Esempio n. 1
0
/*
 * Compute a SHA checksum on the username, cellname, and password
 */
void
weblog_login_checksum(char *user, char *cell, char *passwd, char *cksum)
{
    int passwdLen;
    int userLen;
    int cellLen;
    char *shaBuffer;
    shaState state;

    /*
     * Compute SHA(username,SHA(password,pad))
     */
    passwdLen = strlen(passwd);
    userLen = strlen(user);
    cellLen = strlen(cell);
    shaBuffer =
	(char *)malloc(MAX(userLen + cellLen, passwdLen) + SHA_HASH_BYTES);
    strcpy(shaBuffer, passwd);
    memcpy((void *)(shaBuffer + passwdLen), (void *)(&weblog_login_pad[0]),
	   SHA_HASH_BYTES);
    sha_clear(&state);
    sha_hash(&state, shaBuffer, passwdLen + SHA_HASH_BYTES);
    memcpy(shaBuffer, user, userLen);
    memcpy(shaBuffer + userLen, cell, cellLen);
    sha_bytes(&state, shaBuffer + userLen + cellLen);
    sha_clear(&state);
    sha_hash(&state, shaBuffer, userLen + cellLen + SHA_HASH_BYTES);
    sha_bytes(&state, &cksum[0]);
    memset(shaBuffer, 0, MAX(userLen + cellLen, passwdLen) + SHA_HASH_BYTES);
    free(shaBuffer);
}
Esempio n. 2
0
/* note that this call terminates the key input phase   */
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1])
{   unsigned int i;

    if(cx->klen != HMAC_IN_DATA)                /* if not yet in data phase */
    {
        if(cx->klen > HASH_INPUT_SIZE)          /* if key is being hashed   */
        {                                       /* complete the hash and    */
            sha_end(cx->key, cx->ctx);         /* store the result as the  */
            cx->klen = HASH_OUTPUT_SIZE;        /* key and set new length   */
        }

        /* pad the key if necessary */
        memset(cx->key + cx->klen, 0, HASH_INPUT_SIZE - cx->klen);

        /* xor ipad into key value  */
        for(i = 0; i < HASH_INPUT_SIZE / sizeof(unsigned long); ++i)
            ((unsigned long*)cx->key)[i] ^= IPAD;

        /* and start hash operation */
        sha_begin(cx->ctx);
        sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);

        /* mark as now in data mode */
        cx->klen = HMAC_IN_DATA;
    }

    /* hash the data (if any)       */
    if(data_len)
        sha_hash(data, data_len, cx->ctx);
}
Esempio n. 3
0
char *shahash(const char *str) 
{
	char read_buffer[65];
	//int read_buffer[64];
	int c=1, i;
       
	INT64 length=0;

	int strsz;
	static char final[40];
	int *hashval;

	hashval = (int *)malloc(20);

	sha_init(hashval);

	strsz = strlen(str);

	if(strsz == 0) 
	{
	     memset(read_buffer, 0, 65);
	     read_buffer[0] = 0x80;
	     sha_hash((int *)read_buffer, hashval);
	}

	while (strsz>0) 
	{
		memset(read_buffer, 0, 65);
		strncpy((char*)read_buffer, str, 64);
		c = strlen((char *)read_buffer);
		length+=c;
		strsz-=c;
		if (strsz<=0) 
		{
			length<<=3;	
			read_buffer[c]=(char)0x80;
			for (i=c+1; i<64; i++) 
				read_buffer[i]=0;
			if (c>55) 
			{
				/* we need to do an entire new block */
				sha_hash((int *)read_buffer, hashval);
				for (i=0; i<14; i++) 
					((int*)read_buffer)[i]=0;
			}      
#ifndef WORDS_BIGENDIAN
			for (i=0; i<8; i++) 
			{
				read_buffer[56+i]=(char)(length>>(56-(i*8))) & 0xff;
			}
#else	
			memcpy(read_buffer+56, &length, 8);
#endif
		}
		
