (battery_settings_updated) {
			battery_settings_updated = false;
			FlightBatterySettingsGet(&batterySettings);

			voltageADCPin = batterySettings.VoltagePin;
			if (voltageADCPin == FLIGHTBATTERYSETTINGS_VOLTAGEPIN_NONE)
				voltageADCPin = -1;

			currentADCPin = batterySettings.CurrentPin;
			if (currentADCPin == FLIGHTBATTERYSETTINGS_CURRENTPIN_NONE)
				currentADCPin = -1;
		}

		//calculate the battery parameters
		if (voltageADCPin >= 0) {
			flightBatteryData.Voltage = ((float) PIOS_ADC_GetChannelVolt(voltageADCPin)) / batterySettings.SensorCalibrationFactor[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONFACTOR_VOLTAGE] * 1000.0f +
							batterySettings.SensorCalibrationOffset[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONOFFSET_VOLTAGE]; //in Volts
		} else {
			flightBatteryData.Voltage = 0; //Dummy placeholder value. This is in case we get another source of battery current which is not from the ADC
		}

		if (currentADCPin >= 0) {
			flightBatteryData.Current = ((float) PIOS_ADC_GetChannelVolt(currentADCPin)) / batterySettings.SensorCalibrationFactor[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONFACTOR_CURRENT] * 1000.0f +
							batterySettings.SensorCalibrationOffset[FLIGHTBATTERYSETTINGS_SENSORCALIBRATIONOFFSET_CURRENT]; //in Amps
			if (flightBatteryData.Current > flightBatteryData.PeakCurrent)
				flightBatteryData.PeakCurrent = flightBatteryData.Current; //in Amps
		} else { //If there's no current measurement, we still need to assign one. Make it negative, so it can never trigger an alarm
			flightBatteryData.Current = -1; //Dummy placeholder value. This is in case we get another source of battery current which is not from the ADC
		}

		flightBatteryData.ConsumedEnergy += (flightBatteryData.Current * dT * 1000.0f / 3600.0f); //in mAh

		//Apply a 2 second rise time low-pass filter to average the current
		float alpha = 1.0f - dT / (dT + 2.0f);
		flightBatteryData.AvgCurrent = alpha * flightBatteryData.AvgCurrent + (1 - alpha) * flightBatteryData.Current; //in Amps

		energyRemaining = batterySettings.Capacity - flightBatteryData.ConsumedEnergy; // in mAh
		if (flightBatteryData.AvgCurrent > 0)
			flightBatteryData.EstimatedFlightTime = (energyRemaining / (flightBatteryData.AvgCurrent * 1000.0f)) * 3600.0f; //in Sec
		else
			flightBatteryData.EstimatedFlightTime = 9999;

		//generate alarms where needed...
		if ((flightBatteryData.Voltage <= 0) && (flightBatteryData.Current <= 0)) {
			//FIXME: There's no guarantee that a floating ADC will give 0. So this
			// check might fail, even when there's nothing attached.
			AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_ERROR);
			AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_ERROR);
		} else {
			// FIXME: should make the timer alarms user configurable
			if (flightBatteryData.EstimatedFlightTime < 30)
				AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_CRITICAL);
			else if (flightBatteryData.EstimatedFlightTime < 120)
				AlarmsSet(SYSTEMALARMS_ALARM_FLIGHTTIME, SYSTEMALARMS_ALARM_WARNING);
			else
				AlarmsClear(SYSTEMALARMS_ALARM_FLIGHTTIME);

			// FIXME: should make the battery voltage detection dependent on battery type.
			/*Not so sure. Some users will want to run their batteries harder than others, so it should be the user's choice. [KDS]*/
			if (flightBatteryData.Voltage < batterySettings.VoltageThresholds[FLIGHTBATTERYSETTINGS_VOLTAGETHRESHOLDS_ALARM])
				AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_CRITICAL);
			else if (flightBatteryData.Voltage < batterySettings.VoltageThresholds[FLIGHTBATTERYSETTINGS_VOLTAGETHRESHOLDS_WARNING])
				AlarmsSet(SYSTEMALARMS_ALARM_BATTERY, SYSTEMALARMS_ALARM_WARNING);
			else
				AlarmsClear(SYSTEMALARMS_ALARM_BATTERY);
		}

