/* return a bound for T_2(P), P | polbase in C[X] * NB: Mignotte bound: A | S ==> * |a_i| <= binom(d-1, i-1) || S ||_2 + binom(d-1, i) lc(S) * * Apply to sigma(S) for all embeddings sigma, then take the L_2 norm over * sigma, then take the sup over i. **/ static GEN nf_Mignotte_bound(GEN nf, GEN polbase) { GEN G = gmael(nf,5,2), lS = leading_term(polbase); /* t_INT */ GEN p1, C, N2, matGS, binlS, bin; long prec, i, j, d = degpol(polbase), n = degpol(nf[1]), r1 = nf_get_r1(nf); binlS = bin = vecbinome(d-1); if (!gcmp1(lS)) binlS = gmul(lS, bin); N2 = cgetg(n+1, t_VEC); prec = gprecision(G); for (;;) { nffp_t F; matGS = cgetg(d+2, t_MAT); for (j=0; j<=d; j++) gel(matGS,j+1) = arch_for_T2(G, gel(polbase,j+2)); matGS = shallowtrans(matGS); for (j=1; j <= r1; j++) /* N2[j] = || sigma_j(S) ||_2 */ { gel(N2,j) = gsqrt( QuickNormL2(gel(matGS,j), DEFAULTPREC), DEFAULTPREC ); if (lg(N2[j]) < DEFAULTPREC) goto PRECPB; } for ( ; j <= n; j+=2) { GEN q1 = QuickNormL2(gel(matGS,j ), DEFAULTPREC); GEN q2 = QuickNormL2(gel(matGS,j+1), DEFAULTPREC); p1 = gmul2n(mpadd(q1, q2), -1); gel(N2,j) = gel(N2,j+1) = gsqrt( p1, DEFAULTPREC ); if (lg(N2[j]) < DEFAULTPREC) goto PRECPB; } if (j > n) break; /* done */ PRECPB: prec = (prec<<1)-2; remake_GM(nf, &F, prec); G = F.G; if (DEBUGLEVEL>1) pari_warn(warnprec, "nf_factor_bound", prec); } /* Take sup over 0 <= i <= d of * sum_sigma | binom(d-1, i-1) ||sigma(S)||_2 + binom(d-1,i) lc(S) |^2 */ /* i = 0: n lc(S)^2 */ C = mulsi(n, sqri(lS)); /* i = d: sum_sigma ||sigma(S)||_2^2 */ p1 = gnorml2(N2); if (gcmp(C, p1) < 0) C = p1; for (i = 1; i < d; i++) { GEN s = gen_0; for (j = 1; j <= n; j++) { p1 = mpadd( mpmul(gel(bin,i), gel(N2,j)), gel(binlS,i+1) ); s = mpadd(s, gsqr(p1)); } if (gcmp(C, s) < 0) C = s; } return C; }
static GEN bnflog_i(GEN bnf, GEN ell) { long prec0, prec; GEN nf, US, vdegS, S, T, M, CLp, CLt, Ftilde, vtG, ellk; GEN D, Ap, cycAp, bnfS; long i, j, lS, lvAp; checkbnf(bnf); nf = checknf(bnf); S = idealprimedec(nf, ell); bnfS = bnfsunit0(bnf, S, nf_GENMAT, LOWDEFAULTPREC); /* S-units */ US = leafcopy(gel(bnfS,1)); prec0 = maxss(30, vtilde_prec(nf, US, ell)); US = shallowconcat(bnf_get_fu(bnf), US); settyp(US, t_COL); T = padicfact(nf, S, prec0); lS = lg(S); Ftilde = cgetg(lS, t_VECSMALL); for (j = 1; j < lS; j++) Ftilde[j] = ftilde(nf, gel(S,j), gel(T,j)); CLp = CL_prime(bnf, ell, S); cycAp = gel(CLp,1); Ap = gel(CLp,2); for(;;) { CLt = CL_tilde(nf, US, ell, T, Ftilde, &vtG, prec0); if (CLt) break; prec0 <<= 1; T = padicfact(nf, S, prec0); } prec = ellexpo(cycAp, ell) + ellexpo(CLt,ell) + 1; if (prec == 1) return mkvec3(cgetg(1,t_VEC), cgetg(1,t_VEC), cgetg(1,t_VEC)); vdegS = get_vdegS(Ftilde, ell, prec0); ellk = powiu(ell, prec); lvAp = lg(Ap); if (lvAp > 1) { GEN Kcyc = bnf_get_cyc(bnf); GEN C = zeromatcopy(lvAp-1, lS-1); GEN Rell = gel(CLp,3), Uell = gel(CLp,4), ordS = gel(CLp,5); for (i = 1; i < lvAp; i++) { GEN a, b, bi, A = gel(Ap,i), d = gel(cycAp,i); bi = isprincipal(bnf, A); a = vecmodii(ZC_Z_mul(bi,d), Kcyc); /* a in subgroup generated by S = Rell; hence b integral */ b = hnf_invimage(Rell, a); b = vecmodii(ZM_ZC_mul(Uell, ZC_neg(b)), ordS); A = mkvec2(A, cgetg(1,t_MAT)); A = idealpowred(nf, A, d); /* find a principal representative of A_i^cycA_i up to elements of S */ a = isprincipalfact(bnf,gel(A,1),S,b,nf_GENMAT|nf_FORCE); if (!gequal0(gel(a,1))) pari_err_BUG("bnflog"); a = famat_mul_shallow(gel(A,2), gel(a,2)); /* principal part */ if (lg(a) == 1) continue; for (j = 1; j < lS; j++) gcoeff(C,i,j) = vtilde(nf, a, gel(T,j), gel(vdegS,j), ell, prec0); } C = gmod(gneg(C),ellk); C = shallowtrans(C); M = mkmat2(mkcol2(diagonal_shallow(cycAp), C), mkcol2(gen_0, vtG)); M = shallowmatconcat(M); /* relation matrix */ } else M = vtG; M = ZM_hnfmodid(M, ellk); D = matsnf0(M, 4); if (lg(D) == 1 || !dvdii(gel(D,1), ellk)) pari_err_BUG("bnflog [missing Z_l component]"); D = vecslice(D,2,lg(D)-1); return mkvec3(D, CLt, ellsylow(cycAp, ell)); }