		sha_hash((int *)read_buffer, hashval);
		str+=64;
	}
Esempio n. 4
0
//Generate a verification key using two null-terminated strings
//Concatenates the strings together then hashes them with sha_hash
unsigned char *create_v_key(char* data1, char *data2)
{
	char *tmp = string_cat(2,data1,data2); //TODO XOR these instead?
	unsigned char* key = sha_hash((unsigned char *)tmp, (long)strlen(tmp));
	free(tmp);
	return key;
}
Esempio n. 5
0
/*
static int check_default(const char *s, int len)
{
	char tst[64];
	register char *x = s;
	if (len!=7) return 0;
	//snprintf(tst,len+1,"%s",s);
	getprint(s,len,tst);
	dbger("checkd(): %s",tst);
	if (*x != 'n') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 'o') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 'm') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 'a') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 't') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 'c') return 0; len--; if(len < 0) return 0; x++;
	if (*x != 'h') return 0; len--; if(len < 0) return 0; x++;
	dbger("match_default_entry");
	return 1;
}
*/
static uint32 gethash(const char *s, uint32 slen)
{
	if (slen == 0) return 0U;
#ifdef SHASTRID
	return sha_hash(s,slen);
#else
	return cdb_hash(s,slen);
#endif
}
Esempio n. 6
0
/* input the HMAC key (can be called multiple times)    */
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1])
{
    if(cx->klen == HMAC_IN_DATA)                /* error if further key input   */
        return HMAC_BAD_MODE;                   /* is attempted in data mode    */

    if(cx->klen + key_len > HASH_INPUT_SIZE)    /* if the key has to be hashed  */
    {
        if(cx->klen <= HASH_INPUT_SIZE)         /* if the hash has not yet been */
        {                                       /* started, initialise it and   */
            sha_begin(cx->ctx);                /* hash stored key characters   */
            sha_hash(cx->key, cx->klen, cx->ctx);
        }

        sha_hash(key, key_len, cx->ctx);       /* hash long key data into hash */
    }
    else                                        /* otherwise store key data     */
        memcpy(cx->key + cx->klen, key, key_len);

    cx->klen += key_len;                        /* update the key length count  */
    return HMAC_OK;
}
Esempio n. 7
0
/* compute and output the MAC value */
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1])
{   unsigned char dig[HASH_OUTPUT_SIZE];
    unsigned int i;

    /* if no data has been entered perform a null data phase        */
    if(cx->klen != HMAC_IN_DATA)
        hmac_sha_data((const unsigned char*)0, 0, cx);

    sha_end(dig, cx->ctx);         /* complete the inner hash      */

    /* set outer key value using opad and removing ipad */
    for(i = 0; i < HASH_INPUT_SIZE / sizeof(unsigned long); ++i)
        ((unsigned long*)cx->key)[i] ^= OPAD ^ IPAD;

    /* perform the outer hash operation */
    sha_begin(cx->ctx);
    sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);
    sha_hash(dig, HASH_OUTPUT_SIZE, cx->ctx);
    sha_end(dig, cx->ctx);

    /* output the hash value            */
    for(i = 0; i < mac_len; ++i)
        mac[i] = dig[i];
}
Esempio n. 8
0
int
main()
{
	int cfd = -1, i;
	struct cryptodev_ctx ctx;
	uint8_t digest[20];
	char text[] = "The quick brown fox jumps over the lazy dog";
	uint8_t expected[] = "\x2f\xd4\xe1\xc6\x7a\x2d\x28\xfc\xed\x84\x9e\xe1\xbb\x76\xe7\x39\x1b\x93\xeb\x12";

	/* Open the crypto device */
	cfd = open("/dev/crypto", O_RDWR, 0);
	if (cfd < 0) {
		perror("open(/dev/crypto)");
		return 1;
	}