		FlightBatteryStateSet(&flightBatteryData);
	}
}
Esempio n. 6
0
/**
 * Module thread, should not return.
 */
static void AttitudeTask(void *parameters)
{
    AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);

    // Force settings update to make sure rotation loaded
    settingsUpdatedCb(AttitudeSettingsHandle());

    enum complimentary_filter_status complimentary_filter_status;
    complimentary_filter_status = CF_POWERON;

    uint32_t arming_count = 0;

    // Main task loop
    while (1) {

        FlightStatusData flightStatus;
        FlightStatusGet(&flightStatus);

        if (complimentary_filter_status == CF_POWERON) {

            complimentary_filter_status = (xTaskGetTickCount() > 1000) ?
                                          CF_INITIALIZING : CF_POWERON;

        } else if(complimentary_filter_status == CF_INITIALIZING &&
                  (xTaskGetTickCount() < 7000) &&
                  (xTaskGetTickCount() > 1000)) {

            // For first 7 seconds use accels to get gyro bias
            accelKp = 0.1f + 0.1f * (xTaskGetTickCount() < 4000);
            accelKi = 0.1;
            yawBiasRate = 0.1;
            accel_filter_enabled = false;

        } else if (zero_during_arming &&
                   (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) {

            // Use a rapidly decrease accelKp to force the attitude to snap back
            // to level and then converge more smoothly
            if (arming_count < 20)
                accelKp = 1.0f;
            else if (accelKp > 0.1f)
                accelKp -= 0.01f;
            arming_count++;

            accelKi = 0.1f;
            yawBiasRate = 0.1f;
            accel_filter_enabled = false;

            // Indicate arming so that after arming it reloads
            // the normal settings
            if (complimentary_filter_status != CF_ARMING) {
                accumulate_gyro_zero();
                complimentary_filter_status = CF_ARMING;
                accumulating_gyro = true;
            }

        } else if (complimentary_filter_status == CF_ARMING ||
                   complimentary_filter_status == CF_INITIALIZING) {

            // Reload settings (all the rates)
            AttitudeSettingsAccelKiGet(&accelKi);
            AttitudeSettingsAccelKpGet(&accelKp);
            AttitudeSettingsYawBiasRateGet(&yawBiasRate);
            if(accel_alpha > 0.0f)
                accel_filter_enabled = true;

            // If arming that means we were accumulating gyro
            // samples.  Compute new bias.
            if (complimentary_filter_status == CF_ARMING) {
                accumulate_gyro_compute();
                accumulating_gyro = false;
                arming_count = 0;
            }

            // Indicate normal mode to prevent rerunning this code
            complimentary_filter_status = CF_NORMAL;
        }

        PIOS_WDG_UpdateFlag(PIOS_WDG_ATTITUDE);

        AccelsData accels;
        GyrosData gyros;
        int32_t retval = 0;

        retval = updateSensorsCC3D(&accels, &gyros);

        // During power on set to angle from accel
        if (complimentary_filter_status == CF_POWERON) {
            float RPY[3];
            float theta = atan2f(accels.x, -accels.z);
            RPY[1] = theta * RAD2DEG;
            RPY[0] = atan2f(-accels.y, -accels.z / cosf(theta)) * RAD2DEG;
            RPY[2] = 0;
            RPY2Quaternion(RPY, q);
        }

        // Only update attitude when sensor data is good
        if (retval != 0)
            AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE, SYSTEMALARMS_ALARM_ERROR);
        else {
            // Do not update attitude data in simulation mode
            if (!AttitudeActualReadOnly())
                updateAttitude(&accels, &gyros);

            AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE);
        }
    }
}