	/* Set close-on-exec (not really neede here) */
	if (fcntl(cfd, F_SETFD, 1) == -1) {
		perror("fcntl(F_SETFD)");
		return 1;
	}

	sha_ctx_init(&ctx, cfd, NULL, 0);
	
	sha_hash(&ctx, text, strlen(text), digest);
	
	sha_ctx_deinit(&ctx);

	printf("digest: ");
	for (i = 0; i < 20; i++) {
		printf("%02x:", digest[i]);
	}
	printf("\n");
	
	if (memcmp(digest, expected, 20) != 0) {
		fprintf(stderr, "SHA1 hashing failed\n");
		return 1;
	}

	/* Close the original descriptor */
	if (close(cfd)) {
		perror("close(cfd)");
		return 1;
	}

	return 0;
}
Esempio n. 9
0
CK_RV
digest_mgr_digest( STDLL_TokData_t *tokdata,
		   SESSION         *sess,
                   CK_BBOOL         length_only,
                   DIGEST_CONTEXT  *ctx,
                   CK_BYTE         *in_data,
                   CK_ULONG         in_data_len,
                   CK_BYTE         *out_data,
                   CK_ULONG        *out_data_len )
{
   CK_RV        rc;

   if (!sess || !ctx){
      TRACE_ERROR("Invalid function arguments.\n");
      return CKR_FUNCTION_FAILED;
   }
   if (ctx->active == FALSE){
      TRACE_ERROR("%s\n", ock_err(ERR_OPERATION_NOT_INITIALIZED));
      return CKR_OPERATION_NOT_INITIALIZED;
   }

   // if the caller just wants the encrypted length, there is no reason to
   // specify the input data.  I just need the data length
   //
   if ((length_only == FALSE) && (!in_data || !out_data)){
      TRACE_ERROR("%s\n", ock_err(ERR_FUNCTION_FAILED));
      rc = CKR_FUNCTION_FAILED;
      goto out;
   }

   if (ctx->multi == TRUE){
      TRACE_ERROR("%s\n", ock_err(ERR_OPERATION_ACTIVE));
      rc = CKR_OPERATION_ACTIVE;
      goto out;
   }
   switch (ctx->mech.mechanism) {
      case CKM_SHA_1:
      case CKM_SHA256:
      case CKM_SHA384:
      case CKM_SHA512:
         rc = sha_hash( tokdata, sess, length_only, ctx, in_data, in_data_len,
		        out_data, out_data_len );
         break;

#if !(NOMD2 )
      case CKM_MD2:
         rc = md2_hash( tokdata, sess, length_only, ctx, in_data, in_data_len,
			out_data, out_data_len );
         break;
#endif

      case CKM_MD5:
         rc = md5_hash( tokdata, sess, length_only, ctx, in_data, in_data_len,
			out_data, out_data_len );
         break;

      default:
         TRACE_ERROR("%s\n", ock_err(ERR_MECHANISM_INVALID));
         rc = CKR_MECHANISM_INVALID;
   }

out:
   if ( !((rc == CKR_BUFFER_TOO_SMALL) ||
          (rc == CKR_OK && length_only == TRUE)) ) {
      // "A call to C_Digest always terminates the active digest operation unless it
      // returns CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
      // to determine the length of the buffer needed to hold the message digest."
      digest_mgr_cleanup(ctx);
   }

   return rc;

}
Esempio n. 10
0
/*
 * hash the password
 */
void do_sha_hash(int *hashval, int *pw)
{
	sha_init(hashval);
	sha_hash(pw, hashval);
}
Esempio n. 11
0
NOINLINE
sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
{
	void (*sha_begin)(void *ctx) FAST_FUNC;
	void (*sha_hash)(void *ctx, const void *buffer, size_t len) FAST_FUNC;
	void (*sha_end)(void *ctx, void *resbuf) FAST_FUNC;
	int _32or64;

	char *result, *resptr;

	/* btw, sha256 needs [32] and uint32_t only */
	struct {
		unsigned char alt_result[64];
		unsigned char temp_result[64];
		union {
			sha256_ctx_t x;
			sha512_ctx_t y;
		} ctx;
		union {
			sha256_ctx_t x;
			sha512_ctx_t y;
		} alt_ctx;
	} L __attribute__((__aligned__(__alignof__(uint64_t))));
#define alt_result  (L.alt_result )
#define temp_result (L.temp_result)
#define ctx         (L.ctx        )
#define alt_ctx     (L.alt_ctx    )
	unsigned salt_len;
	unsigned key_len;
	unsigned cnt;
	unsigned rounds;
	char *cp;
	char is_sha512;

	/* Analyze salt, construct already known part of result */
	cnt = strlen(salt_data) + 1 + 43 + 1;
	is_sha512 = salt_data[1];
	if (is_sha512 == '6')
		cnt += 43;
	result = resptr = xzalloc(cnt); /* will provide NUL terminator */
	*resptr++ = '$';
	*resptr++ = is_sha512;
	*resptr++ = '$';
	rounds = ROUNDS_DEFAULT;
	salt_data += 3;
	if (strncmp(salt_data, str_rounds, 7) == 0) {
		/* 7 == strlen("rounds=") */
		char *endp;
		cnt = bb_strtou(salt_data + 7, &endp, 10);
		if (*endp == '$') {
			salt_data = endp + 1;
			rounds = cnt;
			if (rounds < ROUNDS_MIN)
				rounds = ROUNDS_MIN;
			if (rounds > ROUNDS_MAX)
				rounds = ROUNDS_MAX;
			/* add "rounds=NNNNN$" to result */
			resptr += sprintf(resptr, str_rounds, rounds);
		}
	}
	salt_len = strchrnul(salt_data, '$') - salt_data;
	if (salt_len > SALT_LEN_MAX)
		salt_len = SALT_LEN_MAX;
	/* xstrdup assures suitable alignment; also we will use it
	   as a scratch space later. */
	salt_data = xstrndup(salt_data, salt_len);
	/* add "salt$" to result */
	strcpy(resptr, salt_data);
	resptr += salt_len;
	*resptr++ = '$';
	/* key data doesn't need much processing */
	key_len = strlen(key_data);
	key_data = xstrdup(key_data);

	/* Which flavor of SHAnnn ops to use? */
	sha_begin = (void*)sha256_begin;
	sha_hash = (void*)sha256_hash;
	sha_end = (void*)sha256_end;
	_32or64 = 32;
	if (is_sha512 == '6') {
		sha_begin = (void*)sha512_begin;
		sha_hash = (void*)sha512_hash;
		sha_end = (void*)sha512_end;
		_32or64 = 64;
	}

	/* Add KEY, SALT.  */
	sha_begin(&ctx);
	sha_hash(&ctx, key_data, key_len);
	sha_hash(&ctx, salt_data, salt_len);

	/* Compute alternate SHA sum with input KEY, SALT, and KEY.
	   The final result will be added to the first context.  */
	sha_begin(&alt_ctx);
	sha_hash(&alt_ctx, key_data, key_len);
	sha_hash(&alt_ctx, salt_data, salt_len);
	sha_hash(&alt_ctx, key_data, key_len);
	sha_end(&alt_ctx, alt_result);

	/* Add result of this to the other context.  */
	/* Add for any character in the key one byte of the alternate sum.  */
	for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
		sha_hash(&ctx, alt_result, _32or64);
	sha_hash(&ctx, alt_result, cnt);

	/* Take the binary representation of the length of the key and for every
	   1 add the alternate sum, for every 0 the key.  */
	for (cnt = key_len; cnt != 0; cnt >>= 1)
		if ((cnt & 1) != 0)
			sha_hash(&ctx, alt_result, _32or64);
		else
			sha_hash(&ctx, key_data, key_len);

	/* Create intermediate result.  */
	sha_end(&ctx, alt_result);

	/* Start computation of P byte sequence.  */
	/* For every character in the password add the entire password.  */
	sha_begin(&alt_ctx);
	for (cnt = 0; cnt < key_len; ++cnt)
		sha_hash(&alt_ctx, key_data, key_len);
	sha_end(&alt_ctx, temp_result);

	/* NB: past this point, raw key_data is not used anymore */

	/* Create byte sequence P.  */
#define p_bytes key_data /* reuse the buffer as it is of the key_len size */
	cp = p_bytes; /* was: ... = alloca(key_len); */
	for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
		cp = memcpy(cp, temp_result, _32or64);
		cp += _32or64;
	}
	memcpy(cp, temp_result, cnt);

	/* Start computation of S byte sequence.  */
	/* For every character in the password add the entire password.  */
	sha_begin(&alt_ctx);
	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
		sha_hash(&alt_ctx, salt_data, salt_len);
	sha_end(&alt_ctx, temp_result);

	/* NB: past this point, raw salt_data is not used anymore */

	/* Create byte sequence S.  */
#define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
	cp = s_bytes; /* was: ... = alloca(salt_len); */
	for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
		cp = memcpy(cp, temp_result, _32or64);
		cp += _32or64;
	}
	memcpy(cp, temp_result, cnt);

	/* Repeatedly run the collected hash value through SHA to burn
	   CPU cycles.  */
	for (cnt = 0; cnt < rounds; ++cnt) {
		sha_begin(&ctx);

		/* Add key or last result.  */
		if ((cnt & 1) != 0)
			sha_hash(&ctx, p_bytes, key_len);
		else
			sha_hash(&ctx, alt_result, _32or64);
		/* Add salt for numbers not divisible by 3.  */
		if (cnt % 3 != 0)
			sha_hash(&ctx, s_bytes, salt_len);
		/* Add key for numbers not divisible by 7.  */
		if (cnt % 7 != 0)
			sha_hash(&ctx, p_bytes, key_len);
		/* Add key or last result.  */
		if ((cnt & 1) != 0)
			sha_hash(&ctx, alt_result, _32or64);
		else
			sha_hash(&ctx, p_bytes, key_len);

		sha_end(&ctx, alt_result);
	}

	/* Append encrypted password to result buffer */
//TODO: replace with something like
//	bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
#define b64_from_24bit(B2, B1, B0, N) \
do { \
	unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
	resptr = to64(resptr, w, N); \
} while (0)
	if (is_sha512 == '5') {
		unsigned i = 0;
		while (1) {
			unsigned j = i + 10;
			unsigned k = i + 20;
			if (j >= 30) j -= 30;
			if (k >= 30) k -= 30;
			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
			if (k == 29)
				break;
			i = k + 1;
		}
		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
		/* was:
		b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
		b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
		b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
		b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
		b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
		b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
		b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
		b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
		b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
		b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
		b64_from_24bit(0, alt_result[31], alt_result[30], 3);
		*/
	} else {
		unsigned i = 0;
		while (1) {
			unsigned j = i + 21;
			unsigned k = i + 42;
			if (j >= 63) j -= 63;
			if (k >= 63) k -= 63;
			b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
			if (j == 20)
				break;
			i = j + 1;
		}
		b64_from_24bit(0, 0, alt_result[63], 2);
		/* was:
		b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
		b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
		b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
		b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
		b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
		b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
		b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
		b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
		b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
		b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
		b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
		b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
		b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
		b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
		b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
		b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
		b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
		b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
		b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
		b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
		b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
		b64_from_24bit(0, 0, alt_result[63], 2);
		*/
	}
	/* *resptr = '\0'; - xzalloc did it */
#undef b64_from_24bit

	/* Clear the buffer for the intermediate result so that people
	   attaching to processes or reading core dumps cannot get any
	   information.  */
	memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */
	memset(key_data, 0, key_len); /* also p_bytes */
	memset(salt_data, 0, salt_len); /* also s_bytes */
	free(key_data);
	free(salt_data);
#undef p_bytes
#undef s_bytes

	return result;
#undef alt_result
#undef temp_result
#undef ctx
#undef alt_ctx